
WEB-IS (Integrated System): An Overall View

Yunsong Wang1, Evan F. Bollig2, Benjamin J. Kadlec2, Zachary A. Garbow3,
Gordon Erlebacher1, David A. Yuen2, Maxwell Rudolph2, Lilli X. Yang2, Erik O.D. Sevre2

1School of Computational Science & Information Technology, Florida State University,

Tallahassee, FL 32306-4120, U.S.A.

2Department of Geology and Geophysics, University of Minnesota Supercomputing Institute,
University of Minnesota, Minneapolis, MN 55455-0219, U.S.A.

3IBM, Rochester, MN 55901-7829, U.S.A.

Abstract. WEB-IS, Web-based Integrated System, allows remote, interactive visualization of
large-scale 3-D data over the Internet, along with data analysis and data mining. In this paper, we
discuss the overall structure of WEB-IS. Up until now we have developed three sub-modules
geared towards geophysical problems. WEB-IS1 allows geoscientists to navigate through their 3-
D geophysical data, such as seismic structures or numerical simulations, and interactively
analyze the statistics or apply data-mining techniques, such as cluster analysis. WEB-IS2 lets a
user control Amira (a powerful 3-D visualization package) remotely and analyze, render and
view large datasets across the Internet. WEB-IS3 is an imaging service that enables the user to
control the scale of features to view through interactive zooming. In the near future, we propose
to integrate the three components together through a middleware framework called
NaradaBrokering (iNtegrated Asynchronous Real-time Adaptive Distributed Architecture, a
distributed messaging infrastructure that can be used to intelligently route data between the
originators and registered consumers) without regard for time or location. As a result, WEB-IS
will improve its scalability and acquire properties of fault-tolerance. WEB-IS uses a combination
of Java, C++, and through the use of NaradaBrokering will seamlessly integrate the server-side
processing and user interaction utilities on the client. The server takes care of the processor
intensive tasks, such as visualization and data mining, and sends either the resulting bitmap
image or statistical results to the middleware across the Internet for viewing. WEB-IS is an easy-
to-use service, which will eventually help geoscientists collaborate from different sites in a
natural manner. It will be very useful in the next 10 years because of the increasing number of
space missions and geophysical campaigns.

1. Introduction

 Earth sciences cover many disciplines and specialties, ranging from seismology, geo-
materials and space science. The datasets in the geosciences are now growing at what seems to
be an exponential pace because of large-scale numerical simulations of minerals under high
temperature and pressure conditions, 3D convection in the mantle and crust, geodynamic and
fault-zone dynamics, and others, which are all thermal-mechanical phenomena with multiple
scales that result from strong nonlinear interactions. Besides numerical simulations there is also a
strong growth in the accumulation of many data sets from improved instrumentation, for
example in atomic-force microscopy, and from a deluge of data garnered from seismic surveys
and satellite observations. Besides the sheer size of the data sets, large-scale multi-regional,
multi-institution collaborations result in the distribution and duplication of this data around the

 1

world. Both these trends make it necessary, but difficult, for the earth scientist to effectively and
efficiently access, visualize and analyze the available data in a timely manner (Erlebacher et al.
2001). There is a need to develop tools that efficiently extract relevant subsets of the data or
effectively display subsets of the datasets to ease their manipulation and analysis by scientists
geographically distributed. These tools should include computational tools that pre-process the
data into more useful forms, visualization tools to help the geologist gain insight into the data,
analysis tools that can perform relevant statistical analyses and appropriate middleware (software
tools) to connect them together seamlessly and smoothly (Erlebacher and Yuen 2002, 2003).

The primary goal of the WEB-IS project in the geosciences is to develop ‘middleware’ that
sits between the modeling and/or data analysis tools and the display systems that local or remote
users want to use. This middleware should be transparent to the user, yet take care of tracking,
book keeping, connectivity, sharing resources around the world. A well-developed middleware
infrastructure that is fault-tolerant and scalable will go a long way towards providing stronger
collaboration facilities for the earth scientists. Currently, many earth science researchers handle
very large datasets, in excess of a terabyte that are difficult to share, or even display, in real time
with the current equipment at their disposal. Research teams in the geosciences often develop ad-
hoc approaches, incompatible with each other, and often hard to use. Many would benefit from a
set of tools that conform to agreed-upon standards, which would allow sharing, displaying,
analyzing, mining, and streaming their datasets, without worrying about their development. The
dream is to provide a core set of tools, and a robust middleware system, that will let users
develop specialized plug-ins that will automatically become available to others through this
“middleware”. Such an approach can be adopted for many areas in geosciences, spanning from
petrologic data to mantle convection images.

In this paper, we give an overall view of WEB-IS, a first step in towards our dream
infrastructure. WEB-IS (WEB based Integrated System) is a Web application that allows
geoscience data to be prepossessed, analyzed, visualized and shared through the interaction
between several clients and a server. WEB-IS makes interactive data exploration available to the
end users. Special attention is paid to ensure that large-scale datasets do not impose unnecessary
bandwidth and computational bottlenecks. A detailed description of the various components
developed so far is available (Garbow et al. 2001, 2003a-b, Yang et al. 2003, Wang et al. 2003).

Many data sets in the geosciences are by their very nature becoming increasingly
distributed and decentralized due to a larger number of research groups, increased sizes of
datasets, and improvements to the network (i.e., Internet-3). These terabytes of data are stored in
various places, ranging from disk farms at supercomputing centers to portable hard drives.
Handling large, physically distributed datasets demands the availability of expensive hardware.
These datasets cannot be transmitted across the network in their entirety without paying a very
large time penalty, not to mention that they may be too large to store locally. For this reason, it is
often necessary to pre-process the data and only transmit a well-chosen subset to one or more
compute servers to analyze or visualization servers to display. Of course, the details of where
and how the data migrates should be transparent to the user. Our system tries to address this
problem and by providing a transparent middleware between physically distributed visualization
servers, analysis servers, storage servers and clients, so that the user can visualize and analyze
the large scale datasets stored in data server from client through distributed visualization or
analysis server.

We have developed three WEB-IS sub modules to provide remote visualization resources
that will permit earth scientist users to interact with their data even though they may not have at

 2

their disposal high performance software and hardware resources. The results can be displayed
on client web browsers on computers that range from laptops to handheld devices. WEB-IS
components allow the user to consider various scenarios when analyzing their datasets. WEB-
IS1, which is presently devoted to earthquake analysis, allows users to navigate through their
rendered 3-D data and interactively analyze some statistical properties of their data or apply data
mining techniques, such as cluster analysis. WEB-IS2 allows users to manipulate Amira (a
powerful 3-D visualization package and has been employed recently by the science and
engineering communities to gain insight into their data, http://www.amiravis.com) to control
remotely and to analyze, render and view large datasets through the Internet. WEB-IS3 is an
Imaging Service that permits features taken from high-resolution numerical simulations or
microscopy images to be selected at low resolution, and increase that resolution through zooming
into the data. The three WEB-IS nodes apply to different scenarios but serve the same objective:
allow the user to concentrate on the science, not on the computer science. It is therefore
necessary to make these components work together. These modules are currently all supported
by the two-way interaction between multiple clients and a single server. A client-server
architecture seeks to separate out user functions (user interface and display) from the more
computationally intensive tasks. However, because large datasets and high-performance
computing resources in geosciences are distributed across the globe, this architecture is no longer
adequate. Collaboration and sharing of resources requires the deployment of a middleware
framework whose role is to connect datasets, servers, computational and visualization servers,
transparently to the end user. There must also be a protocol available to allow clients to access
these datasets by harnessing the power of these large servers. In this case, the traditional client-
server model can be a performance bottleneck and a single point of failure (Berman et al. 2003).
A better model upon which to draw for inspiration is the GRID architecture (Foster and
Kesselman, 2003). GRID computing is a type of distributed computing in which a wide-ranging
network connects multiple computers whose resources can then be shared by all end-users with
proper authentication. In a broad sense, we consider the GRID as a type of middleware, which
connects services with clients. We adopted an event brokering system, NaradaBrokering (NB)
(developed at Community GRID Lab at Indiana University), which has many built-in capabilities
to track information, and isolate clients from servers/services, as our middleware system.

In this paper we present our vision of how to construct a system that supports remote
access, interactivity, distributed resources, along with services and clients that respectively
support global and local analysis of geophysical datasets. This new version will substantially
enhance the capabilities of the current version of WEB-IS components to provide a seamless
integration of web services that will be functional across heterogeneous hardware and software.
Through the decoupling of clients and services, the integrated WEB-IS will harness the power of
middleware frameworks to enhance remote collaboration among researchers.

Our aim is to successfully overcome the limitations of thin clients, for example, handheld
devices, and allow them to be used as a “powerful” and portable resource. Our hope is that
integrated WEB-IS will find acceptance in the world of the geophysicist. Advanced data analysis
tools under development will be made available on compute servers at universities or at National
Laboratories. In the next section we present a limited review of work in this general area. The
structure of the current version of the WEB-IS system will be presented in Section 3. How WEB-
IS is expected to fit within the context of an integrated grid infrastructure is given in section 4.
Finally, we present our conclusions and perspectives.

 3

http://www.amiravis.com/
http://communitygrids.iu.edu/

To help navigate the range of technologies involved in this work, we list the acronyms used
in Table 1, along with URLs when appropriate.

Acronym Definition URL
CGI Common Gateway

Interface
http://www.w3.org/CGI/

CORBA Common Object
Request Broker
Architecture

http://www.corba.org

GUI Graphical User
Interface

HTTP Hyper Text Transfer
Protocol

http://www.w3c.org/Protocols/

JavaGL Java implementation
of OpenGL

http://www.inf.ufsc.br/~awangenh/CG/javagl.html/

JAI Java Advanced
Imaging API

http://java.sun.com/products/java-media/jai/

JPEG Joint Photographic
Experts Group

http://www.jpeg.org

Mesa3D http://www.mesa3d.org/
NB NaradaBrokering http://www.naradabrokering.org/
PIL Python Image Library http://www.pythonware.com/products/pil/
SOAP Simple Object Access

Protocol
http://www.w3.org/TR/SOAP/

Tcl Tool Command
Language

http://www.tcl.tk

URL Uniform Resource
Locator

http://www.w3.org/Addressing/

VAN Visual Area
Networking

http://www.sgi.com/visualization/van

WEB-IS Web-Based
Integrated System

WEB-IS1 Web-Based
Interrogation System,
version 1 (with links
to Clustering
Analysis)

http://boy.msi.umn.edu/WEB-IS/

WEB-IS2 Web-Based
Interrogation System,
version 2 (with links
to Amira)

http://boy.msi.umn.edu/web-amira/

WEB-IS3 Web-Based
Interrogation System,
version 3 (with links
to Image Service)

http://tomo.msi.umn.edu/~max/

WDI Web-Based Data http://www.csit.fsu.edu/~garbowza/WDI/index.html

 4

http://www.w3.org/CGI/
http://www.corba.org/
http://www.w3c.org/Protocols/
http://www.inf.ufsc.br/~awangenh/CG/javagl.html/
http://java.sun.com/products/java-media/jai/
http://www.jpeg.org/
http://www.mesa3d.org/
http://www.naradabrokering.org/
http://www.pythonware.com/products/pil/
http://www.w3.org/TR/SOAP/
http://www.tcl.tk/
http://www.w3.org/Addressing/
http://www.sgi.com/visualization/van
http://boy.msi.umn.edu/WEB-IS/
http://boy.msi.umn.edu/web-amira/
http://tomo.msi.umn.edu/~max/
http://www.csit.fsu.edu/~garbowza/WDI/index.html

Interrogation
WSDL Web Service

Description Language
http://www.w3.org/TR/wsdl/

XML Extended Markup
Language

http://www.w3.org/XML/

Table 1: List of acronyms used in the text

2. Related work

 We now give some other examples of ongoing related efforts, which may be useful for
geoscientists. Cactus (GRID book 79) is an open-source problem-solving environment designed
for scientists and engineers. Cactus originated in the academic research community, where it was
developed and used by a large international collaboration of physicists and computational
scientists for black hole simulations (GRID book p30).

GIGAviz (http://www.voxelvision.no/) is a client-server software product developed to
visualize and interpret 3D seismic volumes using a server engine and additional client modules.
GIGAviz allows seamless interchange of data between applications and databases. GIGAviz was
used to process 3D datasets related to the oil and gas by enabling “on-the-fly” rendering,
visualization and interpretation. However, GIGAViz based on the clusters of low-cost PCs is
physically in a single location. This will limit its usage in some cases where data server and
computation server are separated by a long distance.

Cornell’s geosciences interactive information system (http://atlas.geo.cornell.edu) is a
client-server software product developed as an offspring to the university’s ongoing efforts to
construct a geosciences information system for research purposes. It is composed of a rich digital
data library, middleware composed of various software components, and a variety of interactive
Web-accessible tools for efficient utilization and visualization of the data in classrooms. This
product system is Internet-based, and free to the public. However, we pay more attention to
wireless clients whose use has become widespread.

wCLUTO (http://www-users.cs.umn.edu/~karypis/cluto/), developed by Professor George
Karypis of the Computer Science Department at the University of Minnesota, is a Web-enabled
version of a stand-alone application designed to apply clustering methods to genomic
information. The user can upload the data into the clustering tool, a choice of several clustering
methods can be made and configured, and then data is presented to the user in a variety of visual
formats, including a three-dimensional “mountain” view of the clusters. Parameters can be
quickly modified to examine a variety of clustering results, and the resulting clusters can be
downloaded either for manipulation by other programs or saved in a format for publication.
However, wCLUTO is based on a client-server paradigm other than the GRID and the datasets
have to be uploaded from client to server. Thus, large-scale datasets must be located within a
close proximity of the computational server; the bandwidth and the storage power of the server
may become the bottleneck. In our proposed architecture, one dataset could be shared and
processed by multiple servers, and multiple clients and/or servers could use the result. Moreover,
our architecture allows tasks to be assigned dynamically. wCLUTO does not allow for this.

In 2003, Silicon Graphics commercialized remote-visualization solution called Visual Area
Networking (VAN) (http://www.sgi.com/visualization/van) to advance visualization and
collaboration across multiple sites, allowing scientists around the world to work cooperatively

 5

http://www.w3.org/TR/wsdl/
http://www.w3.org/XML/
http://www.voxelvision.no/
http://atlas.geo.cornell.edu/
http://www-users.cs.umn.edu/~karypis/cluto/
http://www.sgi.com/�visualization/van

and share visual data. VAN provides instant, visual access to large data sets without
consideration for data or client location. However, it is very expensive, which prevents its
widespread adoption.

Garbow and colleagues have developed a web-based interrogative system, called Web-
based Data Interrogation (WDI), based on the client-server model that allows the users to
analyze data remotely over the Internet (Garbow et al. 2001, 2003a-b). The system promotes
portability and generates dynamic results on-demand. This paper discusses the evolution of this
software into what we now refer to as WEB-IS.

3. WEB-IS: General Description
Currently we have developed three WEB-IS components that allow the user to analyze

their geophysical data and numerical simulations for different scenarios. The overall scheme is
depicted in Figure 1, where the three different situations are shown. The reason for the different
packages is to provide various options for the users to obtain different results for the same or
different datasets, which would meet the different questions posed. This can range from simple
zooming-in to get a better resolution or statistical analysis (Garbow et al., 2001). More
components can be added on, such as it. However, it also depends on a centralized powerful
server, the software is designed to run only on SGI devoted to job-submission and monitoring of
the runs as a function of convergence parameters as in electronic band-structure calculations in
mineral physics or requests for webcam shots in a CAVE environment (e.g., Cruz-Neira et al.,
1993). The various components promote portability, dynamic results on-demand, and
collaboration among researchers separated by a long distance.

3.1 WEB-IS1
WEB-IS1 utilizes a client-server paradigm to provide a tool for remote visualization and

analysis of large-scale earthquake datasets. In this setup, multiple clients can harness the power
of a large visualization server, which handles 3-D off-screen remote image rendering and data
analysis. The client component is a Java applet and is therefore platform-independent (Garbow et
al. 2003a-b). WEB-IS1 has the ability to cluster synthetic earthquake events, visualize the results
off-screen and analyze 3-D geophysical data such as earthquake data. Due to the initial
development of WEB-IS1 for seismic events, only earthquake data is currently available for
users to examine. In the future we hope to provide users the option for uploading their own data,
such as GPS campaigns along fault zones and geomagnetic events.

A single copy of the dataset is stored on the server, which acts as a data-vault. Data
redundancy will be achieved in the future by maintaining multiple copies of the data on
geographically distributed machines.

3.1.1 Client – Server Infrastructure
Figure 2 illustrates design of WEB-IS1, which uses a combination of CORBA, C++, Java,

Python, Mesa3D library and JavaGL, a Java implementation of OpenGL
(http://www.inf.ufsc.br/~awangenh/CG/javagl.html) to provide the desired connectivity. The
user accesses a Java applet, which transmits user commands using CORBA
(http://www.mico.org), a middleware protocol developed by the Object Management Group
(http.omg.org), which provides interoperability between objects on different hardware platforms
and across multiple different programming languages. After receiving a request from the client
via the CORBA bus, the server invokes the requested method. This might include calling a data-

 6

http://www.inf.ufsc.br/~awangenh�/CG/javagl.html
http://www.mico.org/

mining program for cluster analysis, performing data analysis, or rendering the image. The server
then returns the results, or the resulting image, to the client applet over the CORBA bus.

WEB-IS1 has the ability to cluster synthetic and real earthquake events, visualize the
results off-screen and analyze the results. The WEB-IS1 Server uses of C/C++ for reasons of
efficiency, the Mesa3D library for off-screen rendering, and Python scripts to interact with the
server machine; the Client is a Java Applet, embedded within a simple HTML web page. To date,
we have three versions of the WEB-IS1 Client, each providing different communication
strategies.

Figure 1 Schematic showing the present set up of the three modules of the WEB-IS

systems applied to geophysical problems The first (WEB-IS1) handles earthquake events, the
second (WEB-IS2) provides local and global statistics from convection data., and the third
(WEB-IS3) is image-based and provides zooming capabilities. Additional modules, e.g., to

 7

submit jobs and to monitor the convergence of solutions to eigensystems will be developed and
integrated into the framework in the future.

The first client uses the CORBA packages provided by Java version 1.4 and higher.
CORBA, a middleware protocol that was created by the Object Management Group (OMG.org),
provides a direct connection between server and client, giving each client their own instance of
the server process. MICO (MICO.org), a free and fully compliant version of the CORBA
standard, is used on the server side, to complete the connection. CORBA provides
interoperability between objects on different machines, among multiple different programming
languages, and with no regard to the machine’s platform. The applet communicates user
interactions to the server. After receiving a request from the client via the CORBA bus, the
server performs the requested operation. This can include calling a data-mining program for
cluster analysis, performing data analysis, or rendering the image. The server then returns the
results, or resulting image, to the client over the CORBA bus to the applet.

The second version of the WEB-IS1 Client makes use of SOAP (http://ws.apache.org/soap/)
as a step towards providing compatibility with Web-Service protocols, which will help
decentralize clients and servers. SOAP, or Simple Object Access Protocol, is an XML based
protocol that is lightweight and ignores the notion of a central server, making it an ideal protocol
for GRID or distributed computing environments (Englander 2002). Several packages and
toolkits currently exist to make development of SOAP/XML services easier. WEB-IS1 takes
advantage of two such toolkits: gSOAP (http://www.cs.fsu.edu/~engelen/soap.html) and Apache
SOAP (http://ws.apache.org/soap/). gSOAP, created at Florida State University, was designed to
optimally bind C/C++ and SOAP. Apache SOAP, developed by the Apache SOAP community,
is an implementation of the SOAP v1.1 and SOAP Messages with Attachments specifications for
Java. For the most part, both toolkits are interoperable, which allowed us to retain our multi-
language web-service and preserve the basic structure and features found in the original CORBA
system. A major difference between SOAP and CORBA can be found server-side: CORBA,
connects each client to a unique instance of the WEB-IS1 server; however, only one SOAP
server may run per port on a server machine. This can actually be extremely handy for
collaboration aspects since two users connecting to the same server will share server ports, along
with their results. Any clustering or transformation changes done by one user are available to
view by all other users that are connected to the same port.

 8

http://ws.apache.org/soap/
http://www.cs.�fsu.edu/�~engelen/soap.html
http://ws.apache.org/soap/

Figure 2. The user interacts with the Java applet (right), which provides the client-side GUI and
a front-end for all interactions. The server (left) receives requests from the client, and performs
these processor intensive tasks, returning the results to the client to be displayed. WEB-IS1 uses
the CORBA as the middleware (Garbow et al., 2001).

The third Client version addresses the lack of sufficient resources on many clients. Our
previous versions of WEB-IS1 require users to install the Java Run-Time Environment (JRE)
1.4.x for the CORBA and Swing packages. Unfortunately, at the time of this writing 1.4.x is the
newest version of Java, and the many researchers in the field may not have it installed. Rather
than force everyone to load the latest versions of these packages, we created a new WEB-IS1
client, following the guidelines of the previous version. The result is a Client compatible with all
versions of Java starting with Java 1.1. Since the Swing packages were not always available, the
new Client has a different visual appearance. However, the same primary functionality is
maintained for clustering and visual data analysis. While the key components of WEB-IS1 have
been included, many secondary features such as the client-side jGL implementations, time
scaling, and statistics panels have been removed to make the applet more portable. The limited
functionality in this applet has led us to name it the “Demo Applet”. Currently, the Demo Applet
is used to introduce users to the core of the WEB-IS1 software, and let them decide whether to
download the latest software packages to enable the use of current and future versions based on
the latest software APIs and standards.

3.1.2 The user interface and functionality
A GUI on the client browser lets users interact with the system via icons and a pointer

rather than text entry (See Figure 3). The image in the top left corner was generated off-screen
using the Mesa OpenGL library on the server. Users can manipulate the data by clicking and
dragging their mouse over this image.

 9

The Navigation Panel (top right corner) acts like a remote control to the Server. It consists
of a Rotator, a compass, various input fields, and two buttons (Create Bounding Box and
Synchronize Images). The latter button is meant to send an aggregate set of commands to the
server rather than each time the user presses a Navigation Panel component. All controls operate
on the small image to the left of the compass, providing users with a real-time interactive display
of how their data will appear.

The Clustering & Display Controls in the (bottom left corner provide the user with finer
control over algorithm and navigation parameters. It is in this panel that users manipulate
clustering parameters, adjust the axis scales, and/or broaden or narrow the time interval over
which the clustering algorithm is applied. The bottom right of the applet displays various results
depending on the selection at the bottom of the panel: statistics related to the clustering operation
(Cluster Stats tab), the clustered dataset overall (Composite Stats tab), or statistics for the events
inside the bounding box (Local Stats tab). One can also display a 3D Histogram (3D Histogram
tab) that displays data in a 3D coordinate system as Depth versus Horizontal Distance versus
Frequency.

Figure 3 WEB-IS1 (http://boy.msi.umn.edu/WEB-IS) allows users to navigate through their
rendered 3-D earthquake data and interactively analyze the data for statistics or apply data
mining techniques, such as cluster analysis.

3.1.3 Scenarios (Examples)
WEB-IS1 is ideal for visualizing datasets that describe events, such as earthquakes,

which can be displayed as single data points. To take full advantage of the available 3-D
visualization facilities, each event should be described by at least three parameters. Since WEB-
IS1 uses cluster analysis to identify existing patterns among the events, these should have some
degree of non-zero correlation (Garbow et al. 2001). The homegrown clustering algorithm used

 10

by WEB-IS1 was written for datasets that contain a time dimension. Our current research seeks
to incorporate a generic clustering toolkit, wCLUTO (Rasmussen et al. 2003) that would allow
for more general types of events. Mesa3D (http://www.mesa3d.org/), an open source alternative
to OpenGL, was used to generate three-dimensional displays of the clustered events. The
benefits of viewing data in 3D are self-evident especially when analyzing physical data
composed of tens and hundreds of thousands of events. Even better would be the use of
stereographic projection, which will be considered in the future. All images displayed by WEB-
IS1 are rendered off screen on the server. As a result, any computer that supports the Mesa
library can act as the server. This capability has led us to explore the deployment of WEB-IS1
within the context of GRID architectures.

WEB-IS1 was originally developed to explore and analyze synthetic seismic events
(Dzwinel et al. 2003, Garbow et al. 2003b, Yuen et al. 2003). Each event has two spatial
dimensions (horizontal location and depth) and two dimensions for time and magnitude.
Although the dataset is four-dimensional, only the two spatial dimensions and time are displayed
in a 3D reference frame. Each event is represented as a sphere, larger diameters representing
stronger events. WEB-IS1 clusters the data before rendering. Each cluster receives a unique
color, which is associated with each of its events. The format of the data as a four-dimensional
dataset conveniently fits the number of properties that WEB-IS1 is able to display.

Recently WEB-IS1 was enhanced to handle real datasets from Japan (Ito and Yoshioka,
2002). These seismic events were recorded with three spatial coordinates (horizontal, vertical,
and depth distances) in addition to time and magnitude. The complete record of spatial
coordinates provided the unique opportunity to visualize realistic data in WEB-IS1. However,
the Japanese dataset contains more dimensions than did the synthetic data. Consequently, we
were forced to rethink how to represent the data visually. As a first step, the data was plotted in a
Cartesian system whose axes correspond to each set the three spatial coordinates. The magnitude
was again correlated to the sphere size, and each sphere had the color associated with its
containing cluster. Unfortunately, time was left out.

To visualize the progression of time required a new approach. We set up WEB-IS1 to
visualize according to a user-selected time interval. Only the data that occurs within the selected
interval is displayed. Users can reduce the time interval down to a single second or expand it to
include multiple years. Like frames in a movie reel, users are able to select smaller time intervals
to see data occur in slow motion or larger time intervals to increase the speed of the events.

WEB-IS1 is currently undergoing a transformation from a static form of visualization to a
dynamic form. Under the static visualization all data dimensions are directly mapped to the
number of dimensions that WEB-IS can handle visually (i.e. visualizing synthetic data).
Adapting WEB-IS1 to the Japanese data is an example of how the program is upgrading to a
dynamic level, where the software handles data characterized by a variable number of attributes.
The idea is to have WEB-IS visualize the data with a default dimension mapping of
characteristics to spatial dimensions, but then allow users to change which dimensions they see.
Datasets could have seven or more dimensions and at any given time users will be able to
visualize four or five of them. This method of visualizing data has good and poor attributes.
While a display of four or five dimensions greatly reduces the amount of data displayed, at the
expense of losing information. Possibly important correlations between dimensions might be
missed. One the other hand, it is extremely unlikely that the correlations will occur over more
than 4-5 dimensions at the same time. If the user is able to choose the mapping, this disadvantage

 11

http://www.mesa3d.org/

is not expected to be severe. We are also investigating the possibilities of using WEB-IS1 for
data-analysis outside the geological and geophysical scope, such as in the bioinformatics field.

3.1.4 Disadvantages
WEB-IS1 uses a clustering algorithm developed in-house. Although rather efficient on a

single processor, the performance of the algorithm would be greatly enhanced through
parallelization. The integrated WEB-IS address focus this issue by assigning multiple servers the
task of clustering the data. Task scheduling will be handled through NaradaBrokering. Currently,
only the original version of the WEB-IS1 client uses CORBA rather than SOAP as a remote
calling protocol. Because CORBA must maintain state among its connections, its scalability does
not rival that of SOAP, which is a stateless protocol. Moreover, it is more complex than SOAP
(Livingston 2002). CORBA enables resource sharing within a single organization while SOAP
aims to bridge the sharing of resources among disparate organizations possibly located behind
firewalls (van Engelen et al. 2003). The integrated WEB-IS will use SOAP as the protocol to
allow clients to tap into server resources possibly located behind a firewall, and make the power
of these large servers more widely available through the use of Web services. This is discussed
further in section 4.

3.2 WEB-IS2
WEB-IS2 is a web-based interactive application that allows users on a client machine to

remotely control, display, and share visual information using Amira located on a remote server.
The GUI (see Figure 5) provides a convenient front-end to facilitate the remote use of Amira
assuming the accessibility of a reliable and speedy network. The only requirements imposed on
the client are that the browser be Java 1.4 enabled, which is easily satisfied. Consequently,
WEB-IS2 can be used on almost any platform.

Amira is a 3D visualization and modeling system that allows researchers to visualize
scientific datasets from various application areas, e.g., medicine, biology, chemistry, physics,
engineering, and the geosciences. Amira uses many advanced algorithms that capitalize on the
hardware available on many of the current commodity graphics cards. Users construct programs
visually with flow charts of modules that represent tasks or via Tcl scripts (Tool Command
Language).

WEB-IS2 allows users to harness the visualization power of Amira and the associated
remote graphics hardware over the Internet, avoiding the use of customized visualization
software. The current version of WEB-IS2 provides two demo datasets from numerical
simulations of mantle dynamics to illustrate some its basic features. One dataset was generated
through numerical simulations of 3D thermal convection in the Earth’s mantle (Dubuffet et al.
2001) while the second dataset is composed of synthetic earthquake events.

3.2.1 Client – Server Architecture
Figure 4 shows the architecture of WEB-IS2. Multiple clients have the ability to connect to

a server on which Amira is executed. The client interfaces with the server through the
intermediary of CGI (Common Gateway Interface) scripts. The CGI is a standard for interfacing
external applications with an information server. CGI scripts execute in real-time and output
dynamic information. They are invoked by an HTTP server, executed, and output is returned to
the client. During execution, a CGI script sends commands to service programs, such as Amira,
retrieves their output, and returns them to the client. Clients communicate with the CGI scripts

 12

on the server through input parameters encoded into a URL (Uniform Resource Locator,
http://www.w3.org/Addressing/).

Figure 4. The user interacts with the Java applet (right), which provides the client-side GUI and
a front-end for all interactions. The server (left) receives requests from the client via
CGI(Common Gateway Interface, http://www.w3.org/CGI/), prepossesses data and then sends
request to Amira, Amira performs these processor intensive tasks and generates the image
mapped to the datasets as client’s request, returning the results to the client to be displayed.

3.2.2 User interface and functionality
WEB-IS2 allows users initiate and terminate Amira on the server by interacting with the

client GUI. Once initiated, an Amira script is loaded and run on the Amira server. The user can
select the desired dataset and visualize the cutting planes in the Server Image section of the GUI.
He can also select and edit a particular Amira script file to run on the server. The results of
running the script on the server can be checked by capturing a snapshot of the viewer, which is
displayed in Server Image.

Currently, Amira is only used to take cuts of a 3D dataset along the x-y, x-z, or y-z
coordinate directions, using the Amira’s ortho module. The data are assumed to be defined on a
Cartesian mesh. Alternative cutting options on more general grids are easily implemented since
Amira already provides appropriate routines. A master CGI script controls the entire process.

WEB-IS2 makes extensive use of Python (http://www.python.org), Tcl and C/C++. CGI
scripts are written in Python, the message communication between the Common Gateway
Interface (CGI) and the Amira server are written with C++; and the communication program
interfaces to Amira through the intermediary of Tcl scripts. (The Amira console only accepts
external commands written in Tcl.) Statistical processing and other analysis routines are written
in C or C++ to maximize performance.

 13

http://www.w3.org/Addressing/

The client interface is a Java applet; the images are two-dimensional bitmaps sent from the
server in jpeg format. Consequently, the requirement for client-side storage and network
resources are relatively low, which is allows the use of client handheld devices.

3.2.3 Disadvantages
An important restriction on the use of our system is the current lack of off-screen rendering

capability for the Amira software package. Therefore, the server must be a dedicated machine,
lest there be interference when accessed by a local user. Furthermore, the rendering appears on
the screen, which necessitates that a user be logged onto the server console to ensure that Amira
can be activated remotely. Recent research has demonstrated the possibility of off-screen
rendering of graphics programs without the need to modify their source code (Stegmaier et al.
2002).

Figure 5. WEB-IS2 allows user to manipulate Amira controls remotely and to analyze, render
and view large datasets through the Internet. The datasets is taken from strongly time-dependent
3-D convection in a Cartesian domain (Erlebacher, Yuen and Dubuffet, 2002)

WEB-IS2 can activate multiple Amira instances from one or multiple client browsers and

control them individually, although all copies of Amira are currently instantiated on a single
server. The port number associated with a particular Amira instance identifies the particular
session. However, when multiple clients send different commands to the Amira server the
displays will interfere with each other unless precautions are taken. Off-screen rendering and
Grid services are two possible approaches to handle this problem. If the Amira server is
implemented as a Grid service, the actual computations could be distributed across several
computers, the results collected, and finally returned to the client. This approach would require
the clustering algorithms and visualization techniques to be parallelized, resulting in a faster and
more powerful virtual server.

In our current implementation, animations are only possible through repeated snapshots of
Amira’s viewer window. The ability to get the snapshot of the running script in real time will be

 14

enhanced in the future version. Note that real time displays can be generated with the techniques
described in Stegmaier et al. (2002). Finally, the GUI requires simplification.

3.3 WEB-IS3
Increases in the computational power of modern supercomputers have led to an increasing

gap between the resolution of digital simulations and the resolution of conventional display
devices. This problem is compounded by the increasing size of datasets from simulations and the
bandwidth constraints of the Internet. In recent simulations, we have modeled subduction zone
dynamics (Gerya and Yuen, 2003) using approximately 100 million markers that track data
across many different fields such as temperature, viscosity, density, and chemical composition.
See also Rudolph et al. (2003, 2004) for technical details concerning the visualization and
zoomed-in techniques. Because commercially available software accessible to us could not
handle these datasets, we developed a novel set of tools tailored to high-resolution, multi-
variable, multi-scale simulations. These tools can be adapted to other applications with large
datasets.

 To address this discrepancy in resolution we considered techniques to handle both remote-
visualization and the visualization of locally stored data. Our approach to remote visualization is
a web-based, Image Service (WEB-IS3) (with interactive zooming) that enables the user to
explore time-dependent datasets, select variables, and control the spatial scales. At local sites, the
data is visualized on high-resolution display power-walls (http://www.lcse.umn.edu) with at least
10 million pixels and the calculations are performed on multiple CPUs. The high resolution and
computational speed helps improve our understanding of causal and temporal relationships
between multiple physical properties.

WEB-IS3 aims to view very high-resolution images in a low-resolution environment.
Images are initially loaded at low resolution. By interactively selecting a sub-area, users can
zoom-in to visualize finer details. This process can be repeated until the resolution of the
displayed image matches that of the original image stored on the server. WEB-IS3 is entirely
based on image analysis, with no consideration for the underlying dataset, which avoids the need
to load nonessential data. Furthermore, storage of the raw data is no longer required on the server.
Only high the original resolution images are stored in a compressed format. The initial design of
WEB-IS3 provides users with the ability to load images in JPEG or PNG format due to their high
quality and strong compression properties. However, new formats can be added as necessary.
They can also be applied to looking at complex phase diagrams in mineral physics, rendered by
wavelets (Vasilyev et al., 2004).

 15

http://www.lcse.umn.edu/

Figure 6. The user interacts with web interface (right), which provides the client-side GUI and a
front-end for all interactions.

The architecture of WEB-IS3 showed in Figure 6. The server (left) receives requests from

the client via CGI, prepossesses data, sends an appropriate request to computation server, which
performs these processor intensive tasks, generates the image, and returns the results to either the
client device of the powerwall. Through the GUI of WEB-IS3 (see Figure 7), user can repeatedly
zoom further into the image, or select to analyze data from the zoomed in area. The Reset button
resets the image scaling to the original settings.

 16

Figure 7. WEB-IS3 is an imaging service that displays selected features of subduction dynamics
from a low-resolution environment to one with increased resolution by zooming into the data
(Rudolph et al. 2003, 2004).

3.3.4 Disadvantages
The datasets source on server is a high-resolution image. While avoiding much processing,

our approach also limits the ability to query data when the upper limit of resolution is reached.
Furthermore, when using JPEG as a compression algorithm, distortions in the image appear at
higher resolutions. For this reason, PNG (lossless compression) is preferred, although in most
cases, the compression is not as effective. Of course, the need to create all the images prior to
their access by the user is a disadvantage.

4. Integrated WEB-IS
In this section we present an integrated view of our WEB-IS system, sufficiently generic to

be applied in many areas in the geosciences and other application areas. The integrated WEB-IS
differs from previous work in that we are interested in adapting our tools to a GRID-like
environment (http://www.grid.org/home.htm) to better handle distributed environments and the
increased heterogeneity of the hardware/software platforms on which teams of researchers will
conduct future scientific collaborations. To this end, NaradaBrokering (see next section) will
permits our Client-Server computing to scale more effectively than traditional client-server
systems that must expand or change a server’ infrastructure in order to grow, and since both
client and server subscribe to NB, decentralization is attractive with respect to scalability and
fault tolerance. In spite of these assets, there are currently several drawbacks to our present
WEB-IS set-up. These arise from the way we provide the three services separately. Currently, all
computations are executed on a single server. Clearly, the most important problem is that as an
increasing number of users access the system, it eventually becomes overloaded. It is therefore
be important to distribute services across many servers and ensure that each service is multiply
redundant. The same is true for large datasets: they should be stored redundantly at multiple
locations (similarly to mirroring in archival sites). In the integrated WEB-IS system, The WEB-
IS components (clients and servers) will be connected across a GRID. A GRID-like
infrastructure can be implemented using NaradaBrokering (NB), designed to run on a large

 17

http://www.grid.org/home.htm

network of brokering nodes (see next Section). While current Grid systems are mostly based on
point-to-point messaging, NB connects providers and consumers of information through topics,
while the middleware is responsible for message routing.
We briefly describe the philosophy behind NB and some of its attributes (section 4.1), and
follow this by a more detailed discussion of the architecture of Integrated WEB-IS (section 4.2).

4.1 NaradaBrokering
NaradaBrokering (iNtegrated Asynchronous Real-time Adaptive Distributed Architecture)

is a distributed messaging infrastructure that can be used to intelligently route data between the
originators and registered consumers (Fox and Pallickara 2002, 2003). Its strength lies in the
complete decoupling between message source and destination. Rather than specify the precise
origin and destination of a message with an IP address, or any other tag uniquely identifying the
actual hardware, messages are tagged by topic. A newsgroup server nicely illustrates the
principles behind NB. Publishers of news items send information to the news server labeled by
topic. Subscribers can choose to read specific news groups, and selected topics within them. A
topic might contain several news items, which follow what is known as a thread. Similarly to the
news server, NB is a “black box” that accepts (and stores) input messages (tagged by topic) sent
by the publishers, and routes them to any end client that has subscribed to that particular topic.
NB keeps track of each topic, and routes message contents to the appropriate subscribers. An
important consequence of this strategy is that several publishers can send messages to, and
several subscribers can receive messages from, a given topic (not necessarily the same topic). By
its very nature, NB facilitates the development of collaborative systems. The functionality and
scalability of NB is enhanced by forming broker networks. (A broker is any machine, connected
to the Internet, on which the NB kernel is installed.) Publishers send messages through a broker
originator, while subscribers receive messages from, possibly, another broker. NB takes care of
ensuring that the messages requested by the subscribers are received. NB has already been
applied to develop a distance education system, audio/video conferencing (Bulut et al. 2002),
and to tunnel through proxies and firewalls. More interestingly, a client can subscribe to a topic
prior to the first message published to that topic. The subscriber will then automatically receive
the message when available. This feature will make it possible for various services to subscribe
to topics that describe their capabilities, for example “storage”. Any message published under the
heading “storage” will automatically be handled by the appropriate services. Topics can have
several attributes attached to them when initially defined. Message attributes control their
properties: how long do they remain within NB, or are they destroyed once the first subscriber
receives them. Entities within the system use the broker network to effectively communicate and
exchange data with each other. These interacting entities could be any combination of users,
resources, services and proxies. As mentioned above, NB has a cluster-based architecture, which
allows the system to scale to support large client concentrations, addition of new broker nodes
and high volume of messages between interacting clients. Source code to NB is available at
http://www.naradabrokering.org.

The NB infrastructure will provide us with the ability to dynamically link WEB-IS
computational servers, visualization servers, storage servers and WEB-IS clients. These will
support the execution of large-scale, resource-intensive, and distributed visualization tasks
through a systematic use of topics to help route messages from clients to their intended servers,
without the user having explicit knowledge of the servers where tasks will be executed. NB-based
WEB-IS will be distributed, heterogeneous and dynamic.

 18

http://www.narada�brokering.org/

4.2 The integrated WEB-IS infrastructure
Currently all three components of WEB-IS execute on a single server. NB will enable the

server side of WEB-IS to be installed redundantly on multiple servers throughout the world.
Through the proper use of topics, tracking of server capabilities, benchmarking of network
bandwidth, we expect client requests to be served by the most appropriate service. Redundant
services, and decoupling the servers from the clients, will provide fault tolerance, security, and
portability to our system. For example, if a particular server crashes, NB will automatically
connect a client to a server with appropriate capabilities. Security features are currently being
integrated into NB, which when complete, will automatically provide secure communication
within WEB-IS. As for the servers, clients can connect from anywhere, thus increasing
portability. In addition, a user will have the ability to disconnect from one machine, connect to
another, and continue working, since all requests are controlled by topics, not by the specific
hardware. Naturally, each client machine registers with NB its hardware capabilities, which will
permit NB to control the flow of information to the client to avoid bottlenecks.

Our aim through integration with NB is to maintain all the current advantages of WEB-IS 1,
2 and 3, while overcoming all of their disadvantages. In the integrated WEB-IS, there will be no
clear demarcation between WEB-IS1, WEB-IS2 or WEB-IS3. The computational components of
WEB-IS will reside on several servers and will be interface with NB through Web services. To
request a service from a particular component will require a subscription to a topic whose name
is that component. In our case, WEB-IS 1, 2 and 3 provide specific services to the user, so will
be accessed by using their names as topics. Services will subscribe to their own topics. For
example, a WEB-IS1 server will subscribe to itself, and will therefore receive requests from any
client publishing to the WEB-IS1 topic. If several servers have WEB-IS1 installed, a mechanism
will be required to ensure that only a single server is activated to provide results to the client.
This is the subject of ongoing research. More generally, services can invoke each other by the
same topic mechanism. For example, WEB-IS3 could get a cutting plane image generated by
Amira through sending a request to WEB-IS2. NB will ensure that a single sign-on will generate
security credentials that can be used for the collection of actions (potentially on multiple
resources) that may be needed in a WEB-IS Session. The setup of the Integrated WEB-IS, as
currently envisioned, is shown in Figure 8.

SOAP was chosen to communicate between WEB-IS components and the clients. SOAP
uses XML as the marshalling format and typically adopts HTTP as a firewall-friendly transport
protocol. The XML-based protocol is language and platform independent, which implies that the
message load can be shared among disparate parties, across different platforms, language and
programming environments (Engelen et al. 2002). As a result, any application could use our
components, as long as it implements an interface to interpret incoming and outgoing soap
messages. SOAP also supports binary messages, which facilitates the transfer of, for example,
JPEG images among the WEB-IS components.

However, there remains the task of interfacing SOAP with the language used to develop
our web service. WEB-IS uses C/C++ to maximize performance. There are some SOAP C++
implementations that adopt a SOAP-centric view and offer SOAP APIs for C++ that require the
use of class libraries for SOAP-like data structures. This often forces a user to adapt the
application logic to these libraries and is clearly inconvenient when working with legacy codes,
since we would like to minimize the number of modifications to them. In contrast, the gSOAP,
toolkit provides a unique SOAP-to-C/C++ language binding for the development of SOAP Web
services and clients and provides a C/C++ transparent SOAP API. The gSOAP stub and skeleton

 19

compiler automatically maps native and user-defined C and C++ data types to semantically
equivalent SOAP data types and vice-versa. Therefore, (mostly) full SOAP interoperability is
achieved with a simple API, which relieves the users from the burden of SOAP details and
enables them to concentrate on the application-essential logic. The overhead and memory usage
of gSOAP is low, which makes gSOAP attractive in high-performance environments. Details can
be found at (http://www.cs.fsu.edu/~engelen/soap.html).

Whereas SOAP is an actual protocol, WSDL (Web Services Definition Language) is a
XML description of web services (Box et al. 2000). This description contains all the information
necessary to enable client access to remote services. The most important information includes
service location, bindings to a specific message encoding (e.g., SOAP), links between operations
and one or more transport protocols (UDP, TCP, etc.). In addition, sufficient information is
included about the functionality provided by the service, including method calls, parameter and
return types, and complete definitions of any user-defined types. WSDL files play an important
role since their information content is sufficient to construct SOAP messages that permit a client
to access services remotely. The full specification is available at http://www.w3.org/TR/wsdl.
WSDL is the key to building a bridge between our C/C++ SOAP implementation and other
language SOAP implementations, for example Java-SOAP. WSDL files are rather complex;
fortunately, gSOAP provides a WSDL generator to generate Web service descriptions. In the
integrated WEB-IS, the clients are Java Applets to provide friendly, platform-independent and
real-time interaction; the services are mostly coded in C/C++ for performance.

 20

http://www.cs.fsu.edu/~engelen/soap.html
http://www.w3.org/TR/wsdl

Figure 8. Integrated WEB-IS architecture. Clients (users) submit tasks (visualization, data
mining, statistical analysis, file retrieval etc.) to be executed by one or several servers. The
particular server is not known to the user. This is accomplished with a collection of Middleware
“Brokers” (the NaradaBrokering system) that operate on the publish/subscribe paradigm. Both
clients and servers publish information to the middleware, identified by one or more topics. In
turn, clients and servers subscribe to these topics to retrieve the topic content. The
NaradaBrokering system automatically takes care of routing publisher information to the
appropriate subscribers. Information can be metadata (hardware and software resources, task
descriptions) or data requested by the client (visualization data) or by the visualization server
(files retrieved from data storage). One or more databases can publish information to the system
(replies to system queries), or subscribe to particular topics it wishes to place in long-term
storage for later retrieval (e.g., various topics that relate to metadata).

The SOAP-based communication between a Java client and a C/C++ server is as follows:

On the server side, C/C++ code is compiled with gSOAP to map native and user-defined C and
C++ data types to semantically equivalent SOAP data types, and to generate the WSDL to
provide a Web service interface for the clients. On the Java client side, a stub that accesses the
Web service is generated automatically by the utility “WSDL2Java”
(http://www.systinet.com/doc/wasp_jserver/waspj/wsdl2java.html), which generates a Java stub
class. This class is used to invoke the remote methods of the Web service. The compatibility
between the Java class on the client side and C/C++ Web services is achieved because they are
based on the same WSDL. This scheme is showed in Figure 9 as a flowchart.

NB wraps the SOAP messages received from the clients and appends a topic header. Prior
to reception by the server, NB unwraps the message, and sends the SOAP payload to the service.
However, there is a slight problem with this straightforward approach. Existing clients and
services do not know about NB; yet NB requires a topic to forward the message to the correct
destination. Our goal is to provide a facility to connect existing services to NB without change to
the source code. This is possible by associating with each client and service a proxy, which
simply acts as a substitute to the client/service, yet knows about NB. Therefore, the client
communicates with a client proxy, while the server communicates with a server proxy. When the
client proxy receives a gSOAP message from the client, the message becomes the payload of a
NaradaBrokering message, which is published. Conversely, the server proxy (SP) unpacks the
NaradaBrokering message, and forwards the soap message to the server.

 21

http://www.systinet.com/doc/wasp_jserver/waspj/wsdl2java.html

Figure 9. Java Client-NaradaBroker-C/C++ Server. The gSOAP generates platform-independent
C and C++ source code for the client stubs, server skeletons and WSDL. WSDL2Java generates
the Java Client Stub, which connect the Java Client with C/C++ Client Stub generated by
gSOAP. Finally, Java client can communicate with C/C++ server with SOAP through
NaradaBroker via the interface of the Web service.

4.3 Demo Project based on NB-gSOAP architecture and Future Implementation
To verify the feasibility of the above picture, a demo project based on Figures 8-9 was

developed. In the project, a server renders an image off-screen at the request of the client and
returns the images to client for display. Communication between them is channeled through NB.
The client is a java applet and the server is implemented in C++. Since the client and server are
resident on different machines and are implemented in different languages, some steps have to be
taken before they are connected to NaradaBrokering. We also need create Client Stub and Server
Skeleton to act as proxies. The actual client and server communicate with their proxies, who in
turn wrap the SOAP messages (and unwrap NB messages) and send them to (and receive them
from) NB.

The Java Client Stub showed in the Figure 9 is the Java definition and implementation of the
Web Service, which is equivalent to the definition and implementation of the Web Service
written with C++ on the server side. The utility WSDL2Java generates the Java Client Stub from
the WSDL of the Web Service. The main reason for the Java Client Stub is give the client access
to the Web Service Object to make remote procedure calls possible. In this setup, the client can
call the “Web Service” from its code and translate the user input into the SOAP format through
the support of Apache Axis. Then the SOAP messages are sent to the Client Proxy who is in
charge of establishing the connection to NB and forwarding it the SOAP message with an
appropriate specified topic header. NB routes the message based on the topic. The message
arrives at the server proxy, which unmarshals (i.e., translates) the data to its original SOAP
format, and forwards it to the server, who receives it and generates the requested image. The
return data path is similar. Finally the image is returned as byte stream to the client and rendered
by the Web Browser through the intermediary of the Tomcat JSP server. Fig. 10 below shows a
plan of the initial configuration of our NaradaBrokering set-up to be used in WEB-IS. Three

 22

institutions will be involved, Univ. of Minnesota, Florida State University and Indiana
University.

Figure 10. The NB-gSOAP architecture over the Internet connecting the three institutions, U of
Minnesota (UMN), Indiana University (IU) and Florida State University (FSU)

5. Concluding Remarks and Future perspectives
Without a doubt, geoscientists are confronted with increasingly larger datasets, which

appear to be growing at an exponential rate. This relentless drive forces the need for visualization,
feature extraction and more compact data representations (Erlebacher and Yuen, 2003). In this
paper we have focused our attention on geophysical data sets. However, we are cognizant of the
potential of WEB-IS in the areas of bioinformatics and medicine. A particularly good example is
the display of digital mammograms, which can benefit greatly from the use of WEB-IS. A goal
of this archive is to study and understand epidemiologic issues related to breast cancer
(http://sprojects.mmi.mcgill.ca/mammography/anat.htm) by searching through this vast database
of high-resolution images with a 40 Mbytes capacity. Figure 11 shows the original picture of the
2D mammogram, the picture with the color map, the 3D picture with the height field or
topography, and a zoomed-in view of the topography, which is similar to topography found in
geological terrains (e.g., Sandwell and Smith, 1997)

Our proposed architecture, based on NB will eventually allow multiple users to collaborate
visually regardless of the location of the server resources. Different users might even access
different servers. However, in this case, some form of synchronization between servers would be
necessary to ensure that multiple users share the same view. Users may also use WEB-IS for
submitting jobs and monitoring jobs in progress. The only requirement imposed on the clients
will be the availability of a browser capable of displaying Java applets. We hope that WEB-IS
will soon be integrated into a GRID-based remote visualization and monitoring environment and
used by the geoscientists to enhance his working experience.

 23

http://sprojects.mmi.mcgill.ca/mammography/anat.htm

Figure 11 The original 2D picture of mammogram (left 1), the picture with colormap (left

2), the 3D picture with height-field (right 1) and zoomed-in 3D picture.

6. Acknowledgments
The authors would like to thank Cesar DaSilva for useful feedback on the contents of this

paper, and fruitful discussion with Shrideep Pallickara, the author of NaradaBrokering. They also
acknowledge the support of the geophysics and mathematics-geoscience programs of the
National Science Foundation.

7. References

Berman, F., Fox, G., and Hey, A.J.G. (Editors), GRID Computing: Making the Global
Infrastructure a Reality, Wiley Series in Communications Networking & Distributed Systems,
1013 pp., John Wiley & Sons Ltd., 2003.

Bulut, H., Fox, G., Pallickara, S., Uyar, A., and Wu, W., Integration of NaradaBrokering and
Audio/Video Conferencing as a Web Service. IASTED International Conference on
Communications, Internet, and Information Technology, 2002, pp. 401-406, 2002.

Cruz-Neira, C., Sandin , D.J. and T.A. DeFanti, Visualization in a Cave –environment,
Proceedings of SIGGRAPH ‘93, pp. 135-142, 1993.

Dubuffet, F., Yuen, D.A., Murphy, M.S., Sevre, E.O., and Vecsey, L., Secondary Instabilities
developed in upwellings at high Rayleigh number convection, in EOS, TRANS, AGU, 2001, Vol.
82, No. 47, pp. F210.

Dzwinel, W., Yuen, D.A., Kaneko, Y.J.B.D., Boryczko, K., and Ben-Zion, Y., Multi-resolution
clustering analysis and 3-D visualization of multitudinous synthetic earthquakes, Geosciences,
Vol. 8, pp. 12-25, 2003. http://link.springer.de/link/service/journals/10069/contents/tfirst.htm .

Erlebacher, G., Yuen, D.A., and Dubuffet, F., Current trends and demands in visualization in the
geosciences. Electronic Geosciences 4. http://link.springerny.com/link/sevice/journals/-
10069/technic/erlebach/index.htm, 2001.

 24

http://link.springer.de/link/service/journals/10069/contents/tfirst.htm

Erlebacher, G. Yuen, D.A., and Dubuffet, F., Case Study: Visualization and Analysis of High
Rayleigh Number -- 3D Convection in the Earth’s Mantle. Proceedings of IEEE Visualization,
pp. 529-532, 2002.

Erlebacher, G. and Yuen, D., A Wavelet Toolkit for Visualization and Analysis of Large Data
Sets in Earthquake Research, Pure and Applied Geophysics, 2003.
http://www.csit.fsu.edu/~erlebach/publications/erlebach_yuen_maui2_2002.pdf .

Foster and C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing Infrastructure,
Morgan Kauffman, 2003.

Fox, G. and Pallickara, S., The Narada Event Brokering System: Overview an dExtensions.
Proceedings of the 2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA ‘02), CSREA Press (2002) ed. H.r. Arabnia, Vol. 1, pp.
353-359.

Fox, G. and Pallickara, S., NaradaBrokering: An Event Based Infrastructure for Building
Scaleable Durable Peer-to-Peer Grids. Chapter 22 of Grid Computing: Making the Global
Infreastructure a Reality Grid. Published by John Wiley, England, 2003.

Garbow, Z.A., Olson, N.R., Yuen, D.A., and Boggs, J.M., Interactive Web-Based Map:
Applications to Large Data Sets in the Geosciences, Electronic Geosciences, Vol. 6, 2001.
http://link.springer.de/link/service/journals/10069/papers/webbased/index.htm, 2001.

Garbow, Z.A., Erlebacher, G., Yuen, D.A., Boggs, J.M., and Dubuffet, F., Web-Based
Interrogation of Large-Scale Geophysical Datasets from Handheld Devices, Visual Geosciences,
Vol. 8, 2003a.

Garbow, Z.A., Erlebacher, G., Yuen, D.A., Bollig, E. and Kadlec, B., Remote Visualization and
cluster Analysis of 3-D Geophysical Data over the Internet Using Off-Screen Rendering, in press,
2003b.

Gerya, T., and D.A. Yuen, Rayleigh-Taylor instabilities from hydration and melting propel `cold
plumes’ at subduction zones, Earth Planet. Sci. Lett., 212, 47-52, 2003.

Ito, T., Yoshioka, S., A dike intrusion model in and around Miyakejima, Niijima and Kozushima.
Tectonophys. 359, 171-187, 2002.

Livingston, Dan, Advanced SOAP for web professionals, 331-335, 2002.

Rasmussen, M., Deshpande, M., Karypis, G., Johnson, J., Crow, J., and Retzel, E., wCLUTO: A
Web_enabled Clustering Toolkit, Plant Physiology, vol. 133, No. 2, p. 511, 2003.

Robert A. van Engelen, Kyle A. Gallivan, The gSOAP Toolkit for Web Services and Peer-To-
Peer Computing Networks, In Proceedings of IEEE CC Grid Conference, 2002.

Robert Englander, Java and SOAP, O’Reilly, May 2002.

 25

http://www.csit.fsu.edu/~erlebach/publications/erlebach_yuen_maui2_2002.pdf
http://link.springer.de/link/service/journals/10069/papers/webbased/index.htm

Rudolph M. L., Gerya T. V., Yuen D. A., and DeRosier S., Visualization of Multiscale
Dynamics of Hydrous Cold Plumes at Subduction Zones, Visual Geosciences, 2003.

Rudolph, M., Gerya, T., Yuen, D.A. and S. De Rosier, Visualization of Complex Multiscale
Phenomena at Subduction Zone, Visual Geosciences, in press, 2004.

Sandwell, D.T. and W.H.F. Smith , Marine gravity from Geosat and ERS-1 altimetry, J. Geophys.
Res., 102, 10,039-10,054, 1997.

Stegmaier, S., Magallon, M. and T. Ertl, A Generic Solution for Hardware-Accelerated Remote
Visualization, Joint Eurographics – IEEE TCVG Symposium on Visualization, 2002.

Vasilyev, O.V., Gerya, T. and D.A. Yuen, The application of multidimensional wavelets to
unveiling multi-phase diagrams and in situ properties of rocks, Earth Planet. Sci. Lett., in press,
2004.

Wang, Y., Erlebacher, G., Garbow, Z. A., & Yuen, D. A., 2003, Web-based service of a
visualization package “Amira” for the geosciences, Visual Geosciences, 2003.

Yang, X. L., Wang, Y., Bollig, E. F., Kadlec B. J., Garbow Z. A., Yuen D. A., Erlebacher G.,
WEB-IS2: Next Generation Web Services Using Amira Visualization Package, American
Geophysics Union (AGU) Fall Meeting, 2003

Yuen, D.A., Bollig, E.F., Kadlec, B.F., Dzwinel, W., Ben-Zion Y., Yoshioka, S., Data-Mining
Analysis & Visualization of Earthquake Clusters in a GRID-like Interactive Environment,
American Geophysics Union (AGU) Fall Meeting, 2003.

 26

	Client – Server Infrastructure
	The user interface and functionality
	3.1.3 Scenarios (Examples)
	3.1.4 Disadvantages
	3.2.1 Client – Server Architecture
	User interface and functionality
	3.2.3 Disadvantages
	3.3.4 Disadvantages

