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What we have done

• R basics: 

- vectors, data frames, 

- factors, extraction, 

- logical expressions, scripts, read and 
writing data files

- histograms, plotting
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Functions used
• c(), data.frame(), as.factor()

• seq(), extraction functions ([ ] and [ , ])

• read.csv, read.table (there is also write.csv and 
write.table)

• mean(), var(), rnorm()

• hist(), plot()

• source()

• .... and some others ...
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What is next? 
• Sample versus population through R

• Discussion of distributions, and use of 
   rnorm, dnorm, qnorm, pnorm
and similar functions for other distributions

• Hypothesis testing

- use of t.test for H0/H1 hypothesis

- use of shapiro.test for normality test

- test for normality via plotting
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Population

A statistical population is a set of 
entities concerning which 
statistical inferences are to be 
drawn...
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Population

Students in ISC4244C in the fall of 2012.

Males residing within the city limits of 
Tallahassee.

Floridians with an income greater than $100,000.

Whooping cranes (n~437 in North America).

19th Century British petty criminals.

Good Cambridge men.
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Population

Consider the population of all adults 
between 30 and 50.

We are interested in the average height of 
this population.

We cannot practically measure everyone's 
height. What to do?
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Population vs Sample
• Consider the population of all adults between 30 and 50 

• We are interested in the average height of this population

• Since we cannot ask everybody their height, we identify a sample from 
the entire population, and compute the average height of this sample

• The average sample height is clearly an approximation to the average 
height of the population

- Take a different sample, and one gets a different sample average 
height

- The average sample height changes from sample to sample. 

- The average sample variance is also a function of the particular 
sample
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Population
All adults in USA

Sample 1

Sample 2

Sample 3
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Population vs Sample

• Population has N individuals

• A sample has n individuals

- n << N

• 300 million people in the USA

- perhaps 100 million adults who can vote

• Pick a sample of 5,000 individuals

- 5,000 << 100 million  
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Work with Variables
A variable is the quantity or quality of 
members of the population about which we 
are interested. e.g., sex, opinion, height, 
number of employers held in the past ten 
years.

To be clear, we talk about individual variates, 
which are the observed values of variables, 
e.g., female, strongly agree, 1.7m, 3.
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Type of Variables
Attributes – male vs. female, criminal vs. Cambridge 
student  (also called a factor or category)

Ranked variables – strongly disagree, disagree, neutral, 
agree, strongly agree (ordered factor)

Measurement variables (numerics, with 
decimal))

Discontinuous (meristic) – number of employers 
within the past ten years (integers)

Continuous (metric) – height  (can take any value)
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Random Variable

• Let the variable X be a random pick from the 
population 

• X is called a random variable

- its value is a random pick from the population 
of all adults with age between 30 and 50

• A variable either has a definite value or is a 
random pick from some population 

• Let us return to our experiment
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Create a population in R

• Assume that the distribution of heights in 
our population is a normal distribution with   
mean μ and variance σ2

• We also write  (see your course on statistics)

-    μ = E(X)

-    σ2 = var(X)

• We say that X ∈ N(μ, σ2)
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Normal Distribution

σ

μ=0
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> par(ps=18, lwd=3)
> plot(dnorm, from=-4, to= 4)

N(0,1)
σ = 1

μ=0

ps: point size
lwd: line width
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N(5,2)

> par(lwd=3)
> x = seq(-4,4,.1) + 5
> y = dnorm(x+5, mean=5, 
sd=2)
> plot(x,y, type=’l’)
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Alternative

> par(lwd=3)
> plot(dnorm)
# plots dnorm at a sequence 
# of points chosen by R
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μ=5

dnorm(2.3, mean=5)
returns the value of the 
normal distribution when 
x = 2.3
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Multiple lines on same plot
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> x = seq(-4,4,.1)
> y1 = dnorm(x,sd=1)
> y2 = dnorm(x,sd=2)
> y3 = dnorm(x,sd=3)
> plot(x,y1,type='l')
> lines(x,y2,type='l',col='blue')
> lines(x,y3,col='orange')

N(0,3)

N(0,2)

N(0,1)

The plotting commands do 
not include the labels in 
the plot
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Random Variable
• Assume that the height of the adult population (age 30-50) satisfy a 

normal distribution 

- this is an approximation since a normal distribution is continuous 

- only as the population file becomes infinite can a normal population 
actually hold

• Assume 

- a mean=5’7” = 67” (inches)

- a standard deviation=12” (inches)

• We need to choose a random adult from this population

-    rnorm(1, mean=67, sd=12)

• Pick 100 elements from this population

-    rnorm(100, mean=67, sd=12)
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Theoretical Population
An imagined population about which everything 
is known.

In particular, we know or assert the parameters 
that describe its statistical distribution.

These parameters are usually designated by 
greek letters to distinguish them from 
estimates we will make later on, e.g.,

μ=E(x)	

 	

 σ2=var(X)
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Functions related to the 
normal distribution

dnorm(x, mean = 0, sd = 1, ...)

pnorm(q, mean = 0, sd = 1, ...)

qnorm(p, mean = 0, sd = 1, ...)

rnorm(n, mean = 0, sd = 1)

We will discuss these over the next few lessons

Density

Cumulative

Quantile

Random value from
a normal distribution
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Functions related to the 
uniform distribution

dunif(x, mean = 0, sd = 1, ...)

punif(q, mean = 0, sd = 1, ...)

qunif(p, mean = 0, sd = 1, ...)

runif(n, mean = 0, sd = 1)

We will discuss these over the next few lessons

Density

Cumulative

Quantile

Random value from
a normal distribution
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A Random Sample

A random sample is a presumed 
representative subset of a population that 
will be used to draw conclusions about the 
parent population.
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Sample

• We now have a population 

- we replace millions of adults by a distribution 
that assumes an infinity of adults (much much 
greater than the sample size)

• Now consider a sample of size 1000
    > sampl = rnorm(1000, mean=67, sd=12)

• Average height in this sample:
    > avg.height = mean(sampl)

Thursday, February 14, 13



Two Samples
> sampl = rnorm(1000, mean=67, sd=12)
> mean(sampl)
[1] 67.1902
> sampl = rnorm(1000, mean=57, sd=12)
> mean(sampl)
[1] 56.63856
> sampl = rnorm(1000, mean=67, sd=12)
> mean(sampl)
[1] 66.86192

Each sample has its own mean
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Sample Mean
• Each sample has its own mean

• Assume we take 10,000 samples (very large 
number) and we generate 10,000 different means. 
What is the distribution of these means? 

• The theoretical distribution is close to
   N(67, 12/sqrt(10000)) = N(67, 0.12)

• We now do this experiment in R and plot the 
results 

- assume a sample size of 1000, and 100 samples
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Programming without 
conditionals and loops

Most programming languages allow expressions such as

while (n < 10) {
    do ... something ...
    n = n + 1
}

or

if (n < 10) {
   do ... something ...
}

I would like to 
avoid these 
constructs if possible
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Use of apply(...)
Description:

     Returns a vector or array or list of values obtained by applying a
     function to margins of an array or matrix.

Usage:            apply(X, MARGIN, FUN, ...)
     
Arguments:

       X: an array, including a matrix.

  MARGIN: a vector giving the subscripts which the function will be
          applied over. E.g., for a matrix ‘1’ indicates rows, ‘2’
          indicates columns, ‘c(1, 2)’ indicates rows and columns.
          Where ‘X’ has named dimnames, it can be a character vector
          selecting dimension names.

     FUN: the function to be applied: see ‘Details’.  In the case of
          functions like ‘+’, ‘%*%’, etc., the function name must be
          backquoted or quoted.

Thursday, February 14, 13



Apply
• First argument of apply(..) is a matrix

• The FUN argument is applied to each row 
of the matrix if MARGIN=1, and to each 
column of the matrix if MARGIN=2

Recall: a matrix is essentially a data frame where all columns are
of the same type
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Example 1
> r = matrix(c(1:12), nrow=3)
> r
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> apply(r,FUN=mean,MARGIN=1)
[1] 5.5 6.5 7.5
> apply(r,FUN=mean,MARGIN=2)
[1]  2  5  8 11

The function returns
a single for each row 
if margin=1, or one value
for each column if 
margin=2

3 rows
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Example 2
(same result as example 1)

> r = matrix(c(1:12), ncol=4)
> r
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> apply(r,FUN=mean,MARGIN=1)
[1] 5.5 6.5 7.5
> apply(r,FUN=mean,MARGIN=2)
[1]  2  5  8 11

The apply function returns
a single result for each 
row if margin=1, or one 
valuefor each column if 
margin=2

4 columns
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Example 2
> apply(r, FUN=summary, MARGIN=1)
         [,1]  [,2]  [,3]
Min.     1.00  2.00  3.00
1st Qu.  3.25  4.25  5.25
Median   5.50  6.50  7.50
Mean     5.50  6.50  7.50
3rd Qu.  7.75  8.75  9.75
Max.    10.00 11.00 12.00

> r
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

rows
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Example 3
> apply(r, FUN=summary, MARGIN=2)
        [,1] [,2] [,3] [,4]
Min.     1.0  4.0  7.0 10.0
1st Qu.  1.5  4.5  7.5 10.5
Median   2.0  5.0  8.0 11.0
Mean     2.0  5.0  8.0 11.0
3rd Qu.  2.5  5.5  8.5 11.5
Max.     3.0  6.0  9.0 12.0

> r
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

Columns
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nb.samples = 100
sample.size = 1000
all.samples = rnorm(sample.size*nb.samples,mean=67,sd=12)
mat.samples = matrix(all.samples, ncol=nb.samples)
means = apply(mat.samples, MARGIN=2, FUN=mean)
hist(means,breaks=30)

• I ran the above series of commands four times. 
• The samples are different each time. 
• Their distributions are plotted on the next slide

• using the hist(vector)
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Histogram of means
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Let us get a smoother plot
nb.samples and sample.size increase by 

factor of 10

nb.samples = 1000
sample.size = 10000
all.samples = rnorm(sample.size*nb.samples,mean=67,sd=12)
mat.samples = matrix(all.samples, ncol=nb.samples)
means = apply(mat.samples,MARGIN=2,FUN=mean)
hist(means,breaks=30)
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Histogram of means
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The distributions are closer to normal

> source("height_samples.r")
mean(means)=  67.00137 
sd(means)=  0.1159333 

> source("height_samples.r")
mean(means)=  66.99516 
sd(means)=  0.123773 
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More Generally

• In the previous example, I postulated that the 
height distribution in the US population followed a 
normal distribution

- But that may not be the case

• It so happens that whatever the distribution of the 
population, the sample means will go to a normal 
distribution as its size becomes larger and larger

- This is stated more precisely in the Central 
Limit Theorem
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• Given a sample of size n, 

- as n gets larger, the variance of the 
distribution of sample means is the 
population variance divided by n 

- with n=10000, the standard deviation of 
the previous example should go to 
    12/sqrt(10000) = 0.12

- with n=1000, 12/sqrt(1000) = 0.38 
(more spread)
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Histogram of means
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probability
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It is possible that one of the sample means 
could be very much larger than 67, 
although with very low probability

This leads to the question: 
Given a single sample of size 
(n), and its mean (m), how 
confident am I that it is a sample 
from a population with a 
specific with mean μ?
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Confidence Intervals

• Given a normal distribution N(0,1), and a 
random variable X∈N(0,1), what is the 
probability that x < 3? 

• We answer that graphically
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par(ps=18, lwd=2)
par(mfrow=c(2,2))
plot(dnorm, from=-4, to=4)
xp = seq(-4,1.5,.2)
polygon(xp,dnorm(xp), angle=45, 
    density=5)

Draw normal distribution with hatched polygon

more = c(1.5,-4);
yp = append(dnorm(xp), c(0.,0.))
xp = append(xp,c(1.5,-4))
plot(dnorm, from=-4, to=4)
polygon(c(-4,4),c(0,0))
polygon(xp,yp, angle=45, 
density=5,col='black')

Bad Good
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Create my own function

# Draw normal distribution with hatched polygon

filled.normal <- function(from=-5,to=5, mean, sd,
  hatch.from=-5, hatch.to=1.5, col='red', angle=45, density=5)  {
    xp = c(seq(hatch.from,hatch.to,(hatch.to-hatch.from)/50), c(hatch.to, hatch.from))
    yp = c(dnorm(xp)[1:(length(xp)-2)], c(0., 0.))
    plot(dnorm, from=from, to=to)
    polygon(c(from,to),c(0,0))
    # without density argument, I get filled polygon
    polygon(xp,yp, col='red', border="black")
}
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> source("hatched_function.r")
> fill.normal(hatch.from=1,hatch.to=5)
> title(main="density function N(0,1)")
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density function N(0,1)

The red area represents
the probability that 
the random variable X 
lies between 1 and 5

The probability that 
X lies between    -∞ and 
∞ is one (certainty)
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pnorm(...)

• The area under the density plot is the probability that 
X ≤ 2

• So let us ask another question: 

- find the value X* of X such that the probability 
that X ≤ X* is .95

- Use qnorm(.95) and find X* =1.644854
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filled.normal(hatch.from=-10.,hatch.to=2)

> qnorm(.95)
[1] 1.644854pnorm(2)
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qnorm()

• The probability that x < Infinity is one!!

-     qnorm(1) returns Inf
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pnorm(...)
• pnorm(x) is the opposite of qnorm()

• Given x, pnorm(2.) is the probability that 
X ≤ 2 if X is a random normal variable

> pnorm(2.)
[1] 0.9772499
> qnorm(.9772499)
[1] 2.000001
> qnorm(pnorm(2.))
[1] 2

> pnorm(qnorm(.6))
[1] 0.6

pnorm represents an area (between 
zero and one) under dnorm(x)

Given an area (between zero and 
one), qnorm returns a value of x
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pnorm(...)

• the probability that x < Infinity is obviously one!
          pnorm(Inf) is 1
          pnorm(0) is 0.5
          pnorm(0,mean=1)  returns 0.1586...
          pnorm(0,mean=5) returns 2.866...*10-7

Thursday, February 14, 13



Probability interval

• Choose a random value of X using rnorm(1)

• What is the probability that X lies between -2 
and 2? 

• Graphical solution: 

- 1) compute the probability that X < 2

- 2) compute the probability that X < -2

- subtract the second from the first
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Prob(X < 2) Prob(X < -2)

Prob(-2 < X < 2) Prob(-2 < X < 2)
             =
Prob(X  < 2) - Prob(X < -2)
             =
pnorm(2) - pnorm(-2)

which returns 0.954
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Code for plots on 
previous slide

> source(“hatched_function.r”)
> par(mfrow=c(2,2))
> filled.normal(hatch.from=-5,hatch.to=2)
> filled.normal(hatch.from=-5,hatch.to=-2)
> filled.normal(hatch.from=-2,hatch.to=2)
Content of “hatched_function.r”
filled.normal <- function(from=-5,to=5, mean, sd,
  hatch.from=-5, hatch.to=1.5, col='red', angle=45, density=null)  {
    xp = c(seq(hatch.from,hatch.to,(hatch.to-hatch.from)/50), c(hatch.to, 
hatch.from))
    yp = c(dnorm(xp)[1:(length(xp)-2)], c(0., 0.))
    plot(dnorm, from=from, to=to)
    polygon(c(from,to),c(0,0))
    # without density argument, I get filled polygon
    polygon(xp,yp, col='red', border="black",density=density)
}
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Confidence Interval
• Given a normal distribution N(0,1)

• Pick a sample with n=20 elements

-   samp = rnorm(20)

• Compute the mean of this sample

-   samp.mean = mean(samp)

• Question: 

- Given only the sample mean s and the sample size, 
what can I say about the population mean? 
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H0 and H1

• H0: the population mean is μ=s

-   s is the known sample mean

• Ha: (or H1): alternative hypothesis: 
  the population mean μ≠s
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Confidence level α

• If H0 is true, the sample mean equals 
the population mean

• What is the distribution of the sample 
mean m? 

- Answer:     m ∈ N(μ,σ2/n)

• When is H0 true? See next slide.  
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As long as m falls outside the red region (called rejection region), H0 is 
considered to be true. That happens with a probability of 95% (i.e., for 
95 samples out of 100 on average)

Each red region has an area of 0.025 (2.5 percent), for a total of 5 
percent. 

N(μ,σ2/n)

Probability distribution 
of sample means
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Variance of population

• Given a sample, we wish to know whether it 
comes from a particular population of mean μ

• We do not know the variance of this 
population

• The best we can do is estimate it.

- we base the estimate on the sample data

- we use an unbiased estimate 
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X is a random 
variable

In this case, X is the 
sample mean which 
follows N(μ,σ2/n)

N(μ,σ2/n)

Prob(a  X  b) = 1� ↵

z =

X � µ

�/
p

n

Prob(a  z�p
n

+ µ  b) = 1� ↵

C(a� z�p
n
 µ  b� z�p

n
) = 1� ↵

z-normal statistic

C(...): Confidence interval
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C(a� z�p
n
 µ  b� z�p

n
) = 1� ↵

population mean μ and 
population standard deviation σ
are constant
a and b are also constant and a function of the 
confidence level 1-α

Each sample generates a new z in N(0,1)
The confidence level C(...) is a function of the sample. 

For a large number of samples, the population mean is
within this confidence interval (1- α) percent of the time.

Usually, α=0.05, so the population mean is within the 
confidence interval 95% of the time.
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Experiment in R

• We will consider a normal population of 
mean 5 and standard deviation 2

-     (sample.size,mean=5,sd=2)
    

• We will consider a single sample of size 30:
     sample.size = 30
     sampl = rnorm(30)
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t.test

     ## Default S3 method:
     t.test(x, y = NULL,
            alternative = c("two.sided", "less", "greater"),
            mu = 0, paired = FALSE, var.equal = FALSE,
            conf.level = 0.95, ...)

x  is a vector

Performs one and two sample t-tests on vectors of data.
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sample.size = 30
mean = 5
sd = 2
sampl = rnorm(sample.size, mean=mean, sd=sd)
test1 = t.test(sampl, mu=mean)
test2 = t.test(sampl, mu=0)
print(test1)
print(test2)
names(test1)

Let us look at the output to test1
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sample.size = 30
mean = 5
sd = 2
sampl = rnorm(sample.size, mean=mean, sd=sd)
test1 = t.test(sampl, mu=mean)
print(test1)
print(names(test1))

	

 One Sample t-test

data:  sampl 
t = -0.2611, df = 29, p-value = 0.7959
alternative hypothesis: true mean is not equal to 5 
95 percent confidence interval:
 4.147606 5.659397 
sample estimates:
mean of x 
 4.903501 

[1] "statistic"   "parameter"   "p.value"     "conf.int"    "estimate"   
[6] "null.value"  "alternative" "method"      "data.name"  

Output 
from
code

R code in
single_test.r
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data:  sampl 
t = -0.2611, df = 29, p-value = 0.7959
alternative hypothesis: true mean is not equal to 5 
95 percent confidence interval:
 4.147606 5.659397 
sample estimates:
mean of x 
 4.903501 

As long as the p-value is greater than 0.05, the H0 
hypothesis is assumed to be true. 

In this example, therefore,  the true mean could be equal
to 5. The 95% confidence interval includes 5. 
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Example Problem
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Criminals v. Cambridge Men

Do criminals and Cambridge men differ in height?

Really asking is are the means of the two groups the same 
(assuming the variance is, too).

H0: the mean of the two groups is equal

H1: the means are not equal, so must differ

criminal_cambridge.RData

Use t.test(...) to compare the mean of two different samples
(which can have different sizes)
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> X = read.table("criminal_cambridge.RData")
> criminals = subset(X,source=="criminal") #or X[X$source==”criminal,]
> cambridge = subset(X,source=="cambridge")
> t.test(criminals$height.cm, cambridge$height.cm)

	

 Welch Two Sample t-test

data:  criminals$height.cm and cambridge$height.cm 
t = -36.1876, df = 1705.635, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -9.051622 -8.120879 
sample estimates:
mean of x mean of y 
 166.3014  174.8877 

Criminals v. Cambridge Men
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So,...

The average criminal is significantly shorter 
than the average Cambridge man!

Better keep an eye on those short people.
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Is this normal?

> y = rnorm(100)
> qqnorm(y)
> qqline(y)

?qqline
line through 1st and 3rd quantiles 
of normal distribution and of data
qnorm(.25) and qnorm(.75) # -.666 and .666

http://en.wikipedia.org/wiki/Q-Q_plot
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shapiro.test()
> shapiro.test(y)

	

 Shapiro-Wilk normality test

data:  y 

W = 0.9871, p-value = 0.4431

if p < 0.05, the proposed sample is not considered to 
be normal.

The y vector is considered normal
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df = 10 and 15 (very close to normal)

df=1

df=3
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Student Distributions
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N(0,1)

dt(df=...)
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Shapiro test with 
student distribution

shapiro.test(rt(100,1))

shapiro.test(rt(100,3))

shapiro.test(rt(100,5))

shapiro.test(rt(100,8))

p-value in results increase
beyond 0.05 when degrees
of freedom is slightly beyond 5
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Distribution of sample 
mean, revisited

• If the population is N(μ,σ2), a sample of size n is composed 
of n random variables, which change value for each sample

• The sum of independent normal random variables is a 
normal random variable. Therefore, the sample mean is a 
random variable with mean μ (also called expected value: 
E(sample mean) =  μ)

• Each of these random variables has s.d. σ

• The sample mean follows N(μ, σ2/n)

• HOWEVER: we do not know μ or σ
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Unbiased Variance of Sample

• Given a sample (stored as a vector of numbers), 
for example: 

-        sampl = sample(1:1000,size=100)
       stdev = sd(sample); mean = mean(sample)

-  sd(sample) is identical to
     ss = sum(sampl2-mean(sampl)2)
     s = stdev = sqrt(ss/99)

- So we work with 
   N(m, s2/n) instead of N(μ, σ2/n)
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N(m, s2)

All the X’s are random variables taken from the population.
Thus, the confidence interval is not calculated based on 

but

which follows a Student distribution t(n-1) with n-1 degrees of 
freedom

m = (X1 + X2 + · · · + Xn)/n

s2 = [(X1 �m)2 + (X2 �m)2 + · · · + (Xn �m)2]/(n� 1)

z =
m� µ

s/
p

n
z =

m� µ

�/
p

n

n degrees of freedom

n-1 degrees of freedom
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R commands for 
Student Distribution

• Normal Distribution

- rnorm, pnorm, qnorm, rnorm

• Student Distribution

- dt, pt, qt, rt

• F Distribution

- df, pf, qf, tf
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df = 10 and 15 (very close to normal)
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Large sample sizes

• As the sample size becomes larger than 10, 
one can safely replace the Student 
distribution of sample means by a normal 
distribution

• Use t.test(...) for hypothesis testing.
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Experiment in R

• We will consider a normal population of 
mean 5 and standard deviation 2

-     (sample.size,mean=5,sd=2)

• Run 1000 samples and compute confidence 
intervals for each, with 95% confidence 
interval (α = 0.05)   

• Measure (with R) the number of intervals that 
do not contain the mean μ = 5
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sample.size = 30
mean = 5
sd = 2

low.count = 0
high.count = 0
nb.samples = 1000

# Consider 1000 samples from N(5,4)
# In how many cases does the 
# confidence interval
# not contain the mean? 

for (i in 1:nb.samples) {
    sampl = rnorm(sample.size, 

              mean=mean, sd=sd)
    test1 = t.test(sampl, mu=mean)
    low = test1$conf.int[1]
    high = test1$conf.int[2]
    cat(low, high, "\n")

    if (low < 5 && high < 5) {
        low.count = low.count + 1
    }
    if (low > 5 && high > 5) {
        high.count = high.count + 1
    }
}

cat("low.count= ", low.count, "\n")
cat("high.count= ", high.count, '\n')

R code: 
monitor_confidence_intervals.r
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