Visualization and Feature Extraction: A global View

Gordon Erlebacher Department of Mathematics

Scientific Visualization

- Extract from large datasets more meaningful components (called *data extracts*)
 - Isosurface, streamlines, streaklines, vector field topology, vortex tubes, cracks, fault lines, etc.
- Ionic fields, force topology, iconic representation of molecular structure, etc.
 Render this data with comprehension in mind, as opposed to visual realism

Topics of current interest in visualization community

- Data compression
- Feature-preserving data compression
- Temporal compression
- Automatic feature extraction
- Surface decimation (coarsening of data)
- Parameterization of complex surfaces

My Activities

Scientific Visualization
Visualization of vector fields
Feature extraction
Real time visualization
Web-based visualization

Other Activities

 Face recognition
 Applications of geometric algebra

Problem

Proliferation of very large data sets Size of datasets is growing exponentially Massively parallel computers FSU: 512 processors, 2.25 Teraflops, 30%/peak Earth Simulator (Japan), 60 Teraflops 70%/peak Largest simulations: 2000x2000x2000 - Data generated by satellites: > 1 Terabyte/day

Problem

- High resolution simulations and new data acquisition technologies (In SAR) have created the a veritable data deluge (a data tsunami).
- There is an urgent need to scan through the heaps of data and extract out relevant features (plumes, faults, networks, rivers)
- Feature extraction goes hand in hand in this datamining and visualization ventures.
 Tools : wavelets, clustering etc.
- use second-generation wavelets to extract coherent features from 3-D mantle convection generated via numerical simulation

Fault Extraction via Beamlets

Data Deluge

Image from Regenauer & Yuen 2002

Ice ridges and grooves

Microstructural image

of mylonitc shear zone

on Europa

Feature extraction via wavelets

Thermal Convection

Physical Problem

 \bullet T = deviation from reference state • *p* is pressure in excess of hydrostatic $\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T = \nabla \cdot \left(\kappa \left(\mathbf{x}\right) \nabla T\right)$ Velocity time scale set by $\nabla^2 \mathbf{u} - \nabla p - RaTe_z = 0$ viscosity $Ra = \frac{\alpha g \Delta T d^3}{\upsilon \kappa_{ref}}$ **Rayleigh number** (hermal Reynolds number)

Challenges

 Large datasets Time-dependent flow Strong nonlinearities Phenomena of interest occupies small fraction of domain Laminar to turbulent transition (of the thermal field) as the Ra increases

Second Generation Wavelets Advantages

Operate on non-uniform meshes

- Curvilinear grids handled by tensor product
- Operate on manifolds generated via subdivision methods

There is a 1-1 identification between 2nd generation wavelets and points in physical space
 Useful for numerical methods of the "collocation" type

Multiscale Physics

 $Ra = 10^{8}$

Temperature

0

 $Ra = 10^{9}$

Temperature

Volume rendering

Complex structures

Plumes get thinner at higher Ra

How do you quantify these structures

How to compute color maps automatically?

Mantle Convection (simulations by F. Dubuffet and D. Yuen, U. Minnesota) Grid: 500³ Ra=10¹⁰

0.5 0.4 0.3

0.1

0.1

0.2

0

n

Data Reduction via Wavelet Thresholding

Manipulate data from anywhere at anytime, via the web

$Ra = 10^8$, Grid: 401³

Phase Diagrams

 Phases are well known in thermodynamics, e.g., pressure versus specific volume generates three phases (for water)

- Water

- Ice
- Vapor

This diagram has a triple point.

 More generally, diagrams in more complex systems might look like (in 2D): ...

Phase Diagrams

Thermodynamic variables p, T, a, b, c, ...
Define a thermodynamic function

- Phi(p,T,a,b,c,...) = integer

Cost to evaluate phi(...) is very expensive.

Therefore: must minimize the number of evaluations.

Phase diagram

Phase Diagram Extraction Vasilyev, Yuen

Based on secondary wavelets

Challenge

How to visualize phase diagrams in 3D, 4D and 5D space?
How to understand the structure of the phases?

Future of Visualization

Visualization is/has become multidisciplinary

- Successful visualization system must address
 I/O
 - Maintainability
 - Flexibility (via plugins for example)
 - Accessibility (low cost and easy to use/install)
 - Robust
 - Standardization
- The above features are not consistent with each other

Visualization Ubiquity

Collaboration through visualization

- Office walls become visualization displays (E-Ink: thin, pliable medium capable of electronic encoding)
- Exchange of visual data becomes as ubiquitous as exchange of text documents in 2001