April 8, 2003
Flow Textures: High Resolution Flow Visualization

Gordon Erlebacher, Bruno Jobard, and Daniel Weiskopf

To appear in the Handbook of Visualization, Academic Press, late 2003.
Editors: Chris Johnson and Chuck Hansen

1 Introduction

Steady and unsteady vector fields are integral to many areas of scientific en-
deavor. They are generated by increasingly complex numerical simulations
and measured by highly resolved experimental techniques. Datasets have
grown in size and complexity motivating the development of a growing num-
ber of visualization techniques to better understand their spatio-temporal
structure. As explained in Chapter 77 of this Handbook, they are often
characterized by their integral curves, also known as pathlines. They can
be best understood as the time evolution of massless particles released into
the flow. In time-dependent flows, pathlines depend strongly on where the
particles are released in space and time. Moreover, they can intersect when
viewed in the physical domain, which often makes reliable interpretation of
the flowfield quite difficult and prone to error.

Rather than visualize a collection of pathlines in a single slice, it is ad-
vantageous to consider instead the instantaneous structure of the flow, and
its temporal evolution. For example, particles can be released along a planar
curve and tracked. The time-dependent curve formed by the particles as they
are convected by the flow is called a timeline. Visualization of streaklines,
timesurfaces, etc. are other viable approaches based on integral curves. The
extreme approach is to release a dense collection of particles, covering the
physical domain, into the flow. At any point in time, due to flow divergence
or strain, the particles form spatial patterns with varying degree of com-
plexity, and their temporal evolution becomes of interest. These patterns
may become non-uniform under the effect of flow divergence, convergence,
or strain. A dense, if not uniform, coverage is maintained by tracking a
sufficiently large number of particles. If a property is assigned to each par-
ticle, and if the number of particles is sufficiently large, one can construct

2 Erlebacher, Jobard, Weiskopf

a continuous time-dependent distribution of the particle property over the
physical domain.

Textures are a well-known graphic representation with many useful prop-
erties, and are well supported on graphics hardware since the mid 1990’s.
They execute a wide variety of operations, including filtering, compression,
and blending, in hardware, and offer the potential to greatly accelerate many
advanced visualization algorithms. Their main function is to encode de-
tailed information without the need for large-scale polygonal models. In
this paper, we discuss flow texture algorithms, which encode dense repre-
sentations of time-dependent vector fields into textures, and evolve them
in time. These algorithms have the distinctive property that the update
mechanism for each texel is identical. They are ideally suited to modern
graphics hardware that relies on a SIMD (Single Instruction Multiple Data)
architecture. Two algorithms can be viewed as precursors to flow textures:
spot noise [18] and moving textures [14]. Spot noise tracks a dense collection
of particles, represented as discs of finite radius. These two algorithms mo-
tivated the development of dense methods and their eventual mapping onto
graphics hardware. A key component of flow texture algorithms is a convo-
lution operator that acts along some path in a noise texture. This approach
to dense vector field representation was first applied to steady flows [5] and
called line integral convolution (LIC). It has seen many extensions (Chapter
77 in this Handbook), some for unsteady flows, for example Unsteady Flow
LIC (UFLIC) [16], Dynamic LIC (DLIC) [17], Lagrange-Euler Advection
(LEA) [10], Image Based Flow Visualization (IBFV) [19], and others [14, 3].
Figure 1 illustrates the application of LEA to the evolution of unsteady
vector fields on time surfaces [8].

Rather than enumerate existing algorithms along with their advantages
and disadvantages, we present a conceptual framework within which these
algorithms can be described and understood. We limit ourselves to 2D
flowfields, although the strategies presented below have straightforward ex-
tensions to 3D, but at substantially higher cost.

The paper is structured as follows. Section 2 describes a new framework
that abstracts the salient features of flow texture algorithms, in particular
those related to temporal and spatial correlation. This is followed in Section
3 by a discussion of integration accuracy, texture generation, and the de-
velopment of recurrence relations for easy mapping onto graphics hardware.
Finally, we cover details necessary to port the leading algorithms on current
graphics hardware in Section 4.

Flow Textures 3

2 Underlying Model

Most of the existing flow texture algorithms derive from different approxi-

mations to a physical model that we now describe. Consider a single particle

in an unsteady flow u(r,t) and its trajectory, henceforth defined as a curve
[

4] 1.7 miz

Figure 1: Application of flow textures to the advection of time surfaces in
the Gulf of Mexico [8]. Top row: LEA, middle row: time surfaces viewed as a
shaded surface, bottom row: flow texture superimposed on the time surface.
Each row represents three frames from an animation. Data Courtesy J.
O’Brien.

4 Erlebacher, Jobard, Weiskopf

in a 3D coordinate system with two spatial axes r and a time axis ¢t. As
illustrated in Figure 2, the projection of the particle trajectory onto the
(z,y) plane is a pathline of the underlying flow. The volume spanned by r
and t is denoted by V. To understand the temporal dependence of the flow,
the 3D reference frame is densely filled with particle trajectories. The inter-
section of the volume with a 2D spatial plane then yields a dense collection
of points (also referred to as particles). As this slice translates along the
time axis, their spatial coordinates change continuously, thus ensuring tem-
poral coherence. Local regions of flow strain or divergence create pockets
of increased and reduced particle density, which form distinct macroscopic
patterns. These patterns persist in time when collections of neighboring
particles travel together.

All methods must address the following challenges:

1. Maintain a time-independent particle density without destroying the
information responsible for changes in the particle density and with-
out sacrificing temporal coherence, i.e., particle trajectories must be
sufficiently long.

2. Develop a good strategy for adding and removing particles.

3. Introduce spatial correlation into each frame that encodes information
from a short time interval to generate macroscopic structures repre-
sentative of the flow.

4. These macroscopic structures should be correlated in time to simulate
flow motion.

5. Steady flow should result as a special case of unsteady flow.

2.1 Particle Features

Particles released into the flow are subject to several constraints. They
are identified by an invariant tag, along with one or more time-dependent
properties. In most implementations that target visualization, one of these
properties is color, often kept constant. To accentuate particle individual-
ity, the colors can have a random distribution. Alternatively, to simulate
the release of dye into the flow, all particles initially within a local volume
are assigned the same color. Particles are constrained to lie on a particle
path imposed by an underlying vector field. Finally, particles can enter

Flow Textures)

and exit the physical domain, accumulate at sinks, or diverge from sources.
Additional time-dependent properties can be assigned to particles, such as
opacity. These might be used to enhance the clarity of any macroscopic
patterns that may emerge.

At a given time, particles occupy a spatial slice through V and lie on
separate trajectories that only intersect at critical points. The challenge is
to develop strategies that maintain a uniform distribution of particles for all
time. We address this next.

2.2 Maintaining a Regular and Dense Distribution of Parti-
cles

Under the above constraints, one is left with the task of generating particle
trajectories that sample space uniformly and densely, and properly take into
account effects of inflow/outflow boundaries. In a direct approach, a large
number of particles is seeded randomly across a spatial slice and tracked
in time. Particle coordinates are maintained in some continuously updated
datastructure. Generally, one seeks to maximize the length of individual
trajectories. However, this requirement must be balanced against the need
for particle uniformity, which is easily destroyed as a result of boundary

Figure 2: Illustration of a trajectory in the space-time domain V, and a
pathline viewed as its projection onto a spatial slice.

6 Erlebacher, Jobard, Weiskopf

effects and finite velocity gradients. Particles near inflow boundaries are
transported into the domain leaving behind regions of reduced coverage. On
the other hand, particles that exit the domain must be removed. Particle
injection and destruction strategies are essential to counteract this effect.
Control of particle density is also necessary within the interior of the physical
domain.

We now present three strategies that achieve the above objectives, and
relate them to existing flow texture algorithms.

1. All particles have a finite life span 7 to ensure their removal from the
system before non-homogeneities become too severe. A new distribu-
tion of particles is generated at constant time intervals. The density of
particles is chosen to achieve a dense coverage of the spatial domain.
This approach is at the heart of UFLIC [16] and time-dependent spot
noise [6]. In UFLIC, the time between consecutive particle injections
is smaller than 7. On the other hand, they are injected at intervals
of 7 for the spot noise approach. Aliasing errors are alleviated by
distributing the initial particle injection in time.

2. Keeping the previous approach in mind, we now seek to explicitly con-
trol the density of particles. The spatial slice is partitioned into bins
within which the particle density will remain approximately constant.
Particles are removed or injected into a bin when their number ex-
ceeds or falls below prescribed thresholds. The length of trajectories
is maximized by removing the oldest particles first. In this approach, a
reduced number of particles is exchanged against more complex code
logic. Accelerated UFLIC [13] and DLIC [17] are examples of this
approach.

3. Particle tracking is abandoned in favor of an Fulerian point of view.
The properties of a dense collection of particles on a spatial slice are
sampled on a discrete grid. Their values are updated by following par-
ticle paths. This was the initial approach of Max and Becker [14]. More
recent implementations are at the basis of LEA [10] and IBFV*[19].

2.3 Temporal Correlation

To understand better the nature of temporal correlation, consider a single il-
luminated particle. This particle traces out a trajectory in space-time. Only
a single dot is visible at any time. In the absence of temporal correlation,

Flow Textures 7

the resulting image would be a set of dots distributed randomly. Temporal
correlation is thus a consequence of the continuity of particle paths.

The human visual system [4] can integrate the smooth motion of a single
bright dot and infer its direction and approximate speed. There is a range
of speed that maximizes the effectiveness of this correlation. If the particle
moves too rapidly, the visual system is incapable of correlating successive
positions, and the trajectory information is lost. If the motion if too slow,
information about the particle motion cannot be established.

Whatever the visualization technique used, the objective is to simulta-
neously represent the structure of the flow in a spatial slice through spatial
correlation and the temporal evolution of these structures along particle tra-
jectories. In the next section, we discuss a general framework to introduce
flow patterns within a spatial slice. This general framework subsumes all
known flow texture methodologies.

2.4 Spatial Correlation

To achieve this goal, consider an intensity function I(r,t) defined over the
3D space-time volume V introduced earlier. We define a filtered spatial slice

Dy(r) = /_ O:o k() I(Z(t — s:1,1))ds (1)

as a convolution along a trajectory Z(s;r,t) through V. The subscript
on D; is a reminder that the filtered image depends on time. Trajectories
are denoted by scripted variables and have three components: two spatial
and one temporal. Z(s;r,t) is parameterized by its first argument and
passes through the point (r,¢) when s = ¢. For generality, we perform the
convolution along the entire time axis, and rely on the definition of the filter
kernel k(s) to restrict the domain of integration. It is necessary to introduce
some correlation into V. To this end, we define the intensities in V' to be
either constant or piecewise continuous along another family of trajectories
Y(s;r,t). The structure of D, is characterized by the triplet [V, Z, k].

Line Integral Convolution

LIC introduces coherence into a 2D random field through a convolution along
the streamlines x(s;r,t) of a steady vector field [5]. An equivalent formu-
lation is possible within the 3D framework when I(r,?) is constant along
lines parallel to the time axis with a random intensity across a spatial slice.
Thus, Y(s;r,t) = (r,s) and I(r,t) = ¢(r), where ¢(r) € [0, 1] is a random

8 Erlebacher, Jobard, Weiskopf

function. The convolution is computed along Z(s;r,t) = (x(s;r,t),s), i.e.,
the streamlines of the steady vector field. With these definitions, spatially
correlated patterns produced by LIC are defined by

Dy(r) = /_O:O k() b(x(t — si1,8))ds.

Image-Based Flow Visualization

IBFV [19] takes an approach similar to LIC with two exceptions. First,
the convolution trajectories are based on the pathlines x(s;r,t) of u(r,t).
Second, the intensity function defined in LIC is modulated according to
a time-dependent periodic function w(t) along the trajectories Y(s;r,t) =
(r,s) that define I(r,¢). Thus the volume intensity distribution becomes

I(r,t) = w((t+ ¢(r)) mod 1) (2)

where ¢(x) € [0, 1] is now interpreted as a random phase. With the above
definitions, the convolution is given by (1) with Z(s;r,t) = (x(s;r,1),s).

Consider the case when a single trajectory from) is illuminated with
an intensity proportional to w(t mod 1). The only points visible in Dy(r)
lie on trajectories that pass through (r, s) for some s within the support of
the kernel. When the kernel is a monotonically decreasing function of |s|,
the segment of the curve that corresponds to s < t is a streakline segment,
with maximum intensity at r, and decaying intensity away from r. It should
be noted that in the limit of steady flow, the resulting streamline intensity
remains unsteady, unless w(t) is constant.

Lagrangian-Fulerian Advection

LEA [10] seeks to model the effect of a photograph taken with a long expo-
sure setting. Under such conditions, an illuminated particle forms a streak
whose points are spatially correlated. This result is modeled by perform-
ing the convolution along trajectories Z(s;r,t) = (r, s) parallel to the time
axis with constant intensity along the trajectories Y(s;r,t) = (x(s;r,t),s)
associated with u(r,¢). The resulting display is then

Dy(r) = /_ o; k(s)I(r,t — 5)ds. 3)

To identify the patterns formed by the spatial correlation, it is expedient
to rewrite Dy(r) as a convolution along some curve through a spatial slice
of V. Since I(r,t) is constant along pathlines of u(r,t), it follows that
I(x(s;r,t),s) = I1(x(0;r,t),0) and

Dy(r) = /_ O:O k() I(x(0:1, t — s),0)ds. (4)

Flow Textures 9

This is a convolution along the curve x(0;r,s) in the ¢ = 0 slice and
parametrized by s. If k(s) = 0 for s > t, all points on this path lie on
trajectories that pass through r at some time s < ¢, which is a streakline of
the flow u(r,t) after time reversal. The curves x(0;r, s), parameterized by
s, are precisely the spatially correlated features we seek.

A comparison of equations (1) and (4) shows that IBFV and LEA are
in a sense dual to each other. IBFV constructs V from lines parallel to the
time axis and convolves along trajectories, while LEA constructs V from
trajectories and does the convolution along lines parallel to the time axis.
This duality is shown in Figure 3.

From the above discussion, we find that it is important to carefully
distinguish between the curves along which the convolution is computed
and the resulting patterns formed in Dy(r). In general, the projection of
Z(s;r,t) onto Dy(r) differs from the resulting spatial patterns. If the kernel
support is sufficiently small, the patterns are visually indistinguishable from
short streamlines (streamlets). When u(r, t) is steady, both IBFV and LEA
produce streamlines.

Dynamic LIC

Not all vector fields derive from the velocity field of a fluid. For exam-
ple, electric fields driven by time-dependent electric charge distributions
should be represented as a succession of LIC images correlated in time. In
DLIC [17], the motion of the electric field u(r,t) is determined by a sec-
ondary flow field, v(r,t), with pathlines y(s;r,t). The generation of the

Figure 3: Duality between IBFV (left) and LEA (right). Volume intensity is
constant along vertical lines and the convolution is along pathlines for IBFV.

Intensity is constant along pathlines while convolution is along vertical lines
for LEA.

10 Erlebacher, Jobard, Weiskopf

sequence of LIC images is achieved by building I(r,) from the pathlines of
the motion field, i.e., Y(s;r,t) = (y(s;r,t),s), and taking the convolution
along the streamlines of u(r,t), i.e., Z(s;r,t) = (x(s;r,t),t). The filtered
display becomes

Dy(r) = /_ O:o k() I(Z(t — s:1,4))ds.

The resulting structures are streamlines of u(r, t), transported in time along
the pathlines of v(r,t).

3 Implementing the Dense Set of Particles Model

Several ingredients are necessary to implement a flow texture algorithm: 1)
the physical domain; 2) a time-dependent flowfield defined over the physi-
cal domain (and perhaps a second vector field to determine trajectories in
non-flow simulations); 3) a mechanism to generate noise texture (suitably
preprocessed); and 4) an integration scheme.

There are, several issues that have to be addressed in all methods: 1)
accuracy; 2) sampling; 3) inflow boundaries; 4) uniformity of the noise fre-
quency; and 5) contrast (see Section 4).

3.1 Integration Scheme and Accuracy

The position x(t) of a single particle subject to a velocity field u(r, t) satisfies

dx(t)
5 = u(x(t),t). (5)

(In what follows, we no longer refer to the starting location along a path
unless necessary for clarity.) In practical implementations of flow texture
methods, the time axis is subdivided into uniform intervals At. Integration
of (5) over the time interval [tx,tx+1] yields the relation
lkt1
X(tgps1) = x(tg) + t u(x(s),s)ds. (6)
k
between particle positions. At the discrete level, the particle position at tj
becomes py = p(tx). A first order forward discretization of (6) relates the
positions of a particle at times ¢; and ¢4 1:

Pk+1 = Pk + Atu(pg, tr)-

Flow Textures 11

Similarly, a backward integreCéj relates particle positions between times ¢,
and tp_1:

Pk = Pit+1 — At u(Prs1, trt1)-

A first order scheme is sufficient when integrating noise textures; errors
only accumulate over the length of a correlated streak. These errors are in
general sufficiently small so that they are not visible. When constructing
long streaklines through dye advection (Figure 4, Section 3.3), this is no
longer true. High order integration methods are then necessary to achieve
accurate results [15, 10].

3.2 Sampling

The property field is sampled onto a texture that serves as a background
grid. In a flow texture algorithm, it is necessary to update the value of the
particle property on each cell (i.e., texel). The most general formulation is
to compute a filtered spatial integration of the property at the previous time
step over the physical domain, according to

Clry;) = /p) %1 K(ryj —1)Chay (x(t— Atir,t) dr (7)
ysical domain

where K (r) is some smoothing kernel. Different approximations to (7) lead
to trade-offs between speed and quality. Many subsampling schemes, along

s &
- ‘

Figure 4: Flow in the Gulf of Mexico. Time lines visualized by dye advection
(left), LEA with masking to emphasize regions of strong currents (right).
Data Courtesy J. O’Brien.

Administrator
Note
Strictly speaking, we should have

p_{k-1} = p_k - \Delta t u(p_k,t_k)

Administrator
Highlight

Administrator
Note
If possible, could "physical domain" be placed over two lines?

 Physical
 domain

12 Erlebacher, Jobard, Weiskopf

with supporting theory, are described in [7]. The simplest approximation,
and the fastest to execute, is point sampling, which takes the form

Ci(rij) = Cr_pe(rij — Argj) (8)

where .
Ar;j :/ u(x(s;rij,t), s)ds.
t—At
However, direct application of this formula may generate aliasing errors.
LEA evaluates Cy—a4(r;j — Ar;j) using nearest neighbor interpolation; all
other methods use bilinear interpolation.

3.3 Texture Generation

Visual effects possible with flow texture algorithms strongly depend on the
textures that are advected. Noise textures lead to dense representations of
time-evolving streaks; dye advection results from overlaying a smooth back-
ground texture with local regions of color and letting these regions advect
with the flow. Some techniques, such as IBFV, explicitly construct a time-
dependent noise texture. In all cases, it is essential to pay attention to the
quality of the textures generated to minimize aliasing artifacts produced
by improper relationships between the properties of the velocity field, spa-
tial and temporal sampling rates, and the frequency content of the input
textures.

Texture for Noise Advection

We begin by illustrating the relationship between filtering and sampling
through a simple 1D example. Consider a uniform velocity field v and a
noise texture I(z) filtered by convolution:

D(z) = /_O:o k(s)I(z — us)ds.

If I(z) is sampled onto a uniform grid x; with spacing Az, a first order
approximation of (9) yields

D(z) =~ Z k(iAs)I(x — id)As,

1=—00

where I(x — id) is estimated from I; = I(x;) via some reconstruction algo-
rithm and As is the time sampling interval. By considering the properties of
D(z) when a single cell is illuminated, we derive a condition that relates As

Flow Textures 13

and d = uAs, the distance traveled by a particle over the sampling interval.
Using the Heaviside function H(z) = 1 for x > 0 and zero elsewhere, the
texture has the representation

I(z) = H(z + Az) — H(z),

which leads to a filtered texture

D(z) = Z k(iAs)[H(z + Az —id) — H(x — id)|As.

1=—00

We assume that the kernel is symmetric about s = 0. When i = 0, the term
in brackets is a pulse of width Az. When i = 1, the support of the pulse lies
in [d— Az, d]. To ensure overlap between these pulses it is necessary that Az
exceeds d. When this condition is violated, D(x) is a series of disconnected
pulses whose amplitudes follow k(iAx).

One way to avoid, or at least reduce, such aliasing effects is to ensure
that high frequency components are removed from I(x) by a pre-filtering
step. The best filters have a short support in Fourier and physical space,
making the Gaussian filter a strong candidate. Multifrequency filtering has
been proposed as a means to link the characteristics of spatial patterns in
Dy(r) to properties of the flow, such as velocity magnitude [12]. In the
context of flow textures, it has been shown that if a one-dimensional texture
with a single illuminated texel is prefiltered with a triangular pulse of width
greater than d, the resulting image is a smoothly decaying function that
follows k(s) [19]. The simplest 2D filters are isotropic or defined through a
tensor product of 1D kernels. Spatial correlations introduced into the texture
is then independent of orientation. Unfortunately, control is lost over the
width of the streaks formed in the final image. Anisotropic filters can be
designed to only prefilter the texture in the direction of the instantaneous
flow field, while leaving the direction normal to the streamline untouched.
None of the techniques addressed in this paper implement such an approach,
although LEA does use a LIC algorithm as an anisotropic filter to remove
aliasing in a postprocessing step. Glassner [7] provides a thorough discussion
of issues related to sampling, filtering, and reconstruction.

Temporal Correlation

As explained in Section 2.4, I(r,t) is an intensity distribution defined over
a space-time domain. It is important to ensure that the temporal sampling
interval As is consistent with the frequency content of the volume. IBFV
and LEA address this problem differently. In IBFV [19], the intensity map

14 Erlebacher, Jobard, Weiskopf

is constructed independently of the underlying vector field. The temporal
component is introduced through the periodic function w(¢ mod 1) described
by (2). High contrast is achieved when w(t) varies sharply over some small
t interval. To avoid aliasing effects, w(t) should be filtered so that the time
discretization satisfies the Nyquist criterion. Since w(t) is applied to all
points with different initial phase, the filtering should be performed ana-
lytically. Van Wijk [19] advocates the use of w(t) = (1 —¢) mod 1, which
emulates the effects of Oriented LIC [20].

Texture for Dye Advection

Dye advection is treated similarly to noise advection, although the objective
is different. When advecting noise, we seek to visualize streak patterns rep-
resentative of the magnitude and direction of vectors in the velocity field.
Instead, dye advection techniques emulate the release of colored substance
into a fluid and track its subsequent evolution over short or long time in-
tervals. This process is simulated by assigning a connected region of the
texture (referred to as dye) with a constant property value. When injecting
dye, the texels located at the injection position are set to the color of the
dye. Once released, the dye is advected with the flow.

3.4 Spatial Correlation

In this section, we discretize the convolution integrals (1) and (4) for IBFV
and LEA respectively, and transform them into simple recurrence relations
that can be implemented efficiently in hardware. A kernel that satisfies the
multiplicative relation k(s)k(t — s) = k(t) for s < t leads to a recurrence
relation between the filtered display at two consecutive time steps. The
exponential filter k(s) = S 'e ™ #*H(s), normalized to unity, satisfies this
relation. Although such a filter does not have compact support, the ease of
implementing exponential filters through blending operations makes them
very popular.

Using the normalized exponential filter, Equation (1) is discretized ac-
cording to

Dy(ry) = 571) e PFASI(Z(tn — si51ijs b)), (9)
k=0

where the subscript n on D, refers to t,,, s = kAs, t, = nAt and tg = 0.
In general, As = At.

We next specialize the above relation to IBFV and LEA.

Flow Textures 15

Image-Based Flow Visualization
IBFV uses trajectories

Z(tn — sk Tijitn) = (X(tn — Sk3Tij, tn), th — Sk),

associated with u(r, t) passing through the center r;; of texel ij. Substitution
into (9) yields

Dn(rz‘j) = BAs Z e_ﬁskf(x(tn — Sk; Ty, tn), tn — Sk). (10)
k=0

Although IBFV defines I(r,t) through Equation (2), we derive a more gen-
eral relationship valid for time-dependent intensity function. Using the re-
lation x(s;15,t,) = x(s;r;; — Aryj, t,—1) and some straightforward algebra,
a simple relation emerges between D, (r;;) and D, _1(r;; — Ar;;), namely

Dy (rij) = e P2 D, 1 (rij — Arij) + BAs I(rij,t,). (11)

Lagrangian-FEulerian Advection
In the case of LEA, Z(t,, — sk;1ij,tn) = (rij, tn — sg). The discretization

Dy (ryj) = BAs > e PRI (ryj, by — s1), (12)
k=0

of Equation (3) can be recast into the recurrence relation
Dy(rij) = € P2 Dy1(vig) + BAs I(vij,t0). (13)

The second term is evaluated by following the trajectory Y(s;rij,t,) =
(x(s;1i5,tp),s) from t = t, to the previous time ¢,_1, i.e.,

I(I‘Z‘j, tn) = I(I‘Z'j - AI‘Z‘]‘, tn—l)- (14)

Dynamic Line Integral Convolution

As explained in Section 2.4, DLIC constructs an intensity map based on
the pathlines of the motion field v(r,¢), updates it according to (14), and
performs a LIC along the streamlines of u(x,¢). In the actual software
implementation, a large number of individual particles, represented as discs
of finite radius, is accurately tracked. The particles are allowed to overlap.
Care is taken to ensure a uniform coverage of the physical domain, ensuring
good temporal correlation. The final LIC is of high quality. Also note that
LIC can be implemented in hardware [9].

16 Erlebacher, Jobard, Weiskopf

3.5 Inflow Boundaries

All flow texture algorithms have difficulties with inflow boundaries, i.e.,
points along the boundary where the velocity points into the physical domain
(Figure 5). The recurrence relations derived above for LEA and IBFV clarify
the issues. In LEA, as evident from (13), particles that lie near an inflow
boundary may lie outside the physical domain at the previous time. Should
this occur, a random property value is assigned to that particle and blended
into the dipslay at the current time. IBFV, on the other hand, must access
the value of the spatially correlated display at r;; — Ar;;. Simply replacing
this value by a random value would destroy the spatial correlation near the
inflow boundaries, which would then contaminate the interior of the domain.
For such points, one possible update equation is

Dy (rij) = e PAD, 1 (rij) + BAs I(rij, tn).

4 Hardware Implementation

In this section, we demonstrate how the different flow visualization tech-
niques described previously can be realized by exploiting graphics hardware.

Buf f er Zone

/

| | e

/

| RS> 4
u(x/

/
=
~

| BFV

noi se

Figure 5: Inflow boundary treatment of LEA and IBFV.

Flow Textures 17

The principal reason for using GPUs (graphics processing units) is to achieve
a much higher processing speed, potentially two to three orders of magnitude
higher than for a comparable CPU-based implementation. Performance is
an important issue because it might make the difference between a real-time
GPU-based visualization, which allows for effective user interaction, and a
non-interactive CPU version. We start with an abstract view on the capa-
bilities of GPUs and how visualization techniques can benefit, followed by a
discussion of specific details of IBFV and LEA implementations.

Generic Hardware-Based Texture Advection

All implementations have to address the problem of how data structures and
operations applied to them can be mapped to graphics hardware. From a
generic point of view, the algorithmic structure of texture advection tech-
niques consists of the following steps (see Figure 6). First, (noise) textures
and possibly other auxiliary data structures are initialized. Then, each itera-
tion step has to take into account: 1) the advection, based on the integration
of pathlines, 2) a compositing operation, which combines information from
the previous and the current time steps to introduce spatial coherence, 3)
optional postprocessing to improve image quality, and 4) the final display
on the screen.

The texture represents the particles that can be stored on the GPU by
means of standard 2D or 3D textures, depending on the dimensionality of the
domain. We assume that the particles are given on a uniform grid. In purely
hardware-based implementations, the velocity field is also stored in a 2D or
3D texture. For hybrid CPU and GPU-based implementations, the vector
field may be held in main memory and processed by the CPU. The advec-
tion step comprises both the integration of particle paths for one time step
(based on (6)) and the transport of the texture along these paths (based on
(8)). Typically, an explicit first order Euler integration is employed, which is
executed either by the CPU for a hybrid approach or by the GPU. Texture
transport is based on an appropriate specification of texture coordinates,
which can be done either on a per-vertex basis (for hybrid CPU / GPU
approaches) or on a per-fragment basis (i.e., purely GPU-based). The com-
positing operation is directly supported on the GPU by blending operations
working on the framebuffer or within fragment programs.

Hardware-based implementations are very fast for the following reasons.
GPUs realize a SIMD architecture, which allows efficient pipelining. In addi-
tion, the bandwidth to texture memory is very high, which leads to a fast tex-
ture access. Finally, a transfer of visualization results to the graphics board

18 Erlebacher, Jobard, Weiskopf

for the final display is superfluous for GPU-based implementations. Since
texture advection is compatible with the functionality of today’s GPUs, a
high overall visualization performance can be achieved.

However, the following issues have to be considered. First, the accuracy
of GPUs usually is limited and might vary during the complete rendering
pipeline. For example, color channels in the framebuffer or in textures have a
typical resolution of eight bits, whereas fragment processing may take place
at higher precision. Even floating-point accuracy within textures and frag-
ment processing, provided by modern GPUs, is not comparable to double-
precision numbers, available on CPUs. Second, the number of instructions
might be limited. Therefore, the algorithms have to be designed to enable
a rather concise implementation—sometimes at the cost of accuracy—or a
less efficient multi-pass rendering technique has to be applied. Similarly, the
number of indirection steps in fragment processing (i.e., so-called dependent
texture lookups) is restricted. A third issue concerns the choice of APIs for
programming the GPU. OpenGL [2] and DirectX [1], the two widespread

Initialization

Next Interation

N Vector
Advection = Field

Compositing

Postprocessing

Final Display

Figure 6: Flowchart for generic texture advection.

Flow Textures 19

graphics APIs, have specific advantages and disadvantages. The main ad-
vantage of OpenGL is its platform (i.e., operating system) independence.
However, at the time of writing, sophisticated features of the GPUs can
only be addressed by GPU-specific OpenGL extensions. The situation might
improve in the future with standardized interfaces for fragment programs.
The main advantages of DirectX are a GPU-independent API and the sup-
port for a fast render-to-texture functionality, which is extremely useful for
multi-pass rendering and iterative processes like texture advection. On the
downside, DirectX is only available on the Windows platform. Finally, for
vertex or fragment programming, higher-level programming languages, such
as NVidia’s CG (C for graphics) or the HLSL (high level shading language)
of DirectX, can be used to replace the assembler-like programming with
OpenGL extensions or DirectX vertex and pixel shader programs. We try
to keep the following discussion as API-independent as possible in order to
allow a mapping to current and future programming environments.

IBFV
Visualization techniques based on the idea of IBFV implement 2D flow vi-
sualization according to the recurrence relation

D, (r)=(1—a)Dp_1(r — Atu(r,t,)) + al,(r), (15)

which approximates (11) by first order integration of the particle path and
by first order approximation of the exponential function. Both D, and I,
can be implemented by 2D textures. To alleviate the notation, D and I will
henceforth refer to any of the D,,, I,, textures and r;; is replaced by r. The
first term of (15) requires access to the texture D at the previous time step
at the old particle position r — Atu(r,t,). Three possible solutions can be
employed for this advection.

The first solution implements advection on a per-fragment basis. Here,
a fragment program computes the old position r — At u(r,t,) by accessing
the vector field stored in another 2D texture. Then a lookup in D,_q is
performed by interpreting the old position as texture coordinates. This tex-
ture fetch operation is an example of a dependent texture lookup. Figure 7
shows the DirectX pixel shader code for this advection. The fragments are
generated by rendering a single quadrilateral that spans the spatial domain.
Texture coordinates tg and t; are specified in a way to exactly cover the do-
main by the textures. The dependent texture lookup takes the result of the
previously fetched vector field u(r,t,), scales this result by a constant value
(a parameter that is specified outside the fragment program and that takes
into account —At), and adds the scaled value to the texture coordinates tg

20 Erlebacher, Jobard, Weiskopf

ps.1.0 // We are fine with pixel shader V1.0
tex t0 // Accesses vector field u
texbem t1,t0 // Dependent tex lookup in D with shifted tex coords

mov rO, tl; // Outputs result

Figure 7: Pixel shader code for backward advection.
to obtain the coordinates for the lookup in the texture D,,_.

The second solution implements a similar backward advection on a per-
vertex basis [14]. The domain is covered by a mesh, with velocities assigned
at its vertices. On the CPU, the old positions r — At u(r,t,) are computed
for the vertices by accessing the vector field in main memory. Once again,
the old positions are interpreted as texture coordinates for a lookup in D.
The domain is rasterized by drawing the entire mesh.

The third solution implements a forward advection on a per-vertex ba-
sis [19]. This technique differs from the previous one in that vertex coordi-
nates are changed instead of the texture coordinates, i.e., a forward Euler
integration r + At u(r,t,) yields the vertex coordinates for a distorted tri-
angle mesh. The results differ from backward integration because the Euler
method is not symmetric with respect to the evolution of time. Never-
theless, first order forward and backward integration are both first order
approximations of the true solutions, and forward mapping is an acceptable
approximation to the advection in (15).

In all three implementations, the texture lookup with shifted texture
coordinates makes use of bilinear interpolation. An interpolation scheme is
required because pathline integration usually results in texture coordinates
that do not have a one-to-one correspondence to the texels. The artificial
smearing-out by bilinear interpolation does not invalidate the final images
because their effects are continuously blended out by compositing according
to (15).

This compositing operation can be achieved by a two-pass rendering [19].
The first pass writes the result of the above advection to the framebuffer.
In the second pass, texture I is blended into the framebuffer by using «
blending with weights and (1—«), respectively. Alternatively, the advected
texture D and I can be combined by multi-texturing within a fragment
program. Finally, the framebuffer is saved in a texture to obtain the input
for the subsequent iteration. In addition to noise-based visualization, IBFV
emulates dye advection by interactively drawing additional dye sources into

Flow Textures 21

the framebuffer during each rendering step.

LEA
Lagrangian-Eulerian advection is based on the recurrence relation (13), lead-
ing to

Dy(r) = (1 —a)Dp_1(r) + al,—1(r — Atu(r,t,)), (16)

where I is computed from the property of the particle at the previous time
step. When compared to IBFV, the roles of textures D and I are exchanged
with respect to advection. A GPU-based algorithm [11, 21] implements
a per-fragment advection of I analogously to the fragment-based backward
mapping for D in the case of IBFV. However, since no a blending is imposed
onto the transported noise texture I, a bilinear interpolation would cause an
unacceptable smearing and a fast loss of both contrast and high frequency.
Therefore, a nearest-neighbor sampling is employed during the backward
integration step. Unfortunately, a direct implementation of nearest-neighbor
sampling would not permit subtexel motion of particles because a texel is
virtually re-positioned to the center of the respective cell after each iteration,
i.e., small magnitudes of the velocity field would result in an erroneously
still image [10]. The Lagrangian aspect of LEA makes possible subtexel
motion: in addition to noise values, 2D coordinates of particles are stored in
a texture; these coordinates are also updated during the particle integration
and allow particles to eventually “jump” across texel boundaries even for
small velocities. Additional discussions concerning numerical accuracy on
GPUs can be found in [21].

Similarly to IBFV, textures D and [are combined by an a blending
operation in the framebuffer or fragment program, and the framebuffer is
saved in a texture to obtain the input for the subsequent iteration. Dye
advection is included by a separate process that is based on per-fragment
advection with bilinear interpolation. The final image is constructed from
advected noise and dye textures by blending.

Postprocessing

The results of IBFV and LEA can be improved by postprocessing. Since
both techniques apply a summation of different noise textures by blending,
image contrast is reduced. Postprocessing by histogram equalization [19] or
high-pass filtering [16] could be applied to increase contrast. Aliasing ar-
tifacts occur in LEA when the maximum texture displacement is excessive
(see Section 3.3). These artifacts can be avoided by imposing LIC as a post-
processing filter [10]. As specifically designed for dye advection, artificial
blurring caused by bilinear interpolation can be reduced by applying a filter

22 Erlebacher, Jobard, Weiskopf

that steepens the fuzzy profile at the boundary of the dye, i.e., a non-linear
mapping of the unfiltered gray-scale values [10]. Finally, velocity masking
can be used to change the intensity or opacity depending on the magni-
tude of the underlying velocity field [10, 21]. In this way, important regions
with high velocities are emphasized. Note that, with the exception of veloc-
ity masking [21], GPU-based implementations of the above postprocessing
methods have not yet been reported in the literature.

5 Conclusions

We have presented the leading flow texture techniques within a single frame-
work, first from a physical perspective, based on a space-time domain filled
with a dense collection of particle trajectories. This was followed by a for-
mulation that explains how to derive the visualization techniques based on
properly chosen convolutions within the volume. We feel that flow texture
algorithms are well understood in 2D planar flows, although some research
remains to be done for flows on 2D curved manifolds. Flow texture algo-
rithms in 3D remain a formidable challenge. Straightforward extensions to
2D algorithms are prohibitively expensive. The display of dense 3D data
sets introduces several perceptual issues such as spatio-temporal coherence,
depth perception, and orientation, that remain largely unsolved. Mecha-
nisms for user interaction and navigation remain in their infancy. The holy
grail of 3D flow texture algorithms is to develop a real-time system to display
high quality dense representations with an interactively changing region of
interest.

6 Acknowledgements

The first author thanks the National Science Foundation for support under
grant NSF-0083792. The second author acknowledges support from Lan-
desstiftung Baden-Wiirttemberg.

References

[1] DirectX. http://www.microsoft.com/directx.

[2] OpenGL. http://www.opengl.org.

Flow Textures 23

[3]

[10]

[11]

J. Becker and M. Rumpf. Visualization of time-dependent velocity
fields by texture transport. In Visualization in Scientific Computing
’98, pages 91-102, 1998.

R. Blake and S.-H. Lee. Temporal structure in the input to vision can
promote spatial grouping. In BMCV 2000, pages 635-653. Springer-
Verlag, Berlin-Heidelberg, 2000.

B. Cabral and L. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of ACM SIGGRAPH 93, pages 263-272,
1993.

W. C. de Leeuw and R. van Liere. Spotting structure in complex time
dependent flows. In Scientific Visualization — Dagstuhl '97. IEEE Com-
puter Society Press, 1997.

A. S. Glassner. Principles of Digital Image Synthesis. Morgan Kauf-
man, 1995.

J. Grant, G. Erlebacher, and J. J. O’Brien. Case study: Visualization
of thermoclines in the ocean using Lagrangian-Eulerian time surfaces.
In IEEFE Visualization '02, pages 529-532, 2002.

W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Applications
of pixel textures in visualization and realistic image synthesis. In ACM
Symposium on Interactive 8D Graphics, pages 127-134, 1999.

B. Jobard, G. Erlebacher, and M. Hussaini. Lagrangian-Eulerian ad-
vection for unsteady flow visualization. IEFEE Transactions on Visual-
ization and Computer Graphics, 8(3):211-222, 2002.

B. Jobard, G. Erlebacher, and M. Y. Hussaini. Tiled hardware-
accelerated texture advection for unsteady flow visualization. In Pro-
ceedings of Graphicon 2000, pages 189-196, 2000.

M.-H. Kiu and D. C. Banks. Multi-frequency noise for LIC. In Visual-
1zation 96, pages 121-126, 1996.

Z. Liu and R. Moorhead. AUFLIC - an accelerated algorithm for un-
steady flow line integral convolution. In FG / IEEE TCVG Symposium
on Visualization 02, pages 43-52, 2002.

N. Max and B. Becker. Flow visualization using moving textures.
In Proceedings of the ICASE/LaRC Symposium on Visualizing Time-
Varying Data, pages 7T7-87, 1995.

24

[15]

[16]

Erlebacher, Jobard, Weiskopf

H.-W. Shen, C. R. Johnson, and K.-L. Ma. Visualizing vector fields
using line integral convolution and dye advection. In 1996 Volume
Visualization Symposium, pages 63—70, 1996.

H.-W. Shen and D. L. Kao. A new line integral convolution algorithm
for visualizing time-varying flow fields. IEEE Transactions on Visual-
ization and Computer Graphics, 4(2):98-108, 1998.

A. Sundquist. Dynamic line integral convolution for visualizing stream-
line evolution. IEEE Transactions on Visualization and Computer
Graphics, 2003.

J. J. van Wijk. Spot noise — texture synthesis for data visualization.
Computer Graphics (Proceedings of ACM SIGGRAPH 91), 25:309-318,
July 1991.

J. J. van Wijk. Image based flow visualization. ACM Transactions on
Graphics, 21(3):745-754, 2002.

R. Wegenkittl, Groller, and W. Purgathofer. Animating flow fields:
Rendering of oriented line integral convolution. In Computer Animation
'97, pages 1521, 1997.

D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware-
accelerated Lagrangian-Eulerian texture advection for 2D flow visual-
ization. In Vision, Modeling, and Visualization VMV ’02 Conference,
pages 439-446, 2002.

