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Abstract 
 We propose a new technique to visualize dense vector 
fields associated with unsteady fluid flows. This tech-
nique is based on a Lagrangian-Eulerian Advection 
(LEA) scheme, and it enables animations with high spa-
tio-temporal correlation at interactive rates. We demon-
strate the efficiency and efficacy of the technique in 
applications to numerical simulation of a shock interact-
ing with a longitudinal vortex, and of ocean circulation 
in the Gulf of Mexico. The simplicity of the data struc-
tures and the facility of implementation suggest that 
LEA could become a useful component of any scientific 
visualization toolkit concerned with the display of un-
steady flows. 

 Introduction 
Several techniques have been developed for the dense 
representation of unsteady vector fields. The best 
known technique is perhaps due to Shen1 who devel-
oped UFLIC (Unsteady Flow LIC). Based on the Line 
Integral Convolution (LIC) scheme2, it achieves good 
spatial and temporal correlation. However, the images 
are difficult to interpret as the pathlines or streamlines 
become blurred in regions of rapid change of direction, 
and thicken where the flow is almost uniform. This 
drawback is due to the large number of particles (three 
to five times the number of pixels in the image) that 
need to be processed for each animation frame. 

The spot noise technique, originally developed for the 
visualization of steady vector fields, has been naturally 
extended to include unsteady flows3. It employs a suffi-
ciently large collection of elliptic spots to cover entirely 
an image of the physical domain. The position of these 
spots is integrated along the flow, their shape is bent 
along the local pathline or streamline, and the resulting 
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image is finally blended into the animation frame. In 
this technique, the rendering speed is increased by de-
creasing the number of spots in the image and the pixel 
coverage is controlled by assigning a fixed lifespan to 
each spot. 

Max and Becker4 proposed a texture-based technique 
that advects a texture along the flow either by advecting 
the vertices of a triangular mesh or by integrating the 
texture coordinates associated with each triangle back-
ward in time. When texture coordinates or particles 
leave the physical domain, an external velocity field is 
linearly extrapolated from the boundary. This technique 
attains interactive frame rates by controlling the resolu-
tion of the underlying mesh.  

A technique to display streaklines was developed by 
Rumpf and Becker5. They precompute a two-
dimensional noise texture whose coordinates represent 
time and a boundary Lagrangian coordinate. Particles at 
any point in space and time that originate from an in-
flow boundary are mapped back to a point in this tex-
ture.  

More recently, Jobard et al.6,7 extended the work of 
Heidrich et al.8 to animate unsteady two-dimensional 
vector fields. The technique relies heavily on extensions 
to OpenGL proposed by SGI, in particular, pixel tex-
tures, additive and subtractive blending, and color trans-
formation matrices. They pay particular attention to the 
flow entering and leaving the physical domain, leading 
to smooth animations of arbitrary duration. Excessive 
discretization errors associated with 12 bit textures are 
addressed by a tiling mechanism9. Unfortunately, the 
graphics hardware extension, specifically the pixel tex-
ture extension, on which this algorithm relies most, is 
not adopted by other graphics card manufacturers. As a 
result, the algorithm runs at present only on the SGI 
Maximum Impact and the SGI Octane with the MXE 
graphics card. 

In this paper, we propose a new visualization technique 
that combines the advantages of what are called La-
grangian and Eulerian formalisms. A dense collection of 
particles is integrated backward in time (Lagrangian 
step), while the color distribution of the image pixels is 
updated in place (Eulerian step). The dynamic data 
structures normally required to track individual parti-
cles, pathlines, or streaklines are no longer necessary 
since all information is now stored in a few two-
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dimensional arrays. The combination of Lagrangian and 
Eulerian updates is repeated at every iteration. A single 
time step is executed as a sequence of identical opera-
tions over all array elements. By its very nature, the 
algorithm takes advantage of spatial locality and in-
struction pipelining and can generate animations at in-
teractive frame rates.  

Problem Statement 
We  track the evolution of a dense collection of parti-
cles, tagged by their position X  at some fixed time, 
immersed in a time-dependent velocity field. The posi-
tion x  of each particle depends on X  and time t : 

 ( , ) ( )tt= =x x X x X , (1) 

and the  velocity of this particle is simply the time 
derivative of its position:  

 
( , )

( , ) ( )td t
t

dt
= =x X

v X v X . (2) 

At any time t , there is a one-to-one mapping between 
the position x  of a particle and its label X . Therefore, 
(1) is invertible:  

 ( , ) ( )tt= =X X x X x . 

As the particle advects with the flow velocity, its label 
remains constant so that its variation along a particle 
path vanishes: 
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When x  is viewed as an independent variable, the par-
ticular particle tX  that passes through x  changes in 
time. In a similar manner, any material (or particle) 
property ( ( ))tF X x  constant along a particle path satis-
fies 0dF = , or 
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An Eulerian approach solves (4) directly for the mate-
rial property as a function of x; as a result, particles lose 
their identity. In exchange, the particle property, viewed 
as a field, is known for all time at any spatial location.  

A Lagrangian approach solves (2) where ( )tx X  is 
physically interpreted to mean the trajectory of a parti-
cle X . In this approach, the trajectory of each particle 
is computed separately, and the time evolution of a col-
lection of particles is displayed by rendering each parti-
cle by a glyph (point, texture spot, arrow). With the 
exception of the recent work of Jobard et al.6,7 and 
Rumpf and Becker5, current time-dependent algorithms 
are all based on particle tracking, e.g.,1,3,4,10. While La-
grangian tracking is well suited to the task of under-
standing how dense groups of particles evolve in time, it 
suffers from several shortcomings. For example, in re-

gions of flow convergence, particles may accumulate 
into small clusters that follow almost identical trajecto-
ries, leaving regions of flow divergence with a low den-
sity of particles. To maintain a dense coverage of the 
domain, the data structures must support dynamic inser-
tion and deletion of particles1, or track more particles 
than needed3, which often decreases the efficiency of 
any numerical implementation. On the other hand, an 
explicit discretization of (4) is subject to a Courant-
Friedrich-Levy (CFL) condition, which limits the speed 
of the flow animation as seen by the user. 

Methodology 
We propose a new algorithm, called the Lagrange-
Euler-Advection (LEA) approach, which builds on the 
strengths of both the Eulerian and Lagrangian ap-
proaches to particle advection. In this approach, the 
coordinates of a dense collection of particles (placed at 
every pixel of a destination image) are tracked between 
two successive time steps with a Lagrangian scheme, 
whereas the property field is subject to an Eulerian up-
date. At the beginning of each iteration, a new dense 
collection of particles is chosen and assigned the prop-
erty computed at the end of the previous iteration.  

To illustrate the idea, consider the advection of the bit-
map image shown in Figure 1a by a circular vector field 
centered at the lower left corner of the image. With a 
pure Lagrangian scheme, a dense collection of particles 
(one per pixel) is first assigned the color of the corre-
sponding underlying pixel. Each particle advects along 
the vector field and deposits its color property in the 
corresponding pixel in a new bitmap image. This tech-
nique does not ensure that every pixel of the new image 
is updated. Indeed, holes usually appear in the resulting 
image (Figure 1b). To avoid such holes, our scheme 
considers each pixel of the new image as a particle, and 
it is updated with the color of the bitmap that the parti-
cle initially occupied, obtained by integrating backward 
in time (Figure 1c). Repeating the process at each itera-
tion, any property can be advected while maintaining a 
dense coverage of the domain.  

Thus, the core of the advection process is the composi-
tion of two basic operations: coordinate integration and 
property advection. 

Given the position ( ) ( )0 , ,i j i j=x  of a particle in an 
image at pixel ( ),i j , backward integration of Equation 
(2)  over a time interval h  determines its position  

 
Figure 1. Rotation of bitmap image about the lower 
left corner. (a) Original image, (b) Image rotated 
with Lagrangian scheme, (c) Image rotated with 
Eulerian scheme. 
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at a previous time step. h  is the integration step, 
( ),i jτx  represents intermediary positions along the 

pathline passing through ( ),t i jx , and τv  is the vector 
field at time τ . 

From (5) it follows that an image of resolution W H× , 
defined at a previous time t h− , is advected to time t  
through the indirection operation 

 ( ) ( )( ) [ ) [ ), 0, 0,
,

user-specified value otherwise

t h h h
t i j W H

i j
− − − ∀ ∈ ×= 



I x x
I

 (6) 

which allows the image at time t  to be computed from 
the image at any prior time t h− . This technique was 
used by Max4 with h t= . However, instead of integrat-
ing back to the initial time to advect the initial texture, 
we choose h  to be the interval between two successive 
images and always advect the last computed frame. This 
minimizes the need to access coordinate values outside 
the physical domain and eliminates texture distortion4. 
To compute an image of acceptable quality from t h−I  
evaluated at h−x , at least linear interpolation is neces-
sary.  

                                Algorithm 
In the Lagrangian-Eulerian approach, a full per-pixel 
advection requires manipulating exactly W H×  parti-
cles. Information attached to a given particle at pixel 
( ),i j  is stored in two-dimensional arrays of resolution 
W H×  at the corresponding index location ( ),i j . 
Thus, we store the initial coordinates ( ),x y  of the par-
ticles in two arrays ( ),x i jC  and ( ),y i jC . Two arrays 

x′C  and y′C  contain their x - and y - coordinates after 
integration along pathlines. A first order integration 
method requires two arrays xV  and yV  that store the 
velocity field at the current time. Similar to LIC, we 
choose to advect noise images. Four noise arrays N , 

′N , aN  and bN  contain, respectively, the noise to 
advect, two advected noise images, and the final 
blended image. 

Figure 2 shows a flowchart of the algorithm. After the 
initialization of the coordinate and noise, the coordi-
nates are integrated and the initial noise array N  is 
advected and stored in ′N . The advected noise array is 
then prepared for the next iteration by subjecting it to a 
series of treatments (left column in Figure 2). Care is 
first taken to ensure that no spurious artifacts appear at 
boundaries where flow is entering the domain. This is 
followed by an optional masking process to allow for 
non-rectangular domains. A low percentage of random 
noise is then injected into the flow to compensate for 
the effects of pixel duplication and flow divergence. 
Finally, the coordinate arrays are reinitialized to ready 
them for the next iteration. The right column in the 
flowchart describes the sequence of steps that take the 

second advected noise array aN  and introduce it into 
the final image. aN  is first accumulated into bN  via a 
blending operation to create the necessary spatio-
temporal correlation. Three optional post-processing 
phases are then applied to bN  before its final display: a 
line integral convolution filter removes aliasing effects, 

features of interest are emphasized via an opacity mask, 
and a scalar variable is superimposed on the velocity 
field. In the following sections, we present some salient 
features of the algorithm. Additional details, including 
implementation issues, are discussed in the original 
paper 11.  

Vector field initialization. Currently, a time sequence of 
two-dimensional velocity fields (obtained from experi-
ment or numerical simulations) is stored in a data file. 
As a result, the velocity fields are available at discrete 
times i vt i t= ∆ , where vt∆  is the time that separates 
successive available velocity data. When the velocity is 
required at a time t  that is not an integral multiple of 

vt∆ , the velocity components are computed from the 
two frames that most closely enclose t  by linear inter-
polation. 

Noise Initialization. N  is initialized with a two-valued 
uniform noise function to maximize the color contrast. 
It is then copied into bN . Coordinates and noise values 
are stored in single precision floating point format to 
ensure sufficient accuracy in the calculations. 

Coordinate Integration. A first order discretization of 
(5) is used to compute the particle trajectory along its 
pathline. The velocity field is normalized with respect 
to its maximum magnitude over all iterations. After 
non-dimensionalization, h , measured in pixels, repre-
sents the maximum possible displacement of a particle 
in a single time step. The actual displacement of a parti-
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Figure 2. Flowchart of LEA algorithm. 
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cle is proportional to the local velocity and is measured 
in units of cell widths.   

Noise Advection. The advection of noise described by 
(6) is applied twice to N  to produce two noise arrays: 

′N  for advection and aN  for display. ′N  is an inter-
nal noise array whose sole purpose is to track the advec-
tion process and serve as the initial noise array for  the 
next iteration. To maintain a sufficiently high contrast in 
the advected noise, ′N  is computed with a constant 
interpolation. A linear interpolation would produce 
“gray” noise and become uniformly gray after several 
iterations. Before ′N  can be used in the next iteration, 
it must undergo a series of corrections to account for 
edge effects, the presence of arbitrary domains, and the 
deleterious consequences of flow divergence. The high 
contrast of ′N  is not suitable for display. To remedy 
the situation, we simultaneously compute a noise array 

aN  from N  using linear interpolation, which decreases 
spatial aliasing. Although some contrast is lost, this is 
only done once with a high contrast source. aN  partici-
pates in the creation of the current animation frame 
through alpha blending with bN . 

A straightforward implementation of (6) leads to condi-
tional expressions to handle the cases when 

( ) ( )( ), , ,x yi j i j′ ′ ′=x C C  is exterior to the physical 
domain. A more efficient implementation eliminates the 
need to test for boundary conditions by surrounding N  
and ′N  with a buffer zone of constant width b h=     
cell widths.  

Edge Treatment. A recurring issue with texture advec-
tion is the proper treatment of information flowing into 
the physical domain. Within the context of this paper, 
we must determine the user-specified value in Equation 
(6). We recall that the advected image contains a two-
valued random noise with little or no spatial correlation. 
We take advantage of this property to replace the user-
specified value by a random value. At each iteration, 
new random noise is stored in the buffer zone, at negli-
gible cost. Particles that were outside the physical do-
main at the previous time step carry a random property 
value into the domain. Since random noise has no spa-
tial correlation, the advection of the surrounding buffer 
values into the interior region of ′N  produces no visi-
ble artifacts. 

Incoming Flow in Arbitrary- Shape Domains. It often 
happens that the physical domain is non-rectangular or 
contains interior regions where the flow is not defined 
(e.g. shores and islands). Denote by B  the boundaries 
interior to N  that delineate these regions. LEA handles 
this case with no modification by simply setting the 
velocity to zero where it is not defined. The stationary 
noise in these regions is hidden from the animation 
frame by superimposing a semitransparent map that is 
opaque where the flow is undefined.  

Noise Injection. When particles in neighboring cells of 
′N  retrieve their property value from within the same 

cell of N , the property value (i.e., the particle color) 

will be duplicated in the corresponding cells of N . This 
duplication process will propagate over time, increasing 

the spatial correlation of the noise between adjacent 
image pixels. To illustrate the effect of this duplication, 
we show in Figure 3 two time frames of the interaction 
of a shock with a longitudinal vortex (see Result Sec-
tion). In the right column the effect of pixel duplication 
is clearly seen: at later time (bottom figure), areas of 
constant color have expanded. This effect is undesirable 
since lower noise frequency reduces the spatial resolu-
tion of the features that can be represented. This dupli-
cation effect is further reinforced in regions where the 
flow has a strong positive divergence. Note that these 
images correspond to several successive frames blended 
together. The corresponding unblended images at the 
later time, shown in Figure 3 clearly show that the noise 
array has increased its spatial correlation.  

To break the formation of uniform blocks and to main-
tain a high frequency random noise, we inject a user-
specified percentage of noise into ′N . Random cells are 
chosen in ′N  and their value is inverted (a zero value 
becomes one and vice versa). The number of cells ran-
domly inverted must be sufficiently high to eliminate 
the appearance of pixel duplication, but low enough to 
maintain the temporal correlation introduced by the 
advection step. The effect of this procedure is seen in 
the left column of Figure 3. 

Coordinate Re-Initialization 
The final step is to re-initialize the coordinate arrays to 
prepare a new collection of particles for the next itera-
tion. Unfortunately, our use of constant interpolation to 
compute the particle property at the previous time step 
(to avoid a rapid loss of contrast), would “freeze” the 
flow in regions where the velocity magnitude is too low. 
A property value can only change if it originates from a 
different cell. If the coordinate arrays were re-initialized 

 
Figure 3. Two frames of animation: frame 25 (top) 
and 95 (middle, bottom). Two percent noise injec-
tion  (middle), no noise injection (bottom). Blended 
image (left), noise texture (right).  
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to their original values at each iteration, sub-cell dis-
placements would be ignored and the flow would be 
frozen where the velocity magnitude is too low. This is 
illustrated in Figure 4, which shows the advection of a 
steady circular vector field. Constant interpolation 
without fractional coordinate tracking clearly shows that 
the flow is partitioned into distinct regions within which 
the integer displacement vector is constant (Figure 4a). 
To prevent this, we track the fractional part of the dis-
placement within each cell. Instead of re-initializing the 
coordinates to their initial values, the fractional part of 
the displacement is added to cell indices. The effect of 
this correction is shown in Figure 4b.The coordinate 
arrays have now returned to the state in which they were 
after their initialization phase. 

Noise Blending. Although successive advected noise 
arrays are correlated in time, each individual frame re-
mains devoid of spatial correlation. By applying a tem-
poral filter to successive frames, spatial correlation is 
introduced. We store the result of the filtering process 
in an array bN . We find the exponential filter to be 
convenient, since its discrete version only requires the 
current advected noise and the previous filtered frame. 
It is implemented as an alpha blending operation  

 (1 )b b aα α= − +N N N , (7) 

where α  represents the opacity of the current advected 
noise array. A typical range for α  is [ ]0.05,0.2 . Fig-
ure 5 shows the effect of α  on images based on the 
same set of noise arrays. 

The blending stage is crucial because it introduces spa-
tial correlation along pathline segments in every frame. 
To show clearly that the spatial correlation occurs along 
pathlines passing through each cell, we conceptualize 
the algorithm in 3D space; the x - and y - axes repre-
sent the spatial coordinates, whereas the third axis is 
time. To understand the effect of the blending opera-
tion, let’s consider an array N  with black cells and 
change a single cell to white. During advection, a se-
quence of noise arrays (stacked along the time axis) is 
generated in which the white cell is displaced along the 
flow. By construction, the curve followed by the white 
cell is a pathline. The temporal filter blends successive 

noise arrays aN  with the most recent data weighted 
more strongly. The temporal blend of these noise arrays 
produces the projection of the pathline onto the x y−  
plane, with an exponentially decreasing intensity as one 
travels back in time along the pathline. When the noise 
array with a single white cell is replaced by a two-color 
noise distribution, the blending operation introduces 
spatial correlation along a dense set of short pathlines. 

Streamlines and pathlines passing through the same cell 
at the same time are tangent to each other, so a stream-
line of short extent is well approximated by a short 
pathline. Therefore, a collection of short pathlines 

serves to approximate the instantaneous direction of the 
flow. With our LEA technique, a single frame repre-
sents the instantaneous structure of the flow (stream-
lines), whereas an animated sequence of frames reveals 
the motion of a dense collection of particles released 
into the flow. 

We illustrate the temporal correlation in Figure 5, which 
is a small area in the animation of flow over a circular 
cylinder (wake region). The three frames shown are 
separated by five iterations. Two regions are marked 
(white square and circle) to draw attention to the advec-
tion of a particular flow structure. 

(a) (b)(a) (b)
 

Figure 4. Circular flow without (left) and with  
(right) accumulation of fractional displacement 
(h=2). 

α=0.10

α=1.00

α=0.50

α=0.03

α=0.10

α=1.00

α=0.50

α=0.03

 
Figure 5. Frames obtained with different values of . . 

 
Figure 6. Small area from the wake region of an 
animation of flow past a circular cylinder. Three 
successive frames from the flow field are shown to 
demonstrate the temporal correlation. The white 
shapes identify a fixed location in space to help 
visualize the feature advecting with the flow. 
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Post-Processing 
A series of optional post-processing steps is applied to 

bN  to enhance the image quality and to remove fea-
tures of the flow that are uninteresting to the user. A fast 
version of LIC can be applied to remove high frequency 
content in the image, a velocity mask serves to draw 
attention to regions of the flow with strong currents, and 
a scalar variable overlay allows the simultaneous visu-
alization of an animated flow field and time evolution of 
a user-specified scalar field. 

Directional Low-Pass Filtering (LIC). By construction, 
the noise in the advected images is of high frequency 
and high contrast. After blending, bN  retains some 
residual effects of these high frequencies due to aliasing 
artifacts. Experimentation with different low-pass filters 
led us to conclude that a Line Integral Convolution filter 
applied to bN  is the best filter to remove the effects of 
high frequency while preserving and enhancing the di-
rectional correlation resulting from the blending phase. 
Although image quality is often enhanced with longer 
kernel lengths, it is detrimental here since the resulting 
streamlines will have significant deviations from the 
actual pathlines. The partial destruction of the temporal 
correlation between frames would lead to flashing ef-
fects in the animation. A secondary effect of longer ker-
nels is decreased contrast.  

In general, a filter length L h≈  produces a smooth 
image with no aliasing. However, large values of h  
speed up the flow, with a resulting increase in aliasing 
effects (Figure 7). If the quality of the animation is im-
portant, L  must be increased with a resulting slowdown 
in the frame rate. As shown in Table 1, smoothing the 
velocity field with LIC reduces the frame rate by a fac-
tor of three on the various computer architectures and 
operating systems the algorithm was benchmarked on. 
We recommend exploring the data at higher resolution 
without the filter or at low resolution with the filter. 

We have implemented a software version of the algo-
rithm developed in Heidrich8; the source code can be 
found in 11. 

Velocity Mask and Background Image. A straightfor-
ward implementation of the texture advection algorithm 
described so far produces static images that show the 
flow streamlines and interactive animations that show 
the motion for the flow along pathlines. The length of 
the streaks is statistically proportional to the flow veloc-
ity magnitude. Additional information can be encoded 
into the images by modulating the color intensity ac-
cording to one or more secondary variables. 

It is often advantageous to superimpose the representa-
tion of flow advection over a background image that 
provides additional context. An example is shown in 
Figure 8, which shows the ocean currents along with a 
background map colored with depth. In order to imple-
ment this capability, the image must become partially 
transparent.  

Two approaches have been implemented. First, we cou-
ple the opacity of a pixel to its color intensity. Second, 
we modulate the pixel transparency with the magnitude 
of the velocity. 

The blended image pixel color ranges from black to 
white. Neither color has a predominant role in repre-
senting the velocity streaks. Therefore, one of these 
colors can be eliminated and therefore made partially 
transparent. We consider a black pixel to be transparent, 
and a while pixel to be fully opaque. The transfer func-
tion that links these two states is a power law. 

Regions of the flow that are nearly stationary add little 
useful information to the view. For example, regions of 
high velocity are often of most interest in wind and 
ocean current data. Accordingly, we also modulate the 
transparency of each pixel according to the velocity 
magnitude. This produces a strong correlation between 
the length of the velocity streaks and their opacity. 

The ideas described in the two previous paragraphs are 
implemented through an opacity map, also referred to as 
a velocity mask. Once computed, the velocity mask is 
combined with bN  into an intensity-alpha texture that 
is blended with the background image. We define the 
opacity map  

 ( )( ) ( )( )1 1 1 1
m n

b= − − − −A V N  (8) 

as a product of a function of local velocity magnitude 
and a function of the noise intensity. Higher values of 
the exponents m  and n  increase the contrast between 
regions of low and high velocity magnitude, and low 
and high intensity, respectively. When 1m n= = , the 
opacity map reduces to 

 bA = VN  

As the exponents are increased, the regions of high velocity 
magnitude and of high noise intensity increase their impor-
tance relative to other regions in the flow. 

 
Figure 7. Frame without (bottom) and with (top) 
LIC filter. A velocity mask is applied to both im-
ages. Data courtesy Z. Ding. 
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Higher quality pictures that emphasize the velocity 
magnitude can also be obtained by replacing the noise 
texture with a scalar map of the velocity magnitude 
(with color ranging from black to white as the magni-
tude ranges from zero to one) combined with positive 
exponents. As a result, the texture advection is seen 
through the opacity map.  

Scalar Overlay. To further add to the information dis-
played, a scalar variable can be superimposed over the 
image. Care must be taken to ensure that a proper bal-
ance is achieved between the visibility of the scalar 
variable and the velocity field of the underlying flow. 
We compute the image of the time-dependent scalar 
function at every iteration by computing its value at the 
vertices of a uniform grid and displaying each cell using 
hardware Gouraud shading. The resolution of the grid is 
chosen by the user to strike a proper balance between 
enhanced spatial structure and maximum interactivity. 
Higher grid resolutions lead to lower frames rates. We 
currently map the range of the scalar variable linearly 
between two colors. The scalar field is stored in a sepa-
rate image that is alpha-blended with bN  to produce a 
composite image. The final image I  is a linear combi-
nation of B  (the background texture), bN  (the flow 
field), and S  (the scalar function). 

The correct weighing of the various terms is chosen on 
a case-by-case basis not to obfuscate bN  or S . Clearly, 
automatic strategies for this selection are highly desir-
able. Finally, we note that the scalar image is fully 
opaque. Judicious use of its opacity channel could fur-
ther enhance the contrast between bN , S  and N .  

Parameters for Realistic Visualization 
The numerical algorithm decouples the choice of the 
time interval between successive velocity fields t∆ , 
and the displacement h  of a particle with unit velocity 
magnitude. Unless the relationship between h  and t∆  
is consistent with the physics of the problem, the rate of 
change in the structure of the velocity field (determined 
by t∆ ) will not be consistent with the speed at which 
information is convected along the particle paths (de-
termined by h ). 

A physically realistic animation of an unsteady vector 
field must respect the spatio-temporal relationships be-
tween the dimensions of the physical problem and that 
of the animation frames. By physically realistic, we 
mean that if some fluid property is at point A  with co-
ordinates ( ),A Ax y ϕ  at physical time 0t ϕ  and reaches 
point B ( ),B Bx y ϕ  at 1t ϕ , a fluid element virtually 
tagged passing through ( ),A Ax y  at 0t  in an animation 
frame should pass through the location ( ),B Bx y  at the 
corresponding animation time 1t′ . We have affixed a 
subscript ϕ  to denote physical variables. 

It is easy to find a system of linear equations that keeps 
constant ratios between physical and computational 
dimensions. Such a system links together dimensions of 
the physical phenomenon with noise texture resolution, 
integration step size, number of images in the anima-
tion, and fractional increment between available vector 
fields. Aside from the physical parameters normally 
associated with a vector field, we propose a way to 
compute the other parameters that lead to visually pleas-
ing, realistic-looking advection animations. This entails 

 
Figure 8. Three frames of ocean circulation 
in the Gulf of Mexico. 
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adopting the proper balance between animation frame 
rate, and rate of evolution of property values along the 
streamlines. Note that sometimes we wish to accelerate 
the evolution of physical time to concentrate on the 
structural evolution of the flow, rather than on the prop-
erty advection itself. As a result, the convection of noise 
along particle paths may be to rapid to discern properly 
on the chosen timescale. Either the user can reduce the 
motion of the particles with respect to the change of 
structure, thus breaking the physical realism, or he can 
simply ignore the particles moving along the paths. If 
the particles move at too rapid a rate, the paths may 
become overly blurred and hard to discern. At this time, 
the control of the parameters is a manual operation. 

Among the visualization parameters, the integration step 
size h  has the highest impact on images. Visually, it 
determines the maximum distance in cells a property 
can travel in a single iteration. If h  is too small, the 
flow appears to be motionless. On the other hand, if h  
is too large, a fluid property in regions of high velocity 
is displaced several cells in a single iteration, decreas-
ing the effectiveness of the temporal correlation. In 
practice, taking h  between 2.0 and 5.0 produces consis-
tently high quality visual results.  

The relationship between parameters in physical and 
computational space is given by  

 
images maxVhN V t

W W
ϕ ϕ

ϕ

= , (9) 

where maxVϕ is the maximum velocity component in the 
whole dataset, tϕ  is the duration of the physical phe-
nomenon, Wϕ  is the width of the physical domain and 
W  is the width (measured in number of cells) of the 
animation frame. Note that both sides of the equation 
are dimensionless. Our choice of normalization implies 
that 1V = .  

The temporal slices are equally spaced in time; there-
fore, image i  in the animation is computed with the 

vf
in  vector field, vf vf images

in iN N= , where vfN  is the 
number of temporal slices available in the dataset, and 

imagesN  is the number of animation frames. The frac-
tional part of vf

in  is used to perform an interpolation of 
the vector field between the two nearest enclosing 
available fields. 

The precise ratio between physical and computational 
linear time is most important for animations of time-
dependent flows since it affects the rate at which the 
structure of the fluid changes with respect to the rate at 
which particles move along the pathlines. Getting the 
ratio correct is far less important when single time slices 
are shown (e.g., the figures in this paper). In this case, 
an incorrect ratio will shorten or lengthen the extent of 
blending along the particle path. However, the blending 
will always remain proportional to the fluid velocity. 
Since the scale factor is uniform, the relative distribu-
tion of velocities is not affected. 

Results 
We evaluated the efficiency of the algorithm on several 
computer architectures at three resolutions ( 2300  
through 21000  pixels). In Table 1, timings in 
frames/second, are presented. The architectures consid-
ered were a Dell Precision Workstation 530 (1.7 GHz 
Intel Xeon, 250 kbyte cache, 400 MHz bus, and a 
Quadro-2 Pro Nvidia card), an SGI Octane with EMXI 
graphics hardware (200 MHz R10000 MIPS processor, 
4Mbyte of secondary cache), and a four-processor SGI 
Onyx (300 MHz R12000 MIPS processor, 12 Mbytes 
of secondary cache). Both serial and parallel (using 
OpenMP) benchmarks were conducted on the Onyx. 
The proposed algorithm is fully implemented in soft-
ware with the exception of the 2D texture placement. 
Although all of the graphics cards support hardware 
texture operations, the software component of the algo-
rithm dominates the computational time. The organiza-
tion of the algorithm as a series of array operations 
makes it particularly straightforward to parallelize on 
shared memory architectures. Furthermore, operations 
on the array elements only make accesses within h  
rows or columns. Small h  (< 5), moderate texture sizes 
( 21000 ), and moderate secondary cache sizes (> 1 
Mbyte), lead to very few cache misses, and thus very 
high efficiency. We have considered the options used 
most often. The highest frame rates correspond to the 
texture advection algorithm without masking or post-
processing (the cost of the blending operation is insig-
nificant). As expected, the Onyx produces the highest 
frame rates across all combinations of options and tex-
ture resolutions. A parallel implementation of the algo-
rithm on four processors produces a speedup of about a 
factor of three. Our Onyx has a single graphics pipe; all 
graphic primitives can only reach the graphics hardware 
through a single processor. As a result, calls to the 
OpenGL library are serialized. The effect of this seriali-
zation becomes worse as the number of processors is 
increased. The cost of the masking operation ranges 
from 30 to 50 percent on the Onyx and Octanes, but 
only 10 percent on the Dell. The reason for this discrep-
ancy is not known, although the Dell bus speed and 
their very fast processors are surely a factor. The LIC 
filter is extremely expensive relative to the base algo-
rithm. Application of the filter at every time step leads 
to a 2 to 3-fold decrease in the frame rate relative to the 
base algorithm combined with masking. One of the rea-
sons for this cost is that the LIC computation is totally 
recomputed at each step. The cost of the LIC is ap-
proximately proportional to the length of the filter ker-
nel. We expect that further optimization is possible by 
considering temporal coherence; however, have not 
pursued this idea. 

We now now demonstrate the versatility of the Lagran-
gian-Euler Advection technique by considering exam-
ples from experimental fluid dynamics, computational 
fluid dynamics, and oceanic sciences. 
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Reso-
lution 

Advection Advection + 
Velocity 
Mask 

( )3m n= =
 

Advection + 
Velocity 
Mask + LIC 
filter 

( )6L =  

9.7 14.0 8.7 8.8 2.6 3.0 
300  

16.3 39.0 10.4 27.0 3.6 11.6 

3.5 4.7 3.2 3.1 0.93 1.0 
500  

6.3 18.0 3.7 10.5 1.3 4.5 

NA 1.2 NA 0.7 NA 0.2 
1000  

1.4 4.1 0.9 2.7 0.3 1.1 

Table 1: Timings in frames/second as a function of op-
tions and resolutions. Each configuration has been 
tested on four different configurations: Dell Precision 
530 Workstation with Quadro2-Pro video card (upper 
left), Octane (upper right), Onyx2 (lower left) and 
Onyx2 with four processors (lower right). 
 

 

 
Gulf of 
Mexico 

Shock 

 

Grid size 352 320×  257 151×  

Number of 
frames 

183 300 

Dataset 
(Mbytes) 

165 93 

Table 2: Characteristics of datasets used in the paper. 

Ocean circulation in the Gulf of Mexico 
Recent numerical simulations at the Center for Ocean-
Atmospheric Prediction Studies (COAPS) at Florida 
State University aim to reveal the detailed structure of 
ocean currents. The simulations are based on the Navy 
Coastal Ocean Model (NCOM). The data was obtained 
from a simulation at a resolution of 352 320 40× ×  
using a third order upwind scheme for the horizontal 
advection terms and a second order discretization in the 
vertical direction. Each time step in the simulation is 
400 seconds. The velocity field is stored at intervals of 
48 hours (432 iterations in the simulation). The 183 
frames provided correspond to a one-year simulation. 
The spatial domain extends from latitudes 15.55 ND  to 
31.55 ND  and from longitudes 98.15 WD  to 
80.55 WD . The spatial grid is 0.05  degrees.  

Figure 8 shows three frames of this flow at a single 
depth. The images are enhanced by first rendering a 
fixed background image of the topography of the ocean 
floor and surrounding land. A velocity mask is applied 
to the flow to enhance regions of high velocity magni-
tude. As a result, regions of lowest opacity lie in areas 

of low velocity magnitude, which renders the back-
ground image partially visible. The flow has a compli-
cated topology, composed of a series of localized 
vortices. From the sequence of images shown, the to-
pology is also seen to be time-dependent. For example, 
the two vortices in the upper frame have merged in the 
lower frame. The strong temporal correlation and the 
interactive frame rates permit parametric investigations 
and make it possible to improve our intuition about the 
flow evolution. 

For a noise texture size of 2512  and using four proces-
sors on an SGI Onyx, we observe rates of approxi-
mately 20 frames per second with masking turned off 
and 10 frames per second with masking turned on.  

Shock-Vortex interaction 
An example of a strongly unsteady flow is the interac-
tion of a shock with a vortex oriented with its axis nor-
mal to the shock. Numerical simulations of this 
interaction were conducted under conditions of axi-
symmetry12. In the chosen configuration, two uniform 
flow regions are separated by a plane shock of infinite 
extent. An isentropic vortex is superimposed on the 
mean flow. The vortex is a solution to the steady-state 
Euler equations and is convected towards the shock at 
the uniform upstream velocity. The radial profile decays 
exponentially to avoid numerical artifacts at the free-
stream boundary. The numerical method is based on a 
formally third order ENO algorithm in space that main-
tains sharp, essentially non-oscillatory, shock transi-
tions. 

We conducted a numerical simulation on a grid of 
400 151×  with a uniform grid in the streamwise direc-
tion, and a grid concentrated near the centerline to bet-
ter capture the vortex shock interactions that result from 
the interaction of the vortex core structure with the 
shock. The data was then interpolated to a 256 151×  
uniform grid over the same physical domain 
[ 7,2] [0,4]− × . The velocity field and the density gra-
dient are read from 96 files on a grid of 256 151× . The 
velocity field is defined over a span of 50 time units. A 
unit time interval is the time it takes a fluid element to 
travel the distance of one vortex core diameter upstream 
of the shock. The dataset is composed of 200 frames, 
with a separation of 0.4 time units between successive 
frames.  

We limit our examples to a Mach 7 shock and a unit 
vortex circulation12. To maximize the information con-
tent, we superimpose the density gradient field over the 
advected texture. (The density gradient captures both 
the shock structures and the slip lines of the flow.) To 
better emphasize the density gradient, we compute the 
auxiliary scalar variable ( )maxexp /ρ ρ−  and map it to 
a range of yellows, brighter in regions of higher gradi-
ent, or lower scalar value. A transparency map is asso-
ciated with, and proportional to, the scalar field. This 
allows the velocity field to show through regions of low 
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density gradient. We have found that the composite 
image of the velocity field and scalar field is strongly 
dependent on the precise mapping and transparency 
functions, thus leading to excessive trial and error on 
the part of the user. Additional research into the auto-
matic selection of functional and color mappings is re-
quired to minimize user intervention. From an imple-
mentation standpoint, the density is drawn at the full 
resolution of the underlying velocity field using 
Gouraud shading. This technique was chosen, as op-
posed to direct texture mapping, to avoid preprocessing 
the time-dependent scalar data and storing it into tex-
tures prior to an interactive session. Furthermore, the 
user has control of the grid resolution on which the sca-
lar field is defined. Since the cost of displaying a scalar 
function is proportional the grid that underlies it, in-
creased interactivity is achieved by defining the scalar 
on two or more grids: coarser grids for higher interac-
tivity, finer grids for static pictures, when the flow is 
steady, or when visualizing detailed structures is more 
important than interactive exploration. 

A time sequence of the shock vortex interaction process 
is shown in Figure 9. Increasing time is from top to bot-
tom, left to right. We have maximized information con-
tent by combining a mask cubic in the noise intensity 
and cubic in the velocity magnitude. In the absence of a 
background texture, transparent pixels are black. The 
mask clearly brings into evidence the discontinuity of 
the velocity across the shock. A triple point structure 
and its associated slip line become well defined by the 
last frame in the left column. The figure also indicates 
that the velocity magnitude is very high and is strongly 
rotational in the region between the primary shock and 
the slip line. Dark regions correspond to areas where the 
flow is almost at a standstill. We should note that the 
velocity field is normalized across all frames of the 
animation. Therefore, a very bright region in the image 
indicates that the flow is near its maximum. The density 
gradient vividly shows internal structure in the flow. 
While the upstream structure is smooth inside the vor-
tex, a complex network of secondary shocks and slip 
lines is visible downstream of the primary shock. In the 
last two frames, an intriguing inverted triple point 
shock, whose presence was unsuspected, is clearly seen. 
A more detailed analysis is necessary to determine its 
origin.  

The opacity masking function is defined by two parame-
ters: m controls the relation between opacity and noise 
intensity, and n  controls the effect of velocity magni-
tude on opacity. In Figure 10, we show the effect of the 
mask on the flow at a fixed time. The same scalar func-
tion has also been superimposed. In the left column, 

0n = . The opacity is only determined by the noise 
intensity. Although the length of the streaks that result 
from the temporal blending of successive temporal im-
ages is proportional to the velocity magnitude, the con-
trast between regions of low and high velocity is not 
very strong. The transparency mask acts as a form of 

anisotropic and locally homogeneous dithering. The 
contrast becomes stronger as m  is increased from 1 
(top) to 3 (bottom). Increased contrast is achieved by 
combining 1m =  with a modulation of opacity with 
velocity magnitude. As expected, the contrast becomes 
sharper as n  increases from 1 (top) to 3 (bottom).  

Concluding Remarks 
This paper describes an algorithm to visualize time-
dependent flows based on an original per-pixel Lagran-
gian-Eulerian Advection approach. A noise image is 
advected from a time step to the next. The color of 
every pixel in the current image is determined in two 
steps. A dense collection of particles (one per pixel) is 
first integrated backward in time for a fixed time inter-
val (Lagrangian phase) to determine their positions in 
the previous frame. The color at these positions deter-
mines the color of each pixel in the current frame (Eule-
rian phase). We describe how to seamlessly handle 
regions where the flow enters the physical domain. A 
temporal filter is applied to successive images to intro-
duce a good level of spatio-temporal correlation. Thus, 
every still frame represents the instantaneous structure 
of the flow, whereas an animated sequence of frames 
reveals the motion of a dense collection of particles 
released into the flow. When necessary, spatial correla-
tion is enhanced through a fast LIC algorithm. A post-
processing filter is described to control the contrast be-
tween regions of high and low velocity magnitude. 
Transparency makes it possible to view a background 
image through the flow; which leads to our current in-
vestigation into multiple layer texture advection. We 
have demonstrated the efficiency of the algorithm on a 
variety of computers, including a multiprocessor 

Figure 9. Interaction of a planar shock with a lon-
gitudinal vortex time sequence. Cubic opacity 
mask. Gray intensity is proportional to velocity 
magnitude. 
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workstation. This work makes it possible to explore 
two-dimensional unsteady flows in real time, and sug-
gests that in the near future interactive three-
dimensional texture advections will become a reality. 

Finally, we note that as the amount of information pre-
sented on an animation or static picture is increased, the 
number of parameters required to generate the picture is 
also increased. Thus, the rendering of the scalar de-
pends on the chosen color map, opacity function, its 
interaction with the underlying noise texture, etc. The 
need to automatically choose appropriate parameters for 
maximum clarity is urgent and will be addressed in fu-
ture work. 
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Figure 10. Effect of velocity mask. Left column: 
standard noise coloring. Right column: noise in-
tensity is proportional to the velocity magnitude. 
The mask exponents are m=n=1,2,3 (top, middle, 
bottom). 


