
1
American Institute for Aerospace and Aeronautics

REAL-TIME VISUALIZATION OF UNSTEADY VECTOR
FIELDS

M. Y. Hussaini*, Gordon Erlebacher†, Bruno Jobard‡
Florida State University, Tallahassee, FL 32306

Abstract
 We propose a new technique to visualize dense vector
fields associated with unsteady fluid flows. This tech-
nique is based on a Lagrangian-Eulerian Advection
(LEA) scheme, and it enables animations with high spa-
tio-temporal correlation at interactive rates. We demon-
strate the efficiency and efficacy of the technique in
applications to numerical simulation of a shock interact-
ing with a longitudinal vortex, and of ocean circulation
in the Gulf of Mexico. The simplicity of the data struc-
tures and the facility of implementation suggest that
LEA could become a useful component of any scientific
visualization toolkit concerned with the display of un-
steady flows.

 Introduction
Several techniques have been developed for the dense
representation of unsteady vector fields. The best
known technique is perhaps due to Shen1 who devel-
oped UFLIC (Unsteady Flow LIC). Based on the Line
Integral Convolution (LIC) scheme2, it achieves good
spatial and temporal correlation. However, the images
are difficult to interpret as the pathlines or streamlines
become blurred in regions of rapid change of direction,
and thicken where the flow is almost uniform. This
drawback is due to the large number of particles (three
to five times the number of pixels in the image) that
need to be processed for each animation frame.

The spot noise technique, originally developed for the
visualization of steady vector fields, has been naturally
extended to include unsteady flows3. It employs a suffi-
ciently large collection of elliptic spots to cover entirely
an image of the physical domain. The position of these
spots is integrated along the flow, their shape is bent
along the local pathline or streamline, and the resulting

* Professor, TMC Eminent Scholar.
† Professor, Department of Mathematics, Senior Meme-

ber.
‡ Researcher, Swiss Center for Scientific Computing,

Switzerland.
 Copyright © 2001 American Institute of Aeronautics

and Astronautics, Inc. All rights reserved.

image is finally blended into the animation frame. In
this technique, the rendering speed is increased by de-
creasing the number of spots in the image and the pixel
coverage is controlled by assigning a fixed lifespan to
each spot.

Max and Becker4 proposed a texture-based technique
that advects a texture along the flow either by advecting
the vertices of a triangular mesh or by integrating the
texture coordinates associated with each triangle back-
ward in time. When texture coordinates or particles
leave the physical domain, an external velocity field is
linearly extrapolated from the boundary. This technique
attains interactive frame rates by controlling the resolu-
tion of the underlying mesh.

A technique to display streaklines was developed by
Rumpf and Becker5. They precompute a two-
dimensional noise texture whose coordinates represent
time and a boundary Lagrangian coordinate. Particles at
any point in space and time that originate from an in-
flow boundary are mapped back to a point in this tex-
ture.

More recently, Jobard et al.6,7 extended the work of
Heidrich et al.8 to animate unsteady two-dimensional
vector fields. The technique relies heavily on extensions
to OpenGL proposed by SGI, in particular, pixel tex-
tures, additive and subtractive blending, and color trans-
formation matrices. They pay particular attention to the
flow entering and leaving the physical domain, leading
to smooth animations of arbitrary duration. Excessive
discretization errors associated with 12 bit textures are
addressed by a tiling mechanism9. Unfortunately, the
graphics hardware extension, specifically the pixel tex-
ture extension, on which this algorithm relies most, is
not adopted by other graphics card manufacturers. As a
result, the algorithm runs at present only on the SGI
Maximum Impact and the SGI Octane with the MXE
graphics card.

In this paper, we propose a new visualization technique
that combines the advantages of what are called La-
grangian and Eulerian formalisms. A dense collection of
particles is integrated backward in time (Lagrangian
step), while the color distribution of the image pixels is
updated in place (Eulerian step). The dynamic data
structures normally required to track individual parti-
cles, pathlines, or streaklines are no longer necessary
since all information is now stored in a few two-

2002-0749

2
American Institute for Aerospace and Aeronautics

dimensional arrays. The combination of Lagrangian and
Eulerian updates is repeated at every iteration. A single
time step is executed as a sequence of identical opera-
tions over all array elements. By its very nature, the
algorithm takes advantage of spatial locality and in-
struction pipelining and can generate animations at in-
teractive frame rates.

Problem Statement
We track the evolution of a dense collection of parti-
cles, tagged by their position X at some fixed time,
immersed in a time-dependent velocity field. The posi-
tion x of each particle depends on X and time t :

 (,) ()tt= =x x X x X , (1)

and the velocity of this particle is simply the time
derivative of its position:

(,)

(,) ()td t
t

dt
= =x X

v X v X . (2)

At any time t , there is a one-to-one mapping between
the position x of a particle and its label X . Therefore,
(1) is invertible:

 (,) ()tt= =X X x X x .

As the particle advects with the flow velocity, its label
remains constant so that its variation along a particle
path vanishes:

 ()()
() 0

t
t t

t

∂ + ⋅ ∇ =
∂

X x
v X X x . (3)

When x is viewed as an independent variable, the par-
ticular particle tX that passes through x changes in
time. In a similar manner, any material (or particle)
property (())tF X x constant along a particle path satis-
fies 0dF = , or

()() () ()() 0

t

t t
F

F
t

∂
+ ⋅ ∇ =

∂
X x

v x X x (4)

An Eulerian approach solves (4) directly for the mate-
rial property as a function of x; as a result, particles lose
their identity. In exchange, the particle property, viewed
as a field, is known for all time at any spatial location.

A Lagrangian approach solves (2) where ()tx X is
physically interpreted to mean the trajectory of a parti-
cle X . In this approach, the trajectory of each particle
is computed separately, and the time evolution of a col-
lection of particles is displayed by rendering each parti-
cle by a glyph (point, texture spot, arrow). With the
exception of the recent work of Jobard et al.6,7 and
Rumpf and Becker5, current time-dependent algorithms
are all based on particle tracking, e.g.,1,3,4,10. While La-
grangian tracking is well suited to the task of under-
standing how dense groups of particles evolve in time, it
suffers from several shortcomings. For example, in re-

gions of flow convergence, particles may accumulate
into small clusters that follow almost identical trajecto-
ries, leaving regions of flow divergence with a low den-
sity of particles. To maintain a dense coverage of the
domain, the data structures must support dynamic inser-
tion and deletion of particles1, or track more particles
than needed3, which often decreases the efficiency of
any numerical implementation. On the other hand, an
explicit discretization of (4) is subject to a Courant-
Friedrich-Levy (CFL) condition, which limits the speed
of the flow animation as seen by the user.

Methodology
We propose a new algorithm, called the Lagrange-
Euler-Advection (LEA) approach, which builds on the
strengths of both the Eulerian and Lagrangian ap-
proaches to particle advection. In this approach, the
coordinates of a dense collection of particles (placed at
every pixel of a destination image) are tracked between
two successive time steps with a Lagrangian scheme,
whereas the property field is subject to an Eulerian up-
date. At the beginning of each iteration, a new dense
collection of particles is chosen and assigned the prop-
erty computed at the end of the previous iteration.

To illustrate the idea, consider the advection of the bit-
map image shown in Figure 1a by a circular vector field
centered at the lower left corner of the image. With a
pure Lagrangian scheme, a dense collection of particles
(one per pixel) is first assigned the color of the corre-
sponding underlying pixel. Each particle advects along
the vector field and deposits its color property in the
corresponding pixel in a new bitmap image. This tech-
nique does not ensure that every pixel of the new image
is updated. Indeed, holes usually appear in the resulting
image (Figure 1b). To avoid such holes, our scheme
considers each pixel of the new image as a particle, and
it is updated with the color of the bitmap that the parti-
cle initially occupied, obtained by integrating backward
in time (Figure 1c). Repeating the process at each itera-
tion, any property can be advected while maintaining a
dense coverage of the domain.

Thus, the core of the advection process is the composi-
tion of two basic operations: coordinate integration and
property advection.

Given the position () ()0 , ,i j i j=x of a particle in an
image at pixel (),i j , backward integration of Equation
(2) over a time interval h determines its position

Figure 1. Rotation of bitmap image about the lower
left corner. (a) Original image, (b) Image rotated
with Lagrangian scheme, (c) Image rotated with
Eulerian scheme.

3
American Institute for Aerospace and Aeronautics

 () () ()()0

0

, , ,
h

h ti j i j i j dτ τ τ
−

− += + ∫x x v x (5)

at a previous time step. h is the integration step,
(),i jτx represents intermediary positions along the

pathline passing through (),t i jx , and τv is the vector
field at time τ .

From (5) it follows that an image of resolution W H× ,
defined at a previous time t h− , is advected to time t
through the indirection operation

 () ()() [) [), 0, 0,
,

user-specified value otherwise

t h h h
t i j W H

i j
− − − ∀ ∈ ×=

I x x
I

 (6)

which allows the image at time t to be computed from
the image at any prior time t h− . This technique was
used by Max4 with h t= . However, instead of integrat-
ing back to the initial time to advect the initial texture,
we choose h to be the interval between two successive
images and always advect the last computed frame. This
minimizes the need to access coordinate values outside
the physical domain and eliminates texture distortion4.
To compute an image of acceptable quality from t h−I
evaluated at h−x , at least linear interpolation is neces-
sary.

 Algorithm
In the Lagrangian-Eulerian approach, a full per-pixel
advection requires manipulating exactly W H× parti-
cles. Information attached to a given particle at pixel
(),i j is stored in two-dimensional arrays of resolution
W H× at the corresponding index location (),i j .
Thus, we store the initial coordinates (),x y of the par-
ticles in two arrays (),x i jC and (),y i jC . Two arrays

x′C and y′C contain their x - and y - coordinates after
integration along pathlines. A first order integration
method requires two arrays xV and yV that store the
velocity field at the current time. Similar to LIC, we
choose to advect noise images. Four noise arrays N ,

′N , aN and bN contain, respectively, the noise to
advect, two advected noise images, and the final
blended image.

Figure 2 shows a flowchart of the algorithm. After the
initialization of the coordinate and noise, the coordi-
nates are integrated and the initial noise array N is
advected and stored in ′N . The advected noise array is
then prepared for the next iteration by subjecting it to a
series of treatments (left column in Figure 2). Care is
first taken to ensure that no spurious artifacts appear at
boundaries where flow is entering the domain. This is
followed by an optional masking process to allow for
non-rectangular domains. A low percentage of random
noise is then injected into the flow to compensate for
the effects of pixel duplication and flow divergence.
Finally, the coordinate arrays are reinitialized to ready
them for the next iteration. The right column in the
flowchart describes the sequence of steps that take the

second advected noise array aN and introduce it into
the final image. aN is first accumulated into bN via a
blending operation to create the necessary spatio-
temporal correlation. Three optional post-processing
phases are then applied to bN before its final display: a
line integral convolution filter removes aliasing effects,

features of interest are emphasized via an opacity mask,
and a scalar variable is superimposed on the velocity
field. In the following sections, we present some salient
features of the algorithm. Additional details, including
implementation issues, are discussed in the original
paper 11.

Vector field initialization. Currently, a time sequence of
two-dimensional velocity fields (obtained from experi-
ment or numerical simulations) is stored in a data file.
As a result, the velocity fields are available at discrete
times i vt i t= ∆ , where vt∆ is the time that separates
successive available velocity data. When the velocity is
required at a time t that is not an integral multiple of

vt∆ , the velocity components are computed from the
two frames that most closely enclose t by linear inter-
polation.

Noise Initialization. N is initialized with a two-valued
uniform noise function to maximize the color contrast.
It is then copied into bN . Coordinates and noise values
are stored in single precision floating point format to
ensure sufficient accuracy in the calculations.

Coordinate Integration. A first order discretization of
(5) is used to compute the particle trajectory along its
pathline. The velocity field is normalized with respect
to its maximum magnitude over all iterations. After
non-dimensionalization, h , measured in pixels, repre-
sents the maximum possible displacement of a particle
in a single time step. The actual displacement of a parti-

Initialization

Coordinate Integration

Edge Treatment

Arbitrary Domain

Noise Injection

Coordinate Re-Init.

Noise Blending

Post Processing

Display / Save

Noise Advection

′N aNwith with

Next
Iteration

Initialization

Coordinate Integration

Edge Treatment

Arbitrary Domain

Noise Injection

Coordinate Re-Init.

Noise Blending

Post Processing

Display / Save

Noise Advection

′N aNwith with

Next
Iteration

Figure 2. Flowchart of LEA algorithm.

4
American Institute for Aerospace and Aeronautics

cle is proportional to the local velocity and is measured
in units of cell widths.

Noise Advection. The advection of noise described by
(6) is applied twice to N to produce two noise arrays:

′N for advection and aN for display. ′N is an inter-
nal noise array whose sole purpose is to track the advec-
tion process and serve as the initial noise array for the
next iteration. To maintain a sufficiently high contrast in
the advected noise, ′N is computed with a constant
interpolation. A linear interpolation would produce
“gray” noise and become uniformly gray after several
iterations. Before ′N can be used in the next iteration,
it must undergo a series of corrections to account for
edge effects, the presence of arbitrary domains, and the
deleterious consequences of flow divergence. The high
contrast of ′N is not suitable for display. To remedy
the situation, we simultaneously compute a noise array

aN from N using linear interpolation, which decreases
spatial aliasing. Although some contrast is lost, this is
only done once with a high contrast source. aN partici-
pates in the creation of the current animation frame
through alpha blending with bN .

A straightforward implementation of (6) leads to condi-
tional expressions to handle the cases when

() ()(), , ,x yi j i j′ ′ ′=x C C is exterior to the physical
domain. A more efficient implementation eliminates the
need to test for boundary conditions by surrounding N
and ′N with a buffer zone of constant width b h=
cell widths.

Edge Treatment. A recurring issue with texture advec-
tion is the proper treatment of information flowing into
the physical domain. Within the context of this paper,
we must determine the user-specified value in Equation
(6). We recall that the advected image contains a two-
valued random noise with little or no spatial correlation.
We take advantage of this property to replace the user-
specified value by a random value. At each iteration,
new random noise is stored in the buffer zone, at negli-
gible cost. Particles that were outside the physical do-
main at the previous time step carry a random property
value into the domain. Since random noise has no spa-
tial correlation, the advection of the surrounding buffer
values into the interior region of ′N produces no visi-
ble artifacts.

Incoming Flow in Arbitrary- Shape Domains. It often
happens that the physical domain is non-rectangular or
contains interior regions where the flow is not defined
(e.g. shores and islands). Denote by B the boundaries
interior to N that delineate these regions. LEA handles
this case with no modification by simply setting the
velocity to zero where it is not defined. The stationary
noise in these regions is hidden from the animation
frame by superimposing a semitransparent map that is
opaque where the flow is undefined.

Noise Injection. When particles in neighboring cells of
′N retrieve their property value from within the same

cell of N , the property value (i.e., the particle color)

will be duplicated in the corresponding cells of N . This
duplication process will propagate over time, increasing

the spatial correlation of the noise between adjacent
image pixels. To illustrate the effect of this duplication,
we show in Figure 3 two time frames of the interaction
of a shock with a longitudinal vortex (see Result Sec-
tion). In the right column the effect of pixel duplication
is clearly seen: at later time (bottom figure), areas of
constant color have expanded. This effect is undesirable
since lower noise frequency reduces the spatial resolu-
tion of the features that can be represented. This dupli-
cation effect is further reinforced in regions where the
flow has a strong positive divergence. Note that these
images correspond to several successive frames blended
together. The corresponding unblended images at the
later time, shown in Figure 3 clearly show that the noise
array has increased its spatial correlation.

To break the formation of uniform blocks and to main-
tain a high frequency random noise, we inject a user-
specified percentage of noise into ′N . Random cells are
chosen in ′N and their value is inverted (a zero value
becomes one and vice versa). The number of cells ran-
domly inverted must be sufficiently high to eliminate
the appearance of pixel duplication, but low enough to
maintain the temporal correlation introduced by the
advection step. The effect of this procedure is seen in
the left column of Figure 3.

Coordinate Re-Initialization
The final step is to re-initialize the coordinate arrays to
prepare a new collection of particles for the next itera-
tion. Unfortunately, our use of constant interpolation to
compute the particle property at the previous time step
(to avoid a rapid loss of contrast), would “freeze” the
flow in regions where the velocity magnitude is too low.
A property value can only change if it originates from a
different cell. If the coordinate arrays were re-initialized

Figure 3. Two frames of animation: frame 25 (top)
and 95 (middle, bottom). Two percent noise injec-
tion (middle), no noise injection (bottom). Blended
image (left), noise texture (right).

5
American Institute for Aerospace and Aeronautics

to their original values at each iteration, sub-cell dis-
placements would be ignored and the flow would be
frozen where the velocity magnitude is too low. This is
illustrated in Figure 4, which shows the advection of a
steady circular vector field. Constant interpolation
without fractional coordinate tracking clearly shows that
the flow is partitioned into distinct regions within which
the integer displacement vector is constant (Figure 4a).
To prevent this, we track the fractional part of the dis-
placement within each cell. Instead of re-initializing the
coordinates to their initial values, the fractional part of
the displacement is added to cell indices. The effect of
this correction is shown in Figure 4b.The coordinate
arrays have now returned to the state in which they were
after their initialization phase.

Noise Blending. Although successive advected noise
arrays are correlated in time, each individual frame re-
mains devoid of spatial correlation. By applying a tem-
poral filter to successive frames, spatial correlation is
introduced. We store the result of the filtering process
in an array bN . We find the exponential filter to be
convenient, since its discrete version only requires the
current advected noise and the previous filtered frame.
It is implemented as an alpha blending operation

 (1)b b aα α= − +N N N , (7)

where α represents the opacity of the current advected
noise array. A typical range for α is []0.05,0.2 . Fig-
ure 5 shows the effect of α on images based on the
same set of noise arrays.

The blending stage is crucial because it introduces spa-
tial correlation along pathline segments in every frame.
To show clearly that the spatial correlation occurs along
pathlines passing through each cell, we conceptualize
the algorithm in 3D space; the x - and y - axes repre-
sent the spatial coordinates, whereas the third axis is
time. To understand the effect of the blending opera-
tion, let’s consider an array N with black cells and
change a single cell to white. During advection, a se-
quence of noise arrays (stacked along the time axis) is
generated in which the white cell is displaced along the
flow. By construction, the curve followed by the white
cell is a pathline. The temporal filter blends successive

noise arrays aN with the most recent data weighted
more strongly. The temporal blend of these noise arrays
produces the projection of the pathline onto the x y−
plane, with an exponentially decreasing intensity as one
travels back in time along the pathline. When the noise
array with a single white cell is replaced by a two-color
noise distribution, the blending operation introduces
spatial correlation along a dense set of short pathlines.

Streamlines and pathlines passing through the same cell
at the same time are tangent to each other, so a stream-
line of short extent is well approximated by a short
pathline. Therefore, a collection of short pathlines

serves to approximate the instantaneous direction of the
flow. With our LEA technique, a single frame repre-
sents the instantaneous structure of the flow (stream-
lines), whereas an animated sequence of frames reveals
the motion of a dense collection of particles released
into the flow.

We illustrate the temporal correlation in Figure 5, which
is a small area in the animation of flow over a circular
cylinder (wake region). The three frames shown are
separated by five iterations. Two regions are marked
(white square and circle) to draw attention to the advec-
tion of a particular flow structure.

(a) (b)(a) (b)

Figure 4. Circular flow without (left) and with
(right) accumulation of fractional displacement
(h=2).

α=0.10

α=1.00

α=0.50

α=0.03

α=0.10

α=1.00

α=0.50

α=0.03

Figure 5. Frames obtained with different values of . .

Figure 6. Small area from the wake region of an
animation of flow past a circular cylinder. Three
successive frames from the flow field are shown to
demonstrate the temporal correlation. The white
shapes identify a fixed location in space to help
visualize the feature advecting with the flow.

6
American Institute for Aerospace and Aeronautics

Post-Processing
A series of optional post-processing steps is applied to

bN to enhance the image quality and to remove fea-
tures of the flow that are uninteresting to the user. A fast
version of LIC can be applied to remove high frequency
content in the image, a velocity mask serves to draw
attention to regions of the flow with strong currents, and
a scalar variable overlay allows the simultaneous visu-
alization of an animated flow field and time evolution of
a user-specified scalar field.

Directional Low-Pass Filtering (LIC). By construction,
the noise in the advected images is of high frequency
and high contrast. After blending, bN retains some
residual effects of these high frequencies due to aliasing
artifacts. Experimentation with different low-pass filters
led us to conclude that a Line Integral Convolution filter
applied to bN is the best filter to remove the effects of
high frequency while preserving and enhancing the di-
rectional correlation resulting from the blending phase.
Although image quality is often enhanced with longer
kernel lengths, it is detrimental here since the resulting
streamlines will have significant deviations from the
actual pathlines. The partial destruction of the temporal
correlation between frames would lead to flashing ef-
fects in the animation. A secondary effect of longer ker-
nels is decreased contrast.

In general, a filter length L h≈ produces a smooth
image with no aliasing. However, large values of h
speed up the flow, with a resulting increase in aliasing
effects (Figure 7). If the quality of the animation is im-
portant, L must be increased with a resulting slowdown
in the frame rate. As shown in Table 1, smoothing the
velocity field with LIC reduces the frame rate by a fac-
tor of three on the various computer architectures and
operating systems the algorithm was benchmarked on.
We recommend exploring the data at higher resolution
without the filter or at low resolution with the filter.

We have implemented a software version of the algo-
rithm developed in Heidrich8; the source code can be
found in 11.

Velocity Mask and Background Image. A straightfor-
ward implementation of the texture advection algorithm
described so far produces static images that show the
flow streamlines and interactive animations that show
the motion for the flow along pathlines. The length of
the streaks is statistically proportional to the flow veloc-
ity magnitude. Additional information can be encoded
into the images by modulating the color intensity ac-
cording to one or more secondary variables.

It is often advantageous to superimpose the representa-
tion of flow advection over a background image that
provides additional context. An example is shown in
Figure 8, which shows the ocean currents along with a
background map colored with depth. In order to imple-
ment this capability, the image must become partially
transparent.

Two approaches have been implemented. First, we cou-
ple the opacity of a pixel to its color intensity. Second,
we modulate the pixel transparency with the magnitude
of the velocity.

The blended image pixel color ranges from black to
white. Neither color has a predominant role in repre-
senting the velocity streaks. Therefore, one of these
colors can be eliminated and therefore made partially
transparent. We consider a black pixel to be transparent,
and a while pixel to be fully opaque. The transfer func-
tion that links these two states is a power law.

Regions of the flow that are nearly stationary add little
useful information to the view. For example, regions of
high velocity are often of most interest in wind and
ocean current data. Accordingly, we also modulate the
transparency of each pixel according to the velocity
magnitude. This produces a strong correlation between
the length of the velocity streaks and their opacity.

The ideas described in the two previous paragraphs are
implemented through an opacity map, also referred to as
a velocity mask. Once computed, the velocity mask is
combined with bN into an intensity-alpha texture that
is blended with the background image. We define the
opacity map

 ()() ()()1 1 1 1
m n

b= − − − −A V N (8)

as a product of a function of local velocity magnitude
and a function of the noise intensity. Higher values of
the exponents m and n increase the contrast between
regions of low and high velocity magnitude, and low
and high intensity, respectively. When 1m n= = , the
opacity map reduces to

 bA = VN

As the exponents are increased, the regions of high velocity
magnitude and of high noise intensity increase their impor-
tance relative to other regions in the flow.

Figure 7. Frame without (bottom) and with (top)
LIC filter. A velocity mask is applied to both im-
ages. Data courtesy Z. Ding.

7
American Institute for Aerospace and Aeronautics

Higher quality pictures that emphasize the velocity
magnitude can also be obtained by replacing the noise
texture with a scalar map of the velocity magnitude
(with color ranging from black to white as the magni-
tude ranges from zero to one) combined with positive
exponents. As a result, the texture advection is seen
through the opacity map.

Scalar Overlay. To further add to the information dis-
played, a scalar variable can be superimposed over the
image. Care must be taken to ensure that a proper bal-
ance is achieved between the visibility of the scalar
variable and the velocity field of the underlying flow.
We compute the image of the time-dependent scalar
function at every iteration by computing its value at the
vertices of a uniform grid and displaying each cell using
hardware Gouraud shading. The resolution of the grid is
chosen by the user to strike a proper balance between
enhanced spatial structure and maximum interactivity.
Higher grid resolutions lead to lower frames rates. We
currently map the range of the scalar variable linearly
between two colors. The scalar field is stored in a sepa-
rate image that is alpha-blended with bN to produce a
composite image. The final image I is a linear combi-
nation of B (the background texture), bN (the flow
field), and S (the scalar function).

The correct weighing of the various terms is chosen on
a case-by-case basis not to obfuscate bN or S . Clearly,
automatic strategies for this selection are highly desir-
able. Finally, we note that the scalar image is fully
opaque. Judicious use of its opacity channel could fur-
ther enhance the contrast between bN , S and N .

Parameters for Realistic Visualization
The numerical algorithm decouples the choice of the
time interval between successive velocity fields t∆ ,
and the displacement h of a particle with unit velocity
magnitude. Unless the relationship between h and t∆
is consistent with the physics of the problem, the rate of
change in the structure of the velocity field (determined
by t∆) will not be consistent with the speed at which
information is convected along the particle paths (de-
termined by h).

A physically realistic animation of an unsteady vector
field must respect the spatio-temporal relationships be-
tween the dimensions of the physical problem and that
of the animation frames. By physically realistic, we
mean that if some fluid property is at point A with co-
ordinates (),A Ax y ϕ at physical time 0t ϕ and reaches
point B (),B Bx y ϕ at 1t ϕ , a fluid element virtually
tagged passing through (),A Ax y at 0t in an animation
frame should pass through the location (),B Bx y at the
corresponding animation time 1t′ . We have affixed a
subscript ϕ to denote physical variables.

It is easy to find a system of linear equations that keeps
constant ratios between physical and computational
dimensions. Such a system links together dimensions of
the physical phenomenon with noise texture resolution,
integration step size, number of images in the anima-
tion, and fractional increment between available vector
fields. Aside from the physical parameters normally
associated with a vector field, we propose a way to
compute the other parameters that lead to visually pleas-
ing, realistic-looking advection animations. This entails

Figure 8. Three frames of ocean circulation
in the Gulf of Mexico.

8
American Institute for Aerospace and Aeronautics

adopting the proper balance between animation frame
rate, and rate of evolution of property values along the
streamlines. Note that sometimes we wish to accelerate
the evolution of physical time to concentrate on the
structural evolution of the flow, rather than on the prop-
erty advection itself. As a result, the convection of noise
along particle paths may be to rapid to discern properly
on the chosen timescale. Either the user can reduce the
motion of the particles with respect to the change of
structure, thus breaking the physical realism, or he can
simply ignore the particles moving along the paths. If
the particles move at too rapid a rate, the paths may
become overly blurred and hard to discern. At this time,
the control of the parameters is a manual operation.

Among the visualization parameters, the integration step
size h has the highest impact on images. Visually, it
determines the maximum distance in cells a property
can travel in a single iteration. If h is too small, the
flow appears to be motionless. On the other hand, if h
is too large, a fluid property in regions of high velocity
is displaced several cells in a single iteration, decreas-
ing the effectiveness of the temporal correlation. In
practice, taking h between 2.0 and 5.0 produces consis-
tently high quality visual results.

The relationship between parameters in physical and
computational space is given by

images maxVhN V t

W W
ϕ ϕ

ϕ

= , (9)

where maxVϕ is the maximum velocity component in the
whole dataset, tϕ is the duration of the physical phe-
nomenon, Wϕ is the width of the physical domain and
W is the width (measured in number of cells) of the
animation frame. Note that both sides of the equation
are dimensionless. Our choice of normalization implies
that 1V = .

The temporal slices are equally spaced in time; there-
fore, image i in the animation is computed with the

vf
in vector field, vf vf images

in iN N= , where vfN is the
number of temporal slices available in the dataset, and

imagesN is the number of animation frames. The frac-
tional part of vf

in is used to perform an interpolation of
the vector field between the two nearest enclosing
available fields.

The precise ratio between physical and computational
linear time is most important for animations of time-
dependent flows since it affects the rate at which the
structure of the fluid changes with respect to the rate at
which particles move along the pathlines. Getting the
ratio correct is far less important when single time slices
are shown (e.g., the figures in this paper). In this case,
an incorrect ratio will shorten or lengthen the extent of
blending along the particle path. However, the blending
will always remain proportional to the fluid velocity.
Since the scale factor is uniform, the relative distribu-
tion of velocities is not affected.

Results
We evaluated the efficiency of the algorithm on several
computer architectures at three resolutions (2300
through 21000 pixels). In Table 1, timings in
frames/second, are presented. The architectures consid-
ered were a Dell Precision Workstation 530 (1.7 GHz
Intel Xeon, 250 kbyte cache, 400 MHz bus, and a
Quadro-2 Pro Nvidia card), an SGI Octane with EMXI
graphics hardware (200 MHz R10000 MIPS processor,
4Mbyte of secondary cache), and a four-processor SGI
Onyx (300 MHz R12000 MIPS processor, 12 Mbytes
of secondary cache). Both serial and parallel (using
OpenMP) benchmarks were conducted on the Onyx.
The proposed algorithm is fully implemented in soft-
ware with the exception of the 2D texture placement.
Although all of the graphics cards support hardware
texture operations, the software component of the algo-
rithm dominates the computational time. The organiza-
tion of the algorithm as a series of array operations
makes it particularly straightforward to parallelize on
shared memory architectures. Furthermore, operations
on the array elements only make accesses within h
rows or columns. Small h (< 5), moderate texture sizes
(21000), and moderate secondary cache sizes (> 1
Mbyte), lead to very few cache misses, and thus very
high efficiency. We have considered the options used
most often. The highest frame rates correspond to the
texture advection algorithm without masking or post-
processing (the cost of the blending operation is insig-
nificant). As expected, the Onyx produces the highest
frame rates across all combinations of options and tex-
ture resolutions. A parallel implementation of the algo-
rithm on four processors produces a speedup of about a
factor of three. Our Onyx has a single graphics pipe; all
graphic primitives can only reach the graphics hardware
through a single processor. As a result, calls to the
OpenGL library are serialized. The effect of this seriali-
zation becomes worse as the number of processors is
increased. The cost of the masking operation ranges
from 30 to 50 percent on the Onyx and Octanes, but
only 10 percent on the Dell. The reason for this discrep-
ancy is not known, although the Dell bus speed and
their very fast processors are surely a factor. The LIC
filter is extremely expensive relative to the base algo-
rithm. Application of the filter at every time step leads
to a 2 to 3-fold decrease in the frame rate relative to the
base algorithm combined with masking. One of the rea-
sons for this cost is that the LIC computation is totally
recomputed at each step. The cost of the LIC is ap-
proximately proportional to the length of the filter ker-
nel. We expect that further optimization is possible by
considering temporal coherence; however, have not
pursued this idea.

We now now demonstrate the versatility of the Lagran-
gian-Euler Advection technique by considering exam-
ples from experimental fluid dynamics, computational
fluid dynamics, and oceanic sciences.

9
American Institute for Aerospace and Aeronautics

Reso-
lution

Advection Advection +
Velocity
Mask

()3m n= =

Advection +
Velocity
Mask + LIC
filter

()6L =

9.7 14.0 8.7 8.8 2.6 3.0
300

16.3 39.0 10.4 27.0 3.6 11.6

3.5 4.7 3.2 3.1 0.93 1.0
500

6.3 18.0 3.7 10.5 1.3 4.5

NA 1.2 NA 0.7 NA 0.2
1000

1.4 4.1 0.9 2.7 0.3 1.1

Table 1: Timings in frames/second as a function of op-
tions and resolutions. Each configuration has been
tested on four different configurations: Dell Precision
530 Workstation with Quadro2-Pro video card (upper
left), Octane (upper right), Onyx2 (lower left) and
Onyx2 with four processors (lower right).

Gulf of
Mexico

Shock

Grid size 352 320× 257 151×

Number of
frames

183 300

Dataset
(Mbytes)

165 93

Table 2: Characteristics of datasets used in the paper.

Ocean circulation in the Gulf of Mexico
Recent numerical simulations at the Center for Ocean-
Atmospheric Prediction Studies (COAPS) at Florida
State University aim to reveal the detailed structure of
ocean currents. The simulations are based on the Navy
Coastal Ocean Model (NCOM). The data was obtained
from a simulation at a resolution of 352 320 40× ×
using a third order upwind scheme for the horizontal
advection terms and a second order discretization in the
vertical direction. Each time step in the simulation is
400 seconds. The velocity field is stored at intervals of
48 hours (432 iterations in the simulation). The 183
frames provided correspond to a one-year simulation.
The spatial domain extends from latitudes 15.55 ND to
31.55 ND and from longitudes 98.15 WD to
80.55 WD . The spatial grid is 0.05 degrees.

Figure 8 shows three frames of this flow at a single
depth. The images are enhanced by first rendering a
fixed background image of the topography of the ocean
floor and surrounding land. A velocity mask is applied
to the flow to enhance regions of high velocity magni-
tude. As a result, regions of lowest opacity lie in areas

of low velocity magnitude, which renders the back-
ground image partially visible. The flow has a compli-
cated topology, composed of a series of localized
vortices. From the sequence of images shown, the to-
pology is also seen to be time-dependent. For example,
the two vortices in the upper frame have merged in the
lower frame. The strong temporal correlation and the
interactive frame rates permit parametric investigations
and make it possible to improve our intuition about the
flow evolution.

For a noise texture size of 2512 and using four proces-
sors on an SGI Onyx, we observe rates of approxi-
mately 20 frames per second with masking turned off
and 10 frames per second with masking turned on.

Shock-Vortex interaction
An example of a strongly unsteady flow is the interac-
tion of a shock with a vortex oriented with its axis nor-
mal to the shock. Numerical simulations of this
interaction were conducted under conditions of axi-
symmetry12. In the chosen configuration, two uniform
flow regions are separated by a plane shock of infinite
extent. An isentropic vortex is superimposed on the
mean flow. The vortex is a solution to the steady-state
Euler equations and is convected towards the shock at
the uniform upstream velocity. The radial profile decays
exponentially to avoid numerical artifacts at the free-
stream boundary. The numerical method is based on a
formally third order ENO algorithm in space that main-
tains sharp, essentially non-oscillatory, shock transi-
tions.

We conducted a numerical simulation on a grid of
400 151× with a uniform grid in the streamwise direc-
tion, and a grid concentrated near the centerline to bet-
ter capture the vortex shock interactions that result from
the interaction of the vortex core structure with the
shock. The data was then interpolated to a 256 151×
uniform grid over the same physical domain
[7,2] [0,4]− × . The velocity field and the density gra-
dient are read from 96 files on a grid of 256 151× . The
velocity field is defined over a span of 50 time units. A
unit time interval is the time it takes a fluid element to
travel the distance of one vortex core diameter upstream
of the shock. The dataset is composed of 200 frames,
with a separation of 0.4 time units between successive
frames.

We limit our examples to a Mach 7 shock and a unit
vortex circulation12. To maximize the information con-
tent, we superimpose the density gradient field over the
advected texture. (The density gradient captures both
the shock structures and the slip lines of the flow.) To
better emphasize the density gradient, we compute the
auxiliary scalar variable ()maxexp /ρ ρ− and map it to
a range of yellows, brighter in regions of higher gradi-
ent, or lower scalar value. A transparency map is asso-
ciated with, and proportional to, the scalar field. This
allows the velocity field to show through regions of low

10
American Institute for Aerospace and Aeronautics

density gradient. We have found that the composite
image of the velocity field and scalar field is strongly
dependent on the precise mapping and transparency
functions, thus leading to excessive trial and error on
the part of the user. Additional research into the auto-
matic selection of functional and color mappings is re-
quired to minimize user intervention. From an imple-
mentation standpoint, the density is drawn at the full
resolution of the underlying velocity field using
Gouraud shading. This technique was chosen, as op-
posed to direct texture mapping, to avoid preprocessing
the time-dependent scalar data and storing it into tex-
tures prior to an interactive session. Furthermore, the
user has control of the grid resolution on which the sca-
lar field is defined. Since the cost of displaying a scalar
function is proportional the grid that underlies it, in-
creased interactivity is achieved by defining the scalar
on two or more grids: coarser grids for higher interac-
tivity, finer grids for static pictures, when the flow is
steady, or when visualizing detailed structures is more
important than interactive exploration.

A time sequence of the shock vortex interaction process
is shown in Figure 9. Increasing time is from top to bot-
tom, left to right. We have maximized information con-
tent by combining a mask cubic in the noise intensity
and cubic in the velocity magnitude. In the absence of a
background texture, transparent pixels are black. The
mask clearly brings into evidence the discontinuity of
the velocity across the shock. A triple point structure
and its associated slip line become well defined by the
last frame in the left column. The figure also indicates
that the velocity magnitude is very high and is strongly
rotational in the region between the primary shock and
the slip line. Dark regions correspond to areas where the
flow is almost at a standstill. We should note that the
velocity field is normalized across all frames of the
animation. Therefore, a very bright region in the image
indicates that the flow is near its maximum. The density
gradient vividly shows internal structure in the flow.
While the upstream structure is smooth inside the vor-
tex, a complex network of secondary shocks and slip
lines is visible downstream of the primary shock. In the
last two frames, an intriguing inverted triple point
shock, whose presence was unsuspected, is clearly seen.
A more detailed analysis is necessary to determine its
origin.

The opacity masking function is defined by two parame-
ters: m controls the relation between opacity and noise
intensity, and n controls the effect of velocity magni-
tude on opacity. In Figure 10, we show the effect of the
mask on the flow at a fixed time. The same scalar func-
tion has also been superimposed. In the left column,

0n = . The opacity is only determined by the noise
intensity. Although the length of the streaks that result
from the temporal blending of successive temporal im-
ages is proportional to the velocity magnitude, the con-
trast between regions of low and high velocity is not
very strong. The transparency mask acts as a form of

anisotropic and locally homogeneous dithering. The
contrast becomes stronger as m is increased from 1
(top) to 3 (bottom). Increased contrast is achieved by
combining 1m = with a modulation of opacity with
velocity magnitude. As expected, the contrast becomes
sharper as n increases from 1 (top) to 3 (bottom).

Concluding Remarks
This paper describes an algorithm to visualize time-
dependent flows based on an original per-pixel Lagran-
gian-Eulerian Advection approach. A noise image is
advected from a time step to the next. The color of
every pixel in the current image is determined in two
steps. A dense collection of particles (one per pixel) is
first integrated backward in time for a fixed time inter-
val (Lagrangian phase) to determine their positions in
the previous frame. The color at these positions deter-
mines the color of each pixel in the current frame (Eule-
rian phase). We describe how to seamlessly handle
regions where the flow enters the physical domain. A
temporal filter is applied to successive images to intro-
duce a good level of spatio-temporal correlation. Thus,
every still frame represents the instantaneous structure
of the flow, whereas an animated sequence of frames
reveals the motion of a dense collection of particles
released into the flow. When necessary, spatial correla-
tion is enhanced through a fast LIC algorithm. A post-
processing filter is described to control the contrast be-
tween regions of high and low velocity magnitude.
Transparency makes it possible to view a background
image through the flow; which leads to our current in-
vestigation into multiple layer texture advection. We
have demonstrated the efficiency of the algorithm on a
variety of computers, including a multiprocessor

Figure 9. Interaction of a planar shock with a lon-
gitudinal vortex time sequence. Cubic opacity
mask. Gray intensity is proportional to velocity
magnitude.

11
American Institute for Aerospace and Aeronautics

workstation. This work makes it possible to explore
two-dimensional unsteady flows in real time, and sug-
gests that in the near future interactive three-
dimensional texture advections will become a reality.

Finally, we note that as the amount of information pre-
sented on an animation or static picture is increased, the
number of parameters required to generate the picture is
also increased. Thus, the rendering of the scalar de-
pends on the chosen color map, opacity function, its
interaction with the underlying noise texture, etc. The
need to automatically choose appropriate parameters for
maximum clarity is urgent and will be addressed in fu-
ture work.

Acknowledgments
We would like to thank David Banks for lively discus-
sions and several valuable suggestions. Some of the
datasets used to illustrate the techniques presented in
this paper were provided by J. O’Brien (COAPS, FSU).
We acknowledge the support of NSF under grant NSF-
9872140.

References

1Shen, H.-W. and Kao, D. L., “A New Line Integral
Convolution Algorithm for Visualizing Time-Varying
Flow Fields,” IEEE Transactions on Visualization and
Computer Graphics, Vol. 4, No. 2, 1998, pp. 98-108.
2Cabral, B. and Leedom, L. C., “Imaging Vector Fields
Using Line Integral Convolution,” Computer Graphics
Proceedings, ACM, 1993, pp. 263-269.

3de leeuw, W. C. and van Liere, R., “Spotting Structure
in Complex Time Dependent Flow,” SEN-R9823, CWI
- Centrum voor Wiskunde en Informatica, Sept. 1998.
4Max, N. and Becker, B., “Flow visualization using
moving textures,” Proceedings of ICASE/LaRC Sympo-
sium on Visualizing Time Varying Data, 1996, pp. 77-
87.
5Rumpf, M. and Becker, J., “Visualization of Time-
Dependent Velocity Fields by Texture Transport,” Pro-
ceedings of the Eurographics Workshop on Scientific
Visualization '98, Springer-Verlag, 1998, pp. 91-101.
6Jobard, B., Erlebacher, G., and Hussaini, M. Y., “Tiled
Hardware-Accelerated Texture Advection for Unsteady
Flow Visualization,” Graphicon 2000, 2000, pp. 189-
196.
7Jobard, B., Erlebacher, G., and Hussaini, M. Y.,
“Hardware-Accelerated Texture Advection for Un-
steady Flow Visualization,” Proceedings Visualization
2000, IEEE Computer Society Press, New York, 2000,
pp. 155-162.
8Heidrich, W., Westermann, R., Seidel, H.-P., and Ertl,
T., “Applications of Pixel Textures in Visualization and
Realistic Image Synthesis,” ACM Symposium on Inter-
active 3D Graphics, ACM, 1999, pp. 127-134.
9OpenGL ARB. OpenGL Specification, Version 1.2,
1998.
10Becker, B. G., Lane, D. A., and Max, N. L., “Un-
steady Flow Volumes,” Proceedings IEEE Visualiza-
tion '95, IEEE Computer Society Press, Los Alamitos
CA, 1995.
11Jobard, B., Erlebacher, G., and Hussaini, M. Y., “La-
grangian-Eulerian Advection for Unsteady Flow Visu-
alization,” Proceedings Visualization 2001, IEEE
Computer Society, New York, 2001, pp. Accepted.
12Erlebacher, G., Hussaini, M. Y., and Shu, C.-W.,
“Interaction of a shock with a longitudinal vortex,”
Journal Fluid Mechanics, Vol. 337, 1997, pp. 129-153.

Figure 10. Effect of velocity mask. Left column:
standard noise coloring. Right column: noise in-
tensity is proportional to the velocity magnitude.
The mask exponents are m=n=1,2,3 (top, middle,
bottom).

