
Linear Regression
A few Problems

Thursday, March 7, 13

Plotting two datasets

• Often, one wishes to overlay two line plots
over each other

• The range of the x and y variables might
not be the same

Thursday, March 7, 13

range of x1

> x1 = seq(-3,2,.1)
> x2 = seq(-1,3,.1)
> y1 = dnorm(x1,mean=-.5)
> y2 = dnorm(x2,mean=.5,sd=2)

plot(x1,y1)
points(x2,y2,type=’l’,col=‘red’)

-3 -2 -1 0 1 2

0.
1

0.
2

0.
3

0.
4

x1

y1

> xrg = range(x1,x2)
> plot(x1,y1,xlim=xrg)
> points(x2,y2,type='l',col='red')

-3 -2 -1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

x1

y1

all the x values are shown

Only the x values from x1 are shown

Thursday, March 7, 13

Income vs Happiness

• Use the file happiness1000.RData

• Assume a linear model predicts happiness from income, and that a
sample of 1000 participants in an experiment is contained in the file

• Plot the regression line that best fits the data

• Overlay this line with the scatter data
(these two plots can be drawn in any order that suits you)

• What is the Pearson correlation coefficient between income and
happiness

• What is the equation of the best line fit?

• What is the sum of residual squares?

Thursday, March 7, 13

pause after each complete plot
#(after several plots if mfrow is used)

par(ask=T)

Thursday, March 7, 13

Pause execution

pause <- function(msg="") {

 cat("Return...[",msg,"]","\n")

 readline()

}

Thursday, March 7, 13

read file, space-delimited

df = read.table("happiness1000.RData");

check that data is read in properly

head(df)

check the header labels

colnames(df)

Thursday, March 7, 13

compute linear model

m = lm(df$happiness ~ df$income)

why not df$income ~ df$happiness?

plot the data

plot(df$income, df$happiness)

abline(m, col='red') # overlay regression line

Thursday, March 7, 13

correlation coefficient

r = cor(df$income, df$happiness)

cat("correlation coefficient: ", r, "\n")

Thursday, March 7, 13

what is slope and intercept?

coefs = m$coefficients

print(coefs)

pause("after coefs")

intercept = coefs[1]

slope = coefs[2]

cat("slope= ", slope, "\n")

cat("intercept= ", intercept, "\n")

pause("after slope/intercept")

Also provided by
 print(m) # but must be transcribed manually

Thursday, March 7, 13

sum of residual squares

residual = (model fit) - (measured data)

method 1

pause("residuals: method 1")

y = df$happiness

x = df$income

model = intercept + slope * x

residuals = (model-y)^2

sum.res = sum(residuals)

cat("sum of residuals: ", sum.res, "\n")

Thursday, March 7, 13

pause("residuals: method 2")

method 2

sum.res = sum(m$residuals^2)

print(sum.res)

cat("sum(m$residuals^2)= ", sum.res, "\n")

Thursday, March 7, 13

Repeat with different
data

• Repeat the previous experiment using the file
happiness10.RData

• Use the regression line to estimate the happiness at
an income level of 37, 48, 52, and 56.

• Repeat the above but impose that the line go
through (zero happiness, zero income). Draw the
scattergram and best line fit on the same plot.What
is the correlation between income and happiness in
this case? Is it lower or higher than the previous
value? Why?

Thursday, March 7, 13

what is slope and intercept?

coefs = m$coefficients

print(coefs)

pause("after coefs")

intercept = coefs[1]

slope = coefs[2]

cat("slope= ", slope, "\n")

cat("intercept= ", intercept, "\n")

pause("after slope/intercept")

sum of residual squares

residual = (model fit) - (measured data)

method 1

pause("residuals: method 1")

y = df$happiness

x = df$income

model = intercept + slope * x

residuals = (model-y)^2

sum.res = sum(residuals)

cat("sum of residuals: ", sum.res, "\n")

pause("residuals: method 2")

method 2

sum.res = sum(m$residuals^2)

print(sum.res)

cat("sum(m$residuals^2)= ", sum.res, "\n")

pause after each complete plot (after several plots if mfrow is used)

par(ask=T)

#--------------------------

pause <- function(msg="") {

 cat("Return...[",msg,"]","\n")

 readline()

}

#--------------------------

read file, space-delimited

df = read.table("happiness1000.RData");

compute linear model

m = lm(df$happiness ~ df$income)

why not df$income ~ df$happiness?

plot the data

plot(df$income, df$happiness)

abline(m, col='red') # overlay regression line

correlation coefficient

r = cor(df$income, df$happiness)

cat("correlation coefficient: ", r, "\n")

Thursday, March 7, 13

Repeat previous code
Replace the file “happiness10.RData” by
the file “happiness10000.RData”

Use the regression line to estimate the
happiness at an income level of 37, 48, 52,
and 56.

Thursday, March 7, 13

Model estimates

> values = c(37,48,52,56)

> predicted = intercept + values*slope

Thursday, March 7, 13

Correlation
The correlation is based on the scattered data,
not on the regression line.

Therefore it is the same as when the regression
does not contain "+0"

Thursday, March 7, 13

Both datasets

• Superimpose a scattergram of the data
from happiness1000.RData in red, and a
scattergram of the data from
happiness10.RData in blue (make the blue
symbols thicker and larger)

Thursday, March 7, 13

0 5 10 15

0
20

40
60

80
10
0

df1000$happiness

df
10
00
$i
nc
om
e

read file, space-delimited

df10 = read.table("happiness10.RData");

df1000 = read.table("happiness1000.RData");

overlay scattergrams

plot(df1000$happiness, df1000$income,
col='red')

points(df10$happiness, df10$income, col='blue',
cex=2, lw=3)

~

Thursday, March 7, 13

Create a function

• Create a function to solve the problem with
one file (the function should take the file name
as argument)

- draw the scattergram + the regression line

- print out the Pearson correlation coefficient

- return the “linear model”

• Apply the function to each of the input files
(with 10 and 1000 points)

Thursday, March 7, 13

regress_problem1_function.r

problem1 = function(file)
{
 # read file, space-delimited
 df = read.table(file)

}

Thursday, March 7, 13

Hints

• Use model = lm(x,y) to get the linear
model

• Use summary(model) to get significance
levels (p-value) for the slope and intercept

Thursday, March 7, 13

Maze_UniversityOfIllinois.csv

• I am interested in whether the women execute the maze differently
than men (in terms of errors and timing)

- Plot the scattergram of times for women in trial 1 against their
time in trial 2. Do the same for men (superimpose on original plot
in a different color). Create an additional plot between trials 1 and
15. What can one conclude? Create a final plot between trials 14
and 15.

• Plot the average time for women as a function of the average time for
men (using all the trial data). What is the best linear fit to the data?

• Test whether Null Hypothesis (the mean time for ladies on a given
trial is the same as the mean time for men (for each of the 15 trials).
Use a function to ease the task.

Thursday, March 7, 13

Approach

• Similar to the previous problem

• Read data, keep only relevant columns
(timings and gender)

• Perform analysis (t.test, shapiro.test, plot,
hist, etc.)

Thursday, March 7, 13

read data
comma-delimited

df = read.csv("Maze_UniversityOfIllinois.csv")

nbcols = ncol(df)

remove.cols = c(2,seq(7,nbcols,2))

df = df[,remove.cols]

~

Thursday, March 7, 13

extract subsets
df.women = df[df$Gender == 'F',]
df.men = df[df$Gender == 'M',]

scattergrams between 1st and 2nd trials
plot(T1T ~ T2T, data=df.women)
points(T1T ~ T2T, data=df.men, col='red')

#correlations
cor1.w = cor(df.women$T1T, df.women$T2T)
cor1.m = cor(df.men$T1T, df.men$T2T)
cat("correlation [1-2] (m/w): ", cor1.m, cor1.w, "\n")

Thursday, March 7, 13

cat revisited
Create the following script and run it in RStudio:

cat("my name is ")
cat("gordon")

cat("my name is\n")
cat("gordon\n")

my name is gordonmy name is
gordon

no carriage return

carriage return

Arguments to cat:

strings, numbers, vectors
(nothing else!!)

Thursday, March 7, 13

Plot the average time for women as a function of the average
time for men (using all the trial data). What is the best linear fit
to the data?

df.w = df.women[,-1]
df.m = df.men[,-1]

m.w = colMeans(df.w)
m.m = colMeans(df.m)

mo = lm(m.m ~ m.w)
plot(m.w, m.m)
abline(mo, col='red') 10 15 20 25 30

10
15

20
25

m.w

m
.m

What is blue line?

Thursday, March 7, 13

One sees that the women run consistently
#slower than the men.

superimpose a plot that assumes that
#women and men run at the same speed.

lines(m.w, m.w, col='blue')

10 15 20 25 30

10
15

20
25

m.w

m
.m

Thursday, March 7, 13

Better plots

10 15 20 25 30

10
15

20
25

women

m
en

df.w = df.women[,-1]

df.m = df.men[,-1]

m.w = colMeans(df.w)

m.m = colMeans(df.m)

mo = lm(m.m ~ m.w)

plot(m.w, m.m, lwd=2, xlab='women',
ylab='men', cex=2, cex.lab=2)

abline(mo, col='red', lwd=2)

lines(m.w, m.w, col='blue', lwd = 3)

Thursday, March 7, 13

Test whether Null Hypothesis (the mean time for ladies on a
given trial is the same as the mean time for men (for each of
the 15 trials). Use a function to ease the task.

> # test for trial one

> t = t.test(df.m[,1], df.w[,1])

> print(t)

	

 Welch Two Sample t-test

data: df.m[, 1] and df.w[, 1]

t = -1.4267, df = 78.582, p-value = 0.1576

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 -10.576580 1.745424

sample estimates:

mean of x mean of y

 25.46335 29.87893

How to extract
p-value for use
inside an R-program?

There is insufficient evidence
to reject the null hypothesis.
The two means are within the
95 percent confidence interval
of mean(df.m)-mean(df.w)

Thursday, March 7, 13

names(...)
t = t.test(df.m[,1], df.w[,1])
print(t)

> names(t)
[1] "statistic" "parameter" "p.value" "conf.int"
"estimate"
[6] "null.value" "alternative" "method" "data.name"

> t$p.value

[1] 0.1576363

Thursday, March 7, 13

Process all trials

Thursday, March 7, 13

null.hyp = function(trial)

{

 t = t.test(df.m[,trial], df.w[,trial])

 p.value = t$p.value

 cat("trial: ", trial, " p: ", p.value, "\n")

}

Create a function to process a single trial

Thursday, March 7, 13

trial: 1 p: 0.1576363

trial: 2 p: 0.4604797

trial: 3 p: 0.1949634

trial: 4 p: 0.03571727

trial: 5 p: 0.2903947

trial: 6 p: 0.1052619

trial: 7 p: 0.06423717

trial: 8 p: 0.4662616

trial: 9 p: 0.255831

trial: 10 p: 0.01520369

trial: 11 p: 0.00841396

trial: 12 p: 0.01000343

trial: 13 p: 0.1220231

trial: 14 p: 0.02106974

trial: 15 p: 0.04624973

null.hyp(1)

null.hyp(2)

null.hyp(3)

null.hyp(4)

null.hyp(5)

null.hyp(6)

null.hyp(7)

null.hyp(8)

null.hyp(9)

null.hyp(10)

null.hyp(11)

null.hyp(12)

null.hyp(13)

null.hyp(14)

null.hyp(15)

Results for all 15 trials

Lots of typing!

Thursday, March 7, 13

Better way: loops

for(i in 1:15)

{

 null.hyp(i)

}

trial: 1 p: 0.1576363

trial: 2 p: 0.4604797

trial: 3 p: 0.1949634

trial: 4 p: 0.03571727

trial: 5 p: 0.2903947

trial: 6 p: 0.1052619

trial: 7 p: 0.06423717

trial: 8 p: 0.4662616

trial: 9 p: 0.255831

trial: 10 p: 0.01520369

trial: 11 p: 0.00841396

trial: 12 p: 0.01000343

trial: 13 p: 0.1220231

trial: 14 p: 0.02106974

trial: 15 p: 0.04624973

Thursday, March 7, 13

More on Loops

http://faculty.washington.edu/kenrice/sisg/SISG-08-05.pdf

?Control
 if(cond) expr

 if(cond) cons.expr else alt.expr

 for(var in seq) expr

 while(cond) expr
 repeat expr

 break
 next

Thursday, March 7, 13

http://faculty.washington.edu/kenrice/sisg/SISG-08-05.pdf
http://faculty.washington.edu/kenrice/sisg/SISG-08-05.pdf

?shapiro.test

Usage:

 shapiro.test(x)

Arguments:

 x: a numeric vector of data values. Missing values are allowed,

 but the number of non-missing values must be between 3 and

 5000.

Thursday, March 7, 13

?fligner.test
Description:

 Performs a Fligner-Killeen (median) test of the null that the

 variances in each of the groups (samples) are the same.

Usage:

 fligner.test(x, ...)

 ## Default S3 method:

 fligner.test(x, g, ...)

 ## S3 method for class 'formula'

 fligner.test(formula, data, subset, na.action, ...)

Read the section
on arguments

Thursday, March 7, 13

Extending data.frames

• Add the times of all 15 trials into a new
column

total.time = df$T1T + df$T2T + ... + df$T15T

(lots of typing) or

total.time = with(df, T1T+T2T+T3T ... + T15T)

 or

Thursday, March 7, 13

Sum of columns
> rowSums(df[,2:15])

 [1] 125.033 222.289 140.669 163.037 128.720 141.024 268.192 245.062 216.080 144.048 142.116

[12] 146.593 157.811 222.791 261.429 148.557 210.809 242.816 117.284 114.081 238.961 136.553

[23] 138.195 261.880 122.749 245.590 213.109 215.717 169.264 218.250 153.553 108.192 200.443

[34] 156.175 221.357 90.746 143.081 129.640 221.024 159.298 134.493 147.443 288.063 145.888

[45] 166.870 122.924 183.013 201.660 122.028 90.449 145.182 140.503 160.800 137.897 149.989

[56] 135.924 218.656 202.938 176.951 88.618 179.077 152.456 214.861 136.006 95.445 130.432

[67] 147.517 167.465 146.596 124.509 123.283 128.160 194.344 106.175 174.925 177.042 150.245

[78] 203.624 152.374 125.998 183.770 173.209 300.752 151.765 253.540 107.582 101.797 115.294

[89] 200.958 197.578 173.923 370.104

apply(df[,2:15],1,sum) # same result

Thursday, March 7, 13

> colSums(df[,2:15])

 T1T T2T T3T T4T T5T T6T T7T T8T
T9T T10T

2536.914 1642.632 1302.221 1055.827 1017.998 995.965
957.084 890.503 899.479 865.211

 T11T T12T T13T T14T

 903.947 846.283 838.332 870.917

Every column is summed up
(NOT WHAT WE WANT!!)

Thursday, March 7, 13

Add new column to
data.frame

col = apply(sum,1,df[,2:15])
df = data.frame(df, total.time=col)

Thursday, March 7, 13

List variables in
workspace

> ls()

 [1] "df" "grades" "grades2010"
"grades2011" "grades2012" "high"

 [7] "low" "m" "x" "X"
"xx" "y"

[13] "y1" "y2"

RStudio

Thursday, March 7, 13

