
Basics of R (cont.)

Dennis E. Slice
Gordon Erlebacher

Thursday, January 16, 14

What we will cover

• Containers

• Vectors, lists

• Adding, multiplying, subtracting vectors

• Benefits of vectors

• Functions

• How to get help from the system

Thursday, January 16, 14

Briefly

• Basic type: integers, reals, strings, logicals

• Each basic type is a vector of a single
element

• Vectors: collections of objects of the same
basic type (integers, reals, logicals, strings)

• Lists: collections of objects of different type

NOW, we explain in MORE DETAIL

Thursday, January 16, 14

Container

• A container contains things

Thursday, January 16, 14

Container + 3 types of
objects

Types: cylinder, cube, cone

Thursday, January 16, 14

Container with objects
of different types

Thursday, January 16, 14

Container with objects
of same type: cubes

All cubes are of the same type
Cubes can have different sizes

The container
cannot contain
a mixture of
cubes and cones

Thursday, January 16, 14

Vector
A vector is a container that can only include
objects of the same type, in a particular order

Representation in R of the
bowl with numbers:

c(2.356, 3.14, 37.73)

Not exactly a vector since
in a bowl, the elements are
not in any particular order

Thursday, January 16, 14

Better Representation
of a vector

Rings on a stick.
The different
colors represent
different numbers

Order is important.
The first ring is purple,
The 2nd ring is red, etc.

Thursday, January 16, 14

Order

• c(2,3,4) is not the same as c(3,2,4)

Thursday, January 16, 14

Different types not Allowed

A vector cannot contain
objects of different types

Type 1:

Type 2:

Thursday, January 16, 14

Examples of vectors
Use c()

Create a vector with the three numbers 4.3, -5.2 and 6.23

Answer: c(4.3, -5.2, 6.23)

What is wrong with the vector c(5.2, “suicide”) ?

Answer: the vector contains a number and something which is not a
number. All vector elements must be of the same type

Type in RStudio: c(5.2, “suicide”)

Is there an error? What happens?

Thursday, January 16, 14

Vector Elements
Consider c(5.2, -623.23, 62.1, -6.)

Each vector is composed of elements.

The vector above has four elements.
The first element is 5.2
The second element is -623.23
The third element is 62.1
The fourth element is -6.

Thursday, January 16, 14

Special uses

• 3 and c(3) are identical

• c(3) and c(c(3)) are identical

• c(c(5),c(3),4) and c(5,3,4) are identical

Thursday, January 16, 14

Variables

• Given a vector c(2.5, 3.6, -12.)

• How can I “carry it around”?

• How do I refer to this vector?

• I make the following statement:

- the vector above has three elements

• What if there are three vectors on the above page? How
would I refer to the particular vector I am interested in?

• To do this, I must assign a label, i.e., a variable

Thursday, January 16, 14

Variables
• Consider a person

• Every person has certain characteristics:

- height, weight, eye color, etc.

• How does one refer to this person?

• Each person has a name and surname given at birth.

• Stating a person’s name is a “shortcut” to describing
that person by some other means

Thursday, January 16, 14

name“Gordon”

name = “Gordon”

Thursday, January 16, 14

Variable and Vectors

• Thus we will give names (also called labels)
to our vectors

• Given the vector c(2.5, 3.6, -12.)

• Write:
 numbers = c(2.5, 3.6, -12.)

• Using the variable numbers is equivalent to
using the vector c(2.5, 3.6, -12.)

Thursday, January 16, 14

A Variable is a shortcut
Given the vector of three grades: c(72, 86, 93)
Refer to this vector as

 grade = c(72,86,93)

The first element of this vector is 72, and can be accessed as:

 grade[1]

Alternatively, one can write

 c(72,86,93)[1]

The vector name (grade) can be interchanged with the vector
itself (c(72,86,93))

Thursday, January 16, 14

Access to vector
elements

grades[1] : 1st element

grades[2] : 2nd element

grades[3] : 3rd element

grades[4] : 4th element
 ERROR since there
 are only 3 elements

> grades = c(93,82,75)
> grades[1]
[1] 93
> grades[2]
[1] 82
> grades[3]
[1] 75
> grades[4]
[1] NA
> NA : Not Available

Thursday, January 16, 14

The [] operator

• To access elements from a vector, use [],
which is a function

• This function extracts one or more
elements from the vector to create a new
vector

Thursday, January 16, 14

The [[...]] operator

• The [[...]] operator extracts a single
element from the vector

• a = c(3,4,5)
a[[3:4]] produces an error
> a[[1:2]]
Error in a[[1:2]] : attempt to select more
than one element

Thursday, January 16, 14

Accessing multiple elements

> grade[2:3]
[1] 82 75
> grade[-2]
[1] 93 75
> grade[c(1,2,4)]
[1] 93 82 NA
> grade[c(1,3)]
[1] 93 75

[2:5] access elements 2 to 5

[3] access the 3rd element

Thursday, January 16, 14

Special case
c(2) is a vector with a single element

c(3,7) is a vector with two elements

3 is a single number

IMPORTANT

3 and c(3) are absolutely identical.

The number 3 is a shortcut for the vector c(3)

Every number is a vector with a single element!

Thursday, January 16, 14

A useful shortcut : seq()
> a = seq(2, 12, 3)

> a

[1] 2 5 8 11

seq creates vectors with numbers at regular intervals

seq() is a function, which takes three arguments

?seq gives a description of this function

seq(from, to, by)

Thursday, January 16, 14

Examples

• Create a vector with the numbers 100
through 120

• Access all the even numbers in this vector

Thursday, January 16, 14

Solution
Create a vector with the numbers 100 through 120

Answer: numbers = c(100:120) # 21 elements

Access all the even numbers from this vector

Answer: numbers[c(1,3,5,7,9,11,13,15,17,19)]

Alternatively: numbers[seq(1,21,2)] reproduces all the even numbers

Note: Given nb = c(2,3,4), the even numbers are the first and
 third elements of the vector.

21 elements represents a comment

Thursday, January 16, 14

More detail
Create a vector with the numbers 100 through 120

Answer: numbers = c(100:120) # 21 elements

seq(1,22,2) returns 1,3,5,...,17,19, 21

numbers[seq(1,22,2)] becomes

numbers[c(1,3,5,...,17,19,21)]

 which returns

c(100,102,104,...,118,120) (all the even entries)

Thursday, January 16, 14

Slight modification
Create a vector with the numbers 101 through 121

Answer: numbers = c(101:121) # 21 elements

Access all the even numbers from this vector

Answer: numbers[c(2,4,6,8,10,12,14,16,18,20)]

Alternatively: numbers[c(seq(2,20,2)]
The first element of numbers is odd, the 2nd element
 is even, as is the 4th, 6th, ... and 20th element.

Thursday, January 16, 14

Example
Consider the vector

 c(-2.,4.,6.,3.,7.3, -623., 7.23)

What is the 6th element of this vector?
What is the 8th element of this vector?
What is the 1st element of this vector?

Answer

6th element: -623. # c[6]
8th element: there are only 7 elements
1st element: -2. # c[1]

Thursday, January 16, 14

Creating Your Own
Vectors

• The function “c” combines things

• c(thing1, thing2, thing3,...)

• If “thing”s are the same basic type, then the
result is a vector of that type.

• If “thing”s are different, but still basic types,
they are all converted to the most inclusive
type, usually character strings.

• ...otherwise...to be discussed later.

Thursday, January 16, 14

Type Conversion
• Integers 3,-5,10,35,40

• floats/reals: 5.237, -53.235

- note the decimal point “.”

• strings: “grades”, “psych”

> c(5,62,-33)

[1] 5 62 -33

> c(5,"63.3",-33.5)

[1] "5" "63.3" "-33.5"

 c(5,63.3,-33)

[1] 5.0 63.3 -33.0

3 integers

one real + 2 integers one string + a real + an integer
convert to 3 reals convert to 3 strings

Thursday, January 16, 14

Lists

• Lists are similar to vectors, except:

- lists are collections of objects of different type

• li = list(3, 4, “gordon”)
 li[1] ==> ?
 li[3] ==> ?

• ve = c(3,4,”gordon”)
 ve[1] ==> ?
 ve[2] ==> ?

Thursday, January 16, 14

Adding a number to a
vector of numbers
• Given the vector (2,10,13), add 2 to each to

produce the vector (4,12,15)

> y = c(2,10,13)
> y + 2
[1] 4 12 15
>

c(2,10,13) creates a vector of numbers
c(...) is a function
2,10,13 are the arguments to this function
c() can take any number of arguments

Thursday, January 16, 14

Adding two vectors of
numbers

> y1 = c(2,10,13)
> y2 = c(14,-2,15)
> y1 + y2
[1] 16 8 28

In most cases, the vectors added to each other
should have the same number of arguments.

Stated differently, the two vectors should have the
same length:

length(y1) and length(y2) should be the same (equal to 3)

Thursday, January 16, 14

Reserved Words

TRUE
FALSE

NULL
Inf
NaN
NA
NA_integer_
NA_real_
NA_complex

_
NA_characte

r_

if
else
repeat
while
function
for
in
next
break

reserved words
cannot be used
as variable names

Thursday, January 16, 14

Variable Names

• Can't use reserved words

• Use meaningful names - “grades” not “g”

• Use dots to make variables more readable.
E.g., 	

	

 y
	

	

 	

 y.bar
	

	

 	

 y.dev.squared

• Advice: If you can't already, learn to type.

Thursday, January 16, 14

Variables and reserved words

valid expression
grades = c(2,3,5)

invalid expression
if = c(2,3,5)

if : reserved word

Thursday, January 16, 14

Answers?

• 3 + 5 = ?

• 3 + 5 + 7 = ?

• 3 + 5 + 7 * 2 = ?

Thursday, January 16, 14

Operator Precedence

1) *, /

2) +, -

• Use parentheses to specify order

3 + 5 + (7 * 2) = ?

 (3 + 5 + 7) * 2 = ?

Thursday, January 16, 14

Operator precedence

• Consider 3+5*2

• This could be interpreted as either

- (3+5)*2 or

- 3+(5*2)

• Solution: ‘*’ has higher precedence than ‘+’

- If there is a choice between executing ‘+’
and ‘*’, execute ‘*’ first.

Thursday, January 16, 14

Adding two vectors of
numbers

> y1 = c(2,10,13)
> y2 = c(14,-2,15)
> y1 + y2
[1] 16 8 28

Mean value of this set of numbers
> mean(y1+y2)
[1] 17.33333

= 1/3*(16+8+28)
is a comment line

Thursday, January 16, 14

Variance of this set of numbers
> var(y1+y2)
[1] 101.3333

var = ((16-17.333)^2+(8-17.333)^2+(28-17.333)^2)/(3-1)

> sd(y1+y2)
[1] 10.06645
std = sqrt(var)

Standard deviation of this set of
numbers

Thursday, January 16, 14

Functions

Thursday, January 16, 14

Function= list of instructions

ingredients

+

recipe

produces
 a cake!

Thursday, January 16, 14

Analogy
Ingredients = function arguments

The recipe uses the ingredients to produce a cake

The function body uses its arguments to produce a
return value

The function is a container that is a set of lines that provides
the computer with instructions, just as the recipe is a list of
lines with instructions to the cook

Thursday, January 16, 14

Function Arguments
• bake.cake = function(eggs,sugar,flour) {

 put “eggs” in bowl
 mix-in the flour
 add the sugar
 cake = bake mixture in oven
 return(cake)
}

• Function name: “cake”
Argument one: “eggs”
Argument two: “sugar”
Recipe (also called the function body)
return value

Thursday, January 16, 14

Using the cake function
> chocolate.cake = bake.cake()

 INVALID since the function requires 3 arguments

> chocolate.cake = bake.cake(“brown.eggs”,
“confectionate.sugar”, “flour”)

Thursday, January 16, 14

Functions

• c(), mean(), var(), and sd() are functions

• functions contain a set of lines that execute
commands (i.e., instructions)

• These lines are not important at this stage
(this is for the geeks!)

• Most of our analyses will be done by writing
programs that execute a series of functions

Thursday, January 16, 14

• Let us analyze a few common functions

Thursday, January 16, 14

The function c()
Use c() to create vectors

grades = c(100, 90, 70)

the vector c(100, 90, 70) has 3 arguments

Argument 1: 100
Argument 2: 90
Argument 3: 70

Arguments are separated by commas

c() takes an arbitrary number of arguments

Thursday, January 16, 14

The function c()

• c(3) has a single argument

• c(5,6,7,9) has four arguments

• c(seq(3,100,3)) has a single argument

• c() can have an arbitrary number of
arguments

Thursday, January 16, 14

How many arguments?

c(seq(3,4,5),5,list(2,3))

c(seq(5,2),3,5,c(2,3))

c(c(2,3,4))

c(c(2,3),c(4))

Thursday, January 16, 14

The function mean()
Usage:

 mean(x, ...)

 ## Default S3 method:

 mean(x, trim = 0, na.rm = FALSE, ...)

?mean

x represents a vector of values whose mean we wish
to calculate

Key point: “x represents a single argument, which is a vector”

“x” must be the first argument

... means “any number of arguments”

Thursday, January 16, 14

Mean: examples
> mean(5,6,7)

[1] 5

The result is not (5+6+7)/3 as you
might expect. Why? Because the
vector must be the first argument,
which is 5!

> mean(c(5,6,7))

[1] 6

Produces the correct result
Single argument

> v = c(5,6,7)

> mean(v)

[1] 6

The first argument is “v”, which is
a vector of 3 elements: 5, 6, and 7

Thursday, January 16, 14

trim

• mean(x, trim = 0, na.rm = FALSE, ...)

• What is the meaning of trim?

• From the help (?mean):

trim: the fraction (0 to 0.5) of observations to be trimmed from

 each end of ‘x’ before the mean is computed. Values of trim

 outside that range are taken as the nearest endpoint.

Next slide: an example

Thursday, January 16, 14

Trim
Generate a vector from 207 to 800 by increments of 7:

> v = c(207,800,7)

 [1] 207 214 221 228 235 242 249 256 263 270 277 284 291 298 305 312 319 326 333

[20] 340 347 354 361 368 375 382 389 396 403 410 417 424 431 438 445 452 459 466

[39] 473 480 487 494 501 508 515 522 529 536 543 550 557 564 571 578 585 592 599

[58] 606 613 620 627 634 641 648 655 662 669 676 683 690 697 704 711 718 725 732

[77] 739 746 753 760 767 774 781 788 795

> mean(v)

[1] 501

Thursday, January 16, 14

Trim
> w = c(1,2,3,4,5,4,3,2,1)

> mean(w)

[1] 2.777778

> mean(w, trim=0.2)

mean now has two arguments
Argument 1: w
Argument 2: 0.2, which refers to trim

 mean(x, trim = 0, na.rm = FALSE, ...)

Argument 1: x

Argument 2: trim=0

Ignore the 3rd
argument na.rm=FALSE

Thursday, January 16, 14

Trim
• Meaning of trim argument: remove from

random sequence a certain percentage of
elements from the front and back, and
compute the mean of the elements that are
left.

• Meaning of mean(x,trim=0) in the definition
of mean: if the second argument is omitted,
trim is set to zero by the computer

Unfortunately, I have not been able to get trim argument to
work as I would expect.

Thursday, January 16, 14

mean and trim
x = 1:1000

mean(x)

y = x

y[1] = 10000

mean(y,trim=.2) # incorrect answer 501.5
 # but close

mean(y[2],y[999]) # 500.5
mean(y[3],y[998]) # 550.5

Thursday, January 16, 14

NA.rm
• Consider the sequence

 grades = c(80,90,NA,70)

• the 3rd element corresponds to a student who did not
take the test

> mean(grades)

[1] NA
Arithmetic with NA returns NA

> mean(grades,na.r=T)

[1] 80

1) remove the NAs

2) compute the mean of the resulting
grades: c(80,90,70)

Thursday, January 16, 14

Calling a Function
mean(x) # trim=0, na.rm = F
mean(x,2) # trim=2, na.rm = FALSE
mean(x,2,T) # trim=2, na.rm = TRUE
	

 	

 	

 # T works for TRUE, but be careful!

mean(x, na.rm = T) # na.rm= is required

mean(x,T) # invalid

> mean(c(3,6),T)
Error in mean.default(c(3, 6), T) : 'trim' must be numeric of length one

Arguments can be used out of order by using keywords:
 na.rm=T (na.rm is a keyword)

Thursday, January 16, 14

Functions

• function_name(arg1, arg2, arg3, ...)

• Example

> mean(c(3,4,6))
[1] 4.333333

?mean
 mean(x, trim = 0, na.rm = FALSE, ...)

3 main arguments: x, trim, na.rm
Default values: 0 for trim, FALSE for na.rm

Help: use ?mean

Thursday, January 16, 14

Arguments

• Can be confusing

• ? (help) gives information on arguments to
any function

• default values (used if a value is not
specified)

• Order of arguments might be important

Thursday, January 16, 14

?getwd
 getwd()

 setwd(dir)

Arguments are simple:

 getwd(): no arguments

 setwd(..) : one argument

Thursday, January 16, 14

?dir
 dir(path = ".", pattern = NULL, all.files = FALSE,
 full.names = FALSE, recursive = FALSE,
 ignore.case = FALSE, include.dirs = FALSE)

Arguments:

 path, pattern, all.files, full.names ,recursive,
 ignore.case, include.dirs

Each argument has a default value

Thursday, January 16, 14

Example
mean and standard deviation

• Create a vector of 10 to 20 (10,12,14,...,18,20)

• Compute the mean value of this vector

• Subtract the mean from the vector

• Square the vector

• Sum all the elements of this vector

• Divide by the number of elements in this vector minus
one

• Take the square root

Thursday, January 16, 14

Create a sequence
10,12,...,18,20

> y = seq(10,20,2)
> y
[1] 10 12 14 16 18 20

seq() is a function

?seq

 seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

 length.out = NULL, along.with = NULL, ...)

> y = seq(from=10,to=20,by=2)
> y
[1] 10 12 14 16 18 20

same
as

Thursday, January 16, 14

Create a sequence
10,12,...,18,20

> y = seq(10,20,2)
> y
[1] 10 12 14 16 18 20

seq(to=20,by=2,from=10)
seq(by=2,to=20,from=10)
seq(from=10,by=2,to=20)

> y = seq(from=10,to=20,by=2)
> y
[1] 10 12 14 16 18 20

same
as

The three statements are equivalent!

Thursday, January 16, 14

Compute the mean value of
this set of numbers

> y.bar = sum(y)/length(y)
> y.bar
[1] 15
= (10+12+14+16+18+20)/6

Thursday, January 16, 14

Subtract the mean value
from each element of the

vector

> y.dev=y-y.bar
> y.dev
[1] -5 -3 -1 1 3 5

Thursday, January 16, 14

Square each element of y.dev and sum up
all the elements

> y.dev.sq = y.dev^2

> y.dev.sq
[1] 25 9 1 1 9 25

> y.dev.sq.sum = sum(y.dev.sq)

> y.dev.sq.sum
[1] 70

Thursday, January 16, 14

Divide y.dev.sq.sum by the length of the
vector minus one and take the square

root

> y.var =y.dev.sq.sum/(length(y.dev.sq)-1)
> y.var
[1] 14
> y.sd = sqrt(y.var)
> y.sd
[1] 3.741657

Thursday, January 16, 14

Collect all that we have
done

> y = seq(10,20,2)
> y.bar = sum(y)/length(y)
> y.dev=y-y.bar
> y.dev.sq = y.dev^2
> y.dev.sq.sum = sum(y.dev.sq)
> y.var =y.dev.sq.sum/(length(y)-1)
> y.sd = sqrt(y.var)
> y.sd
[1] 3.741657

Easier way
> sd(y)

[1] 3.741657>

Thursday, January 16, 14

Functions used to
compute the mean

c() : vector

sum() : sum its arguments

length() : argument is a vector; return the length of its argument

Thursday, January 16, 14

Information about sd

>?sd

Thursday, January 16, 14

Accessing Help

• Let us seek help on the function sd

• ?sd or help(sd)

• ??sd

- find all the packages that contain a
function called sd

Thursday, January 16, 14

List of commands
starting with “sum”

?sum <TAB> <Up/Down>

Thursday, January 16, 14

Help with Functions

• Consider the function read.csv()

- read data from comma-delimited file

- ?read.csv (to get help)

- ??read.csv (packages that contain read.csv)

- args(read.csv) (arguments to function)

- example(read.csv) (run some examples)

Thursday, January 16, 14

Help

• help(read.csv) <====> ?read.csv

• help.search(read.csv) <====> ??read.csv

• help.start()

Thursday, January 16, 14

Quitting R()

• q() or quit()

Thursday, January 16, 14

Help on the Web

• RSiteSearch(“read.csv”)

• http://rseek.org

- find links to R-specific websites

• http://stats.stackexchange.com/

- more information on statistics

Thursday, January 16, 14

http://rseek.org/
http://rseek.org/
http://stats.stackexchange.com/
http://stats.stackexchange.com/

Mailing Lists

• When in a bind, search google, which will
lead you to forums, mailing lists, etc.

• Or ask a question (after reading existing
information)

• Email lists are a last resort when stuck

Thursday, January 16, 14

Missing Values
> mean(c(NA,3,6))
[1] NA

NA , “Not Available”, is a missing value

mean(NA,3,6) = (1/3) * (NA+3+6)
Since NA is not defined, neither is the sum!

> mean(c(NA,3,6), na.rm=TRUE)[1] 4.5

na.rm : remove missing values. The mean can now be computed

Thursday, January 16, 14

Descriptive Statistics

• Mean – statistic of location

• Variance – statistic of dispersion

• Standard deviation - sqrt(variance)

The quantitative study of a sample

Thursday, January 16, 14

Descriptive Statistics
http://en.wikipedia.org/wiki/

histogram

Thursday, January 16, 14

http://en.wikipedia.org/wiki/Descriptive_statistics
http://en.wikipedia.org/wiki/Descriptive_statistics

Descriptive Statistics

mean(x)=62.12

var(x)=60.83

sd(x)=7.80

Histogram

Thursday, January 16, 14

