
Case Study: Visualizing Ocean Flow Vertical Motions using
Lagrangian–Eulerian Time Surfaces

Josh Grant1 Gordon Erlebacher2 James O’Brien1

1Center for Ocean–Atmospheric Prediction Studies,
Florida State University, USA∗

2School of Computational Science and Information
Technology, Florida State University, USA†

Abstract

Ocean model simulations commonly assume the ocean is hydro-
static, resulting in near zero vertical motion. The vertical motion
found is typically associated with the variations of the thermocline
depth over time, which is mainly effected by the development and
movement of ocean fronts and eddies. A new technique, extended
from Lagrangian–Eulerian Advection, is presented to help under-
stand the variation of vertical motion associated with the change in
thermocline depth over time. A time surface is correctly deformed
in a single direction according to the flow. The evolution of the
time surface is computed via a mixture of Eulerian and Lagrangian
techniques. The dominant horizontal motion is textured onto the
surface using texture advection, while both the horizontal and ver-
tical motions are used to displace the surface. The resulting surface
is shaded for enhanced contrast. Timings indicate that the overhead
over standard 2D texture advection is no more than 12%.

Keywords: Unsteady vector fields, ocean currents, normal veloc-
ity.

1 INTRODUCTION

Although oceanography is a well-developed science and research
has been done to visualize its currents [2, 6, 9, 18], little research
has been done to visualize the vertical motion found in the dominant
features, including ocean fronts and eddies. The vertical motion
within ocean fronts and eddies is insignificant when compared to
the horizontal motion, but it is still important to study because mar-
itime life depends on it. The majority of marine life inhabits the top
100 to 200 meters below the ocean surface, because sunlight does
not penetrate below these depths. The plant life in these regions
depends on vertical motion to transport nutrients from the deeper
waters to the surface. Without the appropriate nutrients, photosyn-
thesis cannot occur and thus plant life cannot survive [3]. Regions
of upwelling (upward vertical motion) often contain an abundance
of maritime life and are typically targeted by fisheries.

The currents in the Gulf of Mexico are characterized by what
oceanographers call the loop current and by large anticyclonic ed-
dies (Figure 1 left). The loop current is a warm ocean frontal zone
bringing warmer water from the Caribbean Sea into the Gulf of
Mexico (Figure 1 left). These dominant flow features in the Gulf
of Mexico can span hundreds of kilometers in the horizontal direc-
tions. However, the ocean depth is measured in thousands of me-
ters, a two to three order of magnitude ratio. In order to study the
vertical variations found in the ocean, oceanographers often scale
the vertical by some arbitrary amount [8].

∗{grant,obrien}@coaps.fsu.edu
†erlebach@csit.fsu.edu

Numerical simulations of ocean flow typically assume the ocean
is hydrostatic1, which results in near zero vertical motion. Any
vertical motion found is mainly due to the changes in the thermo-
cline2 (Figure 1 right) depth over time. The movement of ocean
fronts, eddies, and internal waves effect the thermocline depth
and oceanographers are interested in the long-term effects of these
depth changes. When the thermocline moves up or down, upwelling
(upward motion) or downwelling (downward motion) occurs re-
spectively.

Figure 1: Left: Surface temperature in the Gulf of Mexico with the frontal zone
marked and the loop current and anticyclonic eddies superimposed. Right: View of
the thermocline in the Gulf of Mexico with the ocean topography drawn as well. The
vertical coordinates are scaled by a factor of 20. Warmer water and cooler water is
colored by red and blue respectively.

In this case study, we extend the Lagrangian–Eulerian Algorithm
(LEA) [5] to take into account the vertical motion of the flow. Par-
ticles are uniformly distributed on a horizontal plane. Their color is
encoded into a texture that will be advected. When fetching the par-
ticle property at the previous time step, its vertical motion is taken
into account. This results in a time-dependent surface onto which
the advection texture is projected.

2 RELATED WORK

In the last several years, visualization techniques with texture ad-
vection [4, 7, 5, 13] have increased. Two advantages of the tech-
nique are 1) every texel becomes a seed point and 2) the number
of seed points is independent of the underlying vector field and is
held fixed. By uniformly covering the domain, the particles iden-
tify all the features of the flow field. In addition to basic advection,
optional post-processing stages are possible, including LIC [1], ve-
locity masks, and dye injection. Although it can be extended to
3D, texture advection may be best suited for 2D vector fields to
prevent information overload. This problem is common to many
vector field visualization techniques. Furthermore, the animation
frame rate drops dramatically when displaying 3D textures.

Time surfaces (also known as flow surfaces) are a useful tool to
investigate the dynamics of a 3D unsteady velocity field [10, 14, 15,

1Density of the water increases with depth.
2A layer in a large body of water with an abrupt temperature gradient.



17]. They are a 3D version of timelines and require an initial col-
lection of particles on a surface. The trajectories of the particles are
then updated and subsequent surfaces are formed. When time sur-
faces are created using standard particle tracing, the surfaces can
self-intersect and become difficult to interpret. Another approach
implemented by Westermann et al. [14] creates time surfaces im-
plicitly to prevent self-intersection.

3 EXAMPLE

Consider a 3D flow, uniform in x, a zero y component, and a sinu-
soidal variation in z:

v(x,y,z) = (u0, 0, εsin(kx−ωt)) (1)

Starting from (x0,y0,0), a particle follows the trajectory x(t) =
u0t + x0, y(t) = 0, and

z(t) =
−2ε

ω− ku0
sin

(

k(u0t +2x0)−ωt
2

)

sin

(

(ω− ku0)t
2

)

(2)

If particles are uniformly distributed along the infinite surface z = 0
at t = 0, the time variation of this surface is given by equation
(2). This surface is the product of a wave propagating toward posi-
tive x and an oscillatory wave that returns to zero with period T =
(2π)/(ω− ku0). Figure 2 displays a finite domain (x,y) ∈ [0,2π]
of the velocity field defined in equation (1) by showing a time sur-
face and a height field of the vertical velocity. The horizontal mo-
tion is textured onto the surfaces, a technique similar to [11]. The
velocity-based height field shows the wave speed associated with
the normal velocity profile, namely ω/k, while the time surface,
consistent with particle tracking, shows the correct wave speed of
(ω−2ku0)/(ku0). The time surface also captures the periodic flat-
tening of the manifold. However, most vector fields are not defined
over an infinite domain.

Figure 2: Three frames from an animation of the solution to Eq. (1). The height
field is w(x,y, t) (left) and z(x,y, t) (right). Time increases from top to bottom. The half
of images are color coded with w, the bottom half with z.

4 LAGRANGIAN–EULERIAN ADVECTION

It is necessary to understand the concept behind Lagrangian–
Eulerian Advection (LEA) [5] before explaining the new approach
to time surfaces. The two are similar and the only major difference
is the property advected. In this section, we provide enough detail
about LEA to follow the proposed extensions.

Let vt(x) denote an unsteady vector field at time t and position x.
Let p denote an arbitrary particle and let xτ(p) refer to its trajectory,

defined by
dxτ(p)

dτ
= vt+τ(xτ(p)) (3)

with initial condition x0(p) = (i, j), where (i, j) refers to a texel in
the advected noise texture. The Lagrangian phase of the algorithm
retrieves the particle property at the previous discrete time t −h by
integrating equation (3) backward in time. At time t−h, the particle
is located at

x−h(p) = x0(p)+
∫

−h

0
vt+τ(xτ(p))dτ (4)

Interpolating the particle property at x−h, the advected noise tex-
ture, N, advects according to Nt(x0) = Nt−h(x−h), which consti-
tutes the Eulerian phase of the algorithm. The superscript on x
always lies in the range [−h,0] to reflect the fact that the array
of particle coordinates are reinitialized after every iteration. The
implementation of LEA is based on a first order approximation to
equation (4):

x−h(p) = x0(p)−hvt(x0(p)) (5)

which states that the value of any property of the particle at time
t is retrieved from its value at known particle position x−h at time
t −h. Additional processing is required to correctly handle general
inflow conditions, to avoid a decrease in the noise frequency due
to multiple particles originating from the same texel, and to mini-
mize aliasing effects when h is too large [5]. Furthermore, x and
v can refer to either a 2D or a 3D velocity, but only the 2D case is
implemented in [5].

5 ALGORITHM

The desired result is the evolution of a time surface that is cor-
rectly deformed in a single direction. For example, the height of
the surface is maintained in a fixed 2D array. The height of a par-
ticle on the surface at time t at position (i, j) is estimated from the
particle’s location at time t − h. Therefore, we do not continually
track a set of particles as is done in standard time surface techniques
[10, 12, 15, 17]. At each time step the surface is created using a dif-
ferent set of particles that have identical positions in the x and y
directions.

The plane is spanned by the x and y directions, and the vertical
direction is along z. (vt(x,z),wt(x,z)) is an unsteady 3D velocity
field at time t, where x = (x,y) and z define a position within the
physical domain.

Figure 3 shows the time surface St−h at time t − h, and the
resulting surface St after a time interval h. When St is com-
puted, a particle p located at (x0(p),zt(p)) at time t was located
at (x−h(p),zt−h(p)) at time t − h. The horizontal motion of the
particle satisfies equation (3), taking into account the vertical dis-
placement of the particle

dxτ(p)

dτ
= vt+τ(xτ(p),zt+τ(p)) (6)

with initial condition x0(p) = (i, j). Similarly, the change in the
particle height over the time interval [t −h, t] satisfies

dzt+τ(p)

dτ
= wt+τ(xτ(p),zt+τ(p)) (7)

where τ ∈ [−h,0]. Since the particle height is not reinitialized at
every iteration, its superscript increases monotonically. However,
x(p) is reinitialized at each iteration to ensure that the surface never
self-intersects.



x-h(p)

x-h(p’)

x0(p)

St

St-h

zt(p)
ε

Particles at t=0

Particle Path

zt-h(p)

Figure 3: Profile of a surface at two different time steps.

The solution of equations (6-7) over a time interval h satisfies the
system of integral equations

x−h(p) = x0(p)+
∫

−h

0
vt+τ(xτ(p),zt+τ(p))dτ (8)

zt(p) = zt−h(p)+
∫ 0

−h
wt+τ(xτ(p),zt+τ(p))dτ (9)

To summarize, St is computed given particles on a 2D manifold
St−h. The Lagrangian part of the algorithm is based on two steps.
First, particle heights at x0(p) are retrieved from the previous time
step at (x−h(p),zt−h(p)). Then the vertical coordinate of the par-
ticle is computed from equation (7) and integrated forward in time
to properly account for its displacement between successive itera-
tions. The term Eulerian refers to the updating of heights at fixed x
and y locations, and discarding references to specific particles.

Discrete solutions to Equations (8-9) are found with a first order
approximation:

x−h(p) = x0(p)−hvt(x0(p),zt(p)) (10)

zt(p) = zt−h(p)+hwt−h(x−h(p),zt−h(p)) (11)

Unfortunately, these equations are coupled and an explicit solution
cannot be found. Equation (10) requires zt(p) before it is even com-
puted in equation (11). In ocean flows however, changes in the hor-
izontal velocity with respect to height are negligible, and therefore,
zt(p) can be replaced by zt−h(p′) without introducing noticeable
error. The amount of error introduced is directly proportional to the
size of ε in Figure 3 and the amount of horizontal motion change.
Additional error is introduced at regions of inflow when the back-
wards integration requires referencing of nonexistent heights. The
extent of this error is not known and solutions are not given in this
case study.

6 RESULTS

The ocean model data used in this study comes from the Navy
Coastal Ocean Model (NCOM) in the Gulf of Mexico. The NCOM
is a three dimensional time-dependent simulation of temperature,
salinity, and velocity field. The horizontal resolution of the full
model is on a regular grid of 352× 320 or 1/20 of a degree. The
vertical spacing is stacked and contains 60 slices, extending from
2.5 meters to 4000 meters below the ocean surface. The top 20
slices are uniformly spaced five meters apart, and the remaining 40
slices are spaced using a logarithmic scale where deeper slices are
spaced further apart [8]. By convention the vertical axis z points
toward the sky, and z = 0 is the ocean surface.

To date, the NCOM has seven years of simulation completed,
and a five month period beginning in April of the seventh model
year is used. A region just north of the Yucatan Peninsula extending
to Louisiana and eastward to Florida (Figure 4) is focused on. The

Figure 4: Left: Surface flow of the NCOM displayed with LIC and region of interest
highlighted. The flow is faded according to velocity magnitude (zero magnitude is not
shown) and a texture of the surrounding land masses is positioned in the background.
Right: Plot of the topography in the selected region marking the coastal shelf and the
shelf break. The vertical is scaled by a factor of 100 and the surface is colored by
depth. Camera is positioned looking from the northwest.

isolation results in a subset of the NCOM containing 77 forty eight
hour time steps each with a resolution of 161×162×60.

The vertical structure of the loop current and its associated ed-
dies are displayed by computing time surfaces at 200, 400 and 800
meters below the surface. In each figure, a light is positioned to the
left. This produces shadows on the right side of hill and the left side
of a dip. Note that a static view from the above is difficult, if not
impossible, to distinguish dips from hills on the surface. Real time
interaction with the data is required.

The mesh size of the surface in each figure is that of the velocity
(161× 162), while the texture has a resolution of 350× 352. The
discrete time step of the data is 48 hours. To avoid flow structures
from moving too quickly, an interpolation time step h = 6 hours is
used. However, this still causes aliasing effects when using LEA,
remedied through the application of LIC to the LEA texture at each
time step. In addition, the display is scaled by a factor of 200 in the
z direction.

Figure 5 compares the 200, 400, and 800 meter depths after run-
ning the simulation for 120 time steps (30 days). These particluar
images help study the large anticyclonic eddy associated with the
loop current. The vertical structure and the life cycle of the eddy
is visualized by showing the raising and sinking of the thermocline
associated with the eddy genesis and decay. Not much effort has
been expended by oceanographers to better understand these ver-
tical structures, possibly due to a lack of adequate visualization
tools. The hope is that LETS will help oceanographers formu-
late a new set of questions, which will eventually lead to a new
and better model of the ocean. Dr. Steve Morey at the Center for
Ocean-Atmospheric Prediction Studies (COAPS) says that he and
other oceanographers cannot always explain all features evident on
a given time surface, stating that visualization is not used for just
answering questions, but also for finding new questions to investi-
gate.

7 Conclusions

A new technique called Lagrangian–Eulerian Time Surfaces
(LETS) has been introduced to help track the evolution of features
caused by depth variations of the thermocline. A set of particles
are initially placed on a horizontal plane, which is then tracked
in time using a hybrid Eulerian–Lagrangian algorithm. A texture
computed from the horizontal velocity is mapped to the evolving
surface. When added as a post-processing option of Lagrangian–
Eulerian Advection (LEA) the amount of time increases by only
12%.

Future improvements to LETS include

• Properly handling inflow regions.

• Incorporate dye advection to detect origin of particles.



Figure 5: Time surfaces initialized at 200 (top), 400 (middle), and 800 (bottom)
meters below the surface and computed after 120 time steps (30 days).

• Hardware implementation of the algorithm for improved
frame rates.

• Using the image based flow visualization [16] instead of LEA
for improved frame rates.

LETS is not suited for all types of 3D velocity fields. Velocity
fields with vertical velocities comparable to the horizontal veloci-
ties will produce distorted surfaces very quickly over the time scale
of interest, during which the particles cover a sizable fraction of
the physical domain. Although scaling along z could be applied
to the resulting surface, these velocity fields may be better visual-
ized using other techniques. LETS is meant primarily for velocity

fields where the vertical velocities are at least two to three orders of
magnitude smaller than the horizontal velocities.

Acknowledgments

The Center for Ocean-Atmospheric Prediction Studies (COAPS)
receives the base of its funding from the National Oceanic and
Atmospheric Administration (NOAA) Office of Global Programs.
Additional funding for this work was provided by NSF Grant No.
0083792.

References
[1] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral Convolu-

tion. In Proc. of SIGGRAPH-93: Computer Graphics, pages 263–270, Anaheim,
CA, 1993.

[2] Kelly Gaither and R.J. Moorhead. Visualizing Vector Information in Ocean Envi-
ronments. In Oceans ’95 MTS/IEEE Proceedings, pages 1907–1914, San Diego,
CA, October 1995.

[3] M. Grant Gross and Elizabeth Gross. Oceangraphy: A View of Earth, page 207.
Prentice Hall, seventh edition, 1996.

[4] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Applications of Pixel
Textures in Visualization and Realistic Image Synthesis. In ACM Symposium on
Interactive 3D Graphics, pages 127–134. ACM, April 1999.

[5] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian Eulerian Advection for
Unsteady Flow Visualization. In Proceedings of IEEE Visualization ’01, pages
53–60, October 2001.

[6] Andreas Johannsen and Robert J. Moorhead II. AGP: Ocean Model Flow Visu-
alization. IEEE Computer Graphics & Applications, 15(4):28–33, July 1995.

[7] N. Max and Becker B. Flow visualization using moving textures. In Proceedings
of the ICASW/LaRC Symposium on Visualizing Time-Varying Data, pages 77–87,
1995.

[8] S.L. Morey, J. Zavala-Hidalgo, and J.J. O’Brien. High-Resolution Ocean Mod-
eling of the Gulf of Mexico. In Research Activities in Atmospheric and Ocean
Modeling, page In Press. CAS/JSC Working Group on Numerical Experimenta-
tion, 2001.

[9] Scott Nations, Robert Moorhead, Kelly Gaither, Steve Aukstakalnis, Rhonda
Vickery, Jr. Warren C. Couvillion, Daniel N. Fox, Peter Flynn, Alan Wallcraft,
Patrick Hogan, and Ole Martin Smedstad. Interactive Visualization of Ocean
Circulation Models. In Roni Yagel and Gregory M. Nielson, editors, IEEE Visu-
alization ’96, pages 429–432, 1996.

[10] F.H. Post and T. van Walsum. Fluid Flow Visualization. In G.M. Nielson H. Ha-
gen, H. Mller, editor, Focus on Scientific Visualization, pages 1–40. Springer
Verlag, Berlin, 1993.

[11] Gerik Scheuermann, Holger Burbach, and Hans Hagen. Visualizing Planar Vec-
tor Fields with Normal Component Using Line Integral Convolution. In IEEE
Visualization ’99, pages 255–262, San Francisco, 1999. IEEE.

[12] C. Silva, L. Hong, and A. Kaufman. Flow Surface Probes for Vector Field Visu-
alization, 1997.

[13] Daniel Weiskopf, Matthias Hopf, and Thomas Ertl. Hardware-Accelerated Vi-
sualization of Time-Varying 2D and 3D Vector Fields by Texture Advection via
Programmable Per-Pixel Operations. In T. Ertl, B. Girod, G. Greiner, H. Nier-
mann, and H.-P. Seidel, editors, Vision, Modeling, and Visualization VMV ’01
Conference Proceeding s, pages 439–446, 2001.

[14] R. Westermann, C. Johnson, and T. Ertl. A Level-Set Method For Flow Visual-
ization. In Proceedings IEEE Visualization ’00, pages 147–154, 2000.

[15] J.J. van Wijk. Flow Visualization with Surface Particles. IEEE Computer Graph-
ics & Applications, 13(4):18–24, July 1993.

[16] J.J. van Wijk. Image Based Flow Visualization. In ACM Computer Graphics
(SIGGRAPH 2002 Conference Proceedings), July 2002.

[17] J.J. van Wijk, A.J.S. Hin, W.C. de Leeuw, and F.H. Post. Three Ways to Show 3D
Fluid Flows. IEEE Computer Graphics & Applications, 14(5):33–39, September
1994.

[18] Z. Zhu and R. J. Moorhead. Extracting and Visualizing Ocean Eddies in Time-
Varying Flow Fields. In 7th International Symposium on Flow Visualization,
pages 206–211, Seattle, WA, September 1995.


