
Exploratory data 
analysis

Up to now, we’ve dealt with simple statistical problems.

Primary goals were to
detect and quantify a single analyte.
develop relationships between an analyte and a response.
optimize an experiment design and methods used to 
measure a response.
confirmatory data analysis.

Confirmatory data analysis

When we obtain a set of samples and 
make one type of measurement.

Many analytical methods are developed 
to quantify a single analyte or a limited 
number of analytes. 

All other factors are held constant or 
eliminated.

Exploratory data analysis

When we obtain many measurements 
from a number of samples and attempt 
to learn something about our sample 
beyond simple numbers.

‘Real world’ problems are typically much 
more complex.  A true understanding of 
a system may only be possible if many 
factors are considered.

Complex samples

Complex sample consists of many components.

Each may contribute to the overall properties 
of the sample.

A measurement of any single component or 
property is unlikely to tell you much about 
what the sample is.

Any type of sample can be either simple or 
complex based on the type of information 
desired regarding the sample.

Complex samples

Examples
Gasoline

Its overall performance as a fuel is 
not based on the amount of any 
single component.

Coffee
This material contains hundreds of 
components.  The flavor can’t be 
attributed to any single component.

Complex samples

With current analytical tools, its possible to 
detect and quantify most materials in a 
complex sample.

Knowing that information, its still impossible 
to state what the original sample was or be 
able to precisely reproduce it.

Example - perfume reproductions.



When more is better
Exploratory data analysis attempts to 
detect and evaluate underlying trends a 
data set.

This is accomplished by collecting as 
much information about a problem as 
possible and multivariate data analysis.

The introduction of the personal 
computer made it possible for routine 
evaluation of complex data sets (many 
variables and samples.) 

When more is better

Example.  
Assume you are doing QA/QC for a fertilizer 
company.  

You are provided with representative samples at 30 
minute intervals.  If there is a problem, you must 
stop production.  If you are wrong - you are fired!

Let’s see what happens to you level of knowledge as 
we increase the amount of data.

When more is better
Time! ! % N
7:00 am!      15.1
7:30! ! 14.9
8:00! ! 14.6
8:30! ! 14.8
9:00!   !   1.4

The 9:00 value appears low.

What should you do?

When more is better
A simple statistical calculation for the first 
four samples shows:
! ! mean = 14.9,  sx = 0.21

! Your 9:00 sample is -9.6 s.

So you know that the value is significantly 
lower (different) than the first four.

You don’t know why!
Your analysis could be bad or something 
could be truly wrong in the plant.

When more is better

Time! ! % N! %P
7:00 am!      15.1!! 6.2
7:30! ! 14.9! 6.4
8:00! ! 14.6! 5.9
8:30! ! 14.8! 6.0
9:00!   !   1.4! 0.6

By evaluating two components in our 
sample, we now know more.

When more is better
Another statistical evaluation shows 
that for the first four samples:
! ! !       % N!!       %P
mean! ! 14.9! ! 6.1
sx! ! !   0.2! ! 0.2

The 9:00 sample is low by 9.6 s for both 
nitrogen and phosphorous.

You can be pretty confident that 
something is wrong with the sample.  
But what?



When more is better
Time! ! % N! ! %P          %K
7:00 am!      15.1!!       6.2          20.1
7:30! ! 14.9! ! 6.4          21.4
8:00! ! 14.6! ! 5.9          19.2
8:30! ! 14.8! ! 6.0          19.0
9:00!   !   1.4! ! 0.6            1.9

You decide to look at all of the ‘active 
components’ in the sample.

When more is better

All of the components are low by 
about the same amount.

You immediately call the operator in 
charge of blending the chemical 
additives with the ‘inert’ filler - fixing 
the problem.

You boss give you a promotion!

Multivariate leverage
As the amount if data is increased:

• The amount of information also increased

• Your potential for understanding a 
problem can improve.

We can also work with any type of 
information.

• Quantitative and qualitative data

• Data from any sort of analysis.

Multivariate leverage

Sample %N %P %K %S %O %C %Fe
1 15.1 6.2 20.1 0.23 30.1 2.5 0.02
2 15.3 6.1 19.3 0.12 29.2 1.6 0.01
3 14.8 5.9 21.4 0.22 28.8 3.1 0.03
4 16.3 6.9 20.2 0.15 31.5 2.0 0.10
5 12.7 6.1 20.1 0.23 33.5 2.2 0.02
6 15.9 5.8 20.2 0.19 20.9 2.6 0.05
7 15.9 4.3 20.3 0.28 27.5 1.8 0.04
8 10.3 7.1 22.1 0.23 27.9 2.5 0.01
9 20.1 6.6 20.1 0.22 30.3 2.5 0.03

    10 15.9 6.6 20.4 0.22 33.1 2.9 0.02

While more data/information is good, we reach a point where we can no
longer simply look at it to gain understanding.

Data exploration
Exploratory data analysis presents 
us with a set of tools to evaluate 
complex data sets.

! The basic steps include:

Define the
problem

Generate a
data base

Preprocess
the data

Verify the
results

Data
analysis

Pattern recognition

The goal is to be able to extract 
useful information for complex 
data sets.  One way to do this is 
to detect and evaluate patterns in 
our data set.

We have several general types of 
tools available to use.



Pattern recognition

Artificial intelligence

Neural networksPattern recognition

Parametric Non-parametric

Preprocessing Learning Display

Supervised Unsupervised

Pattern recognition
Preprocessing
! Data transformations such as scaling.

Pattern recognition
Display

Projection of our data into a limited 
number of dimensions.

Pattern recognition
Unsupervised learning
Methods that require no initial assumptions.    
Examples - cluster analysis and PCA.

Pattern recognition
Supervised learning
Methods that require initial assumptions or 
a model. SIMCA and KNN are examples.

Data

For most systems, we want an 
overdetermined dataset with at 
least three samples for each 
measured variable.

This is not always possible but the 
ratio of samples to variables 
should always be greater than one.



Data
Methods assume that nearness in n-
dimensional space reflects similarities in 
measured properties.

Each variable is treated as a dimension so 
a data set with 10 measured properties 
would be considered as existing in 10-
dimensional space.

Since we typically have a large number of 
dimensions, we need a ‘standard’ way of 
working with our data.

The data matrix
The first step is to convert our data into a 
matrix where:

1 2 3 ... NV

1 X1,1 X1,2 X1,3 ... X1,NV

2 X2,1 . . ... .

3 X3,1 . . ... .

... ... . . ... .

NP XNP,1 . . ... XNP, 

NV

The data matrix
Cases
A row of data where each value 
corresponds to measured properties of a 
specific sample

Variables or features
A column of data which corresponds to 
one measured property for all samples.

While many of our methods would still 
work if the definitions were reversed, its 
useful if we have a ‘standard’ matrix.

Pre-processing methods

We typically must initially convert our 
data so that all measurements can be 
compared.

It would be difficult to directly relate pH 
of a solution to the peak area resulting 
from its chromatographic analysis.

Qualitative data must also be converted 
to a form that we can process.

Initial data evaluation
Category data.

Convert to a numerical form.
!

Examples
hot/cold, day/night, gender
- convert to 1 and 0 

color - convert to RGB index
!

Your goal is to convert descriptive 
information into a representative numerical 
format.

Initial data evaluation

Missing data

Some samples may be missing one 
or more variables.

Its best to avoid this by only using 
cases that are complete.

If you must use incomplete data 
then you have several filling 
options.



Initial data evaluation
Filling options

Mean fill.  Use the average for the other 
cases.

Random fill.  Generate random values 
in the appropriate range.

PCA fill.  Use an estimate based on 
other features.

All are bad as they change the nature of 
your data.

Initial data 
evaluation

Constant variables.
If a given measurement always gives the same 
value then eliminate it.  It will only contain 
noise.

Redundant variables.
If two or more variables are strongly 
correlated (cc > 0.97) then remove all but 
one.  Also, don’t include two measurements of 
the same thing.
Example - Na via ISE and AA 

Translation and scaling of data

The goal is to make all variables directly comparable.

ppmppmppm

Cl Fe I

1 245 1.1 0.0001

2 233 1.4 0.0002

3 290 4.5 0.0001

4 300 7.2 0.0003

In this example, while the units are the same, the 
range and average values differ dramatically.

Translation and scaling of data

An evaluation of the ranges shows that 
for Cl and Fe:
! RangeCl  =  300 - 233  =  67
! RangeFe  =  7.2 - 1.1    =  6.1

On a percentage basis though,
! RangeCl  =  25.1
! RangeFe  =  150

So Fe actually has a larger variance range.

Scaling
One common approach would be to 
mean-center our values.

Our data becomes

While all data is now centered around 
0, Cl still swamps out Fe.

Cl Fe
-22 -2.5
-34 -2.2
+57 +0.9
+33 +3.6

lx =x ik -x k

Scaling
Another approach is range-scaling

Our data becomes

The problem with this approach is that while it is 
very sensitive to outliers, it falls apart if you have 
several points clustered at a high or low value.

lx = (x max-x min )
x ik -x ik min^ h

Cl    Fe
0.18    0.00
0.00    0.049
0.85    0.056
1.0    1.0



One of the best approaches is autoscaling.

Use mean-centering and units of 
standard deviation.

In essence, you are converting the data 
into the ‘reduced variable.’  Actual units 
are ‘standard deviation.’

All variables will have the same units 
and occur over the same range.  

Total variance of each variable = 1.

Autoscaling

Total variance of your autoscaled
matrix will be = NV

lx ik = sk

x ik -x k

sk = N -1
x ik -x k` j! 2

> H

1/2

Autoscaling

If your variables are already correlated - 
in the same units - you can use:

This results in a variance of 1/(NP-1) for 
each feature and NV/(NP-1) overall.

lx ik =
x ik -x k` j

2!: D
1/2

x ik -x k` j

Autoscaling
We commonly do a type of autoscaling when we 
produce a graph.
Example - ppmCl vs. ppmFe
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Autoscaling

Autoscaling insures that all features are
expressed with the same units and weight.
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Scaling example

Absorbance
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Original data
ppm As Absorbance

0 0.0004

2 0.0492

4 0.0905

6 0.1325

8 0.1706

10 0.2296

12 0.2604

14 0.3051

16 0.3422

18 0.4018

20 0.4366



Mean Centered Scaling example

Absorbance

-10
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ppm As Absorbance

-10 -0.2195

-8 -0.1707

-6 -0.1294

-4 -0.0874

-2 -0.0493

0 0.0097

2 0.0405

4 0.0852

6 0.1223

8 0.1819

10 0.2167

Range Scaling example

Absorbance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

ppm As Absorbance

0 0.0000

0.1 0.1118

0.2 0.2066

0.3 0.3027

0.4 0.3901

0.5 0.5254

0.6 0.5960

0.7 0.6985

0.8 0.7836

0.9 0.9203

1.0 1.0000

Autoscaling example

Absorbance

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

ppm As Absorbance

-1.0508 -1.521

-1.206 -1.183

-0.905 -0.896

-0.603 -0.606

-0.302 -0.342

0.000 0.067

0.302 0.281

0.603 0.590

0.905 0.848

1.206 1.261

1.508 1.502

Scaling in XLStat

You have several scaling 
options that can be 
accessed via ‘Variables 
Transformation.’  

Standardize (n-1) is the 
same as autoscaling.

Results are best saved 
to a new sheet or 
workbook.

XLStat results Feature weighting
Weighting can be used to:

Measure the discriminating ability of a 
variable in category separation.

Improve your classification results.

Weʼre essentially trying
to evaluate and/or
improve the resolution
of two features.



Variance weighting
Weighting for 2 categories (I and II) based on the 
ratio of the intercategory variance to the sum of 
the intracategory variances.

Approach can be used to calculate feature weights,
giving a measure of their ability to discriminate.

w k (I, II)=2
N I

1 x I -x I` j
2
+N II

1 x II -x II` j
2!!

N I

1 x I
2! +N II

1 x II
2! -N IN II

2 x I
2! N II

1 x II
2!

Intracategory - within group variance.
Intercategory - between group variance.
So, weʼre weighted based on F values.

Fisher weights
An alternative to variance weighting.

Simply replaced the numerator with the 
difference of the category means.

A Fisher weight may actually go to zero for a 
nondiscriminating feature so the overall weight 
can be calculated as:

w k (I, II)=

N I

1 x I -x I` j! 2
+N II

1 x II -x II` j! 2

x
I
-x

II

w k =N J

1 w k J] g
J =1

NJ

!

Feature 
weighting

Once the weight of each variable has been 
calculated for each category pair, you can use it 
for scaling:

This can be done before, after or in place of 
autoscaling.

Either Fisher or variance weights can be used.

lx ik =w k x ik

Example
• In a study, 119 paper samples were 

assayed for 13 trace elements by 
neutron activation analysis.

• Each paper could be classified based 
on paper grade (40 types) and 
manufacturer (9 companies).

• Goal - can we identify the paper 
grade and manufacturer based on 
trace element composition.

Example

• First, the weights were calculated 
for each category.

• This is done by taking the average 
of each element based on paper 
grade.

• Weights are then calculated based 
on paper source.

Example
Paper GradePaper Grade SourceSource

Variance Fisher Variance Fisher
Na 7.39 6.62 1.49 0.048
Al 66.95 22240.00 3.03 0.650
Cl 9.96 137.10 1.67 0.085
Ca 13.24 11.08 1.98 0.141
Ti 17.94 12.78 1.66 0.092
Cr 8.67 41.53 1.75 0.106
Mn 13.01 15.53 2.37 0.182
Zn 4.87 18.24 1.99 0.163
Sb 10.19 31.68 1.92 0.138
Ta 2.06 1.71 1.25 0.013

Ngrade= 40Ngrade= 40 Nsource= 9Nsource= 9



Example
What do the weights show?

Paper grade
All weights are large.
All can provide a way to 
classify grade.
!
You might want to consider 
only using 4-6 variables with 
the largest weights to save 
time and money.

Paper GradePaper Grade SourceSource

Variance Fisher Variance Fisher

Na 7.39 6.62 1.49 0.048

Al 66.95 22240.00 3.03 0.650

Cl 9.96 137.10 1.67 0.085

Ca 13.24 11.08 1.98 0.141

Ti 17.94 12.78 1.66 0.092

Cr 8.67 41.53 1.75 0.106

Mn 13.01 15.53 2.37 0.182

Zn 4.87 18.24 1.99 0.163

Sb 10.19 31.68 1.92 0.138

Ta 2.06 1.71 1.25 0.013

Ngrade= 40Ngrade= 40 Nsource= 9Nsource= 9

Example
Paper Source
This would be harder to do 
since the weights are smaller.

However, they are still > 1 for 
variance weighting, so it can 
be done.

Again, it would be best to pick 
the 4-6 variables with the 
largest weights.

Paper GradePaper Grade SourceSource

Variance Fisher Variance Fisher

Na 7.39 6.62 1.49 0.048

Al 66.95 22240.0 3.03 0.650

Cl 9.96 137.10 1.67 0.085

Ca 13.24 11.08 1.98 0.141

Ti 17.94 12.78 1.66 0.092

Cr 8.67 41.53 1.75 0.106

Mn 13.01 15.53 2.37 0.182

Zn 4.87 18.24 1.99 0.163

Sb 10.19 31.68 1.92 0.138

Ta 2.06 1.71 1.25 0.013

Ngradegrade= 40 Nsourcesource= 9

Eigenvector rotations
In general, if we treat our data set as a 
matrix, we are free to translate it.

This does not alter the significance of 
any of the information.

This translation can be some form of 
scaling or weighting.   X’ = X . a

We can also rotate the matrix by 
multiplying by a transform matrix.

X’  =  X AT

Eigenvector rotations

This rotation changes the coordinates of 
our matrix but not its variance.

Autoscaling and eigenvector rotations 
work together to give us the best 
possible viewpoint for our dataset.

As an example, lets say that you are 
going to purchase your first truck.

Example

From this vantage,
its difficult to make
any sort of choice.

It might not even be
a truck.

Here, we 
are too 
close.



Example

This is an
ʻautoscaledʼ
view.

Its centered
and full
scale.

Unfortunately,
from this 
angle, we 
only get a
limited
amount of
information

Example

We get as much information from a single view as 
possible. Some information still can’t be seen.

A scaled, rotated view
of our example

Eigenvector rotations
The goal is to rotate our matrix so that we 
have the maximum amount of variation 
present in the minimum number of axes.

Eigenvector rotation
Create a new set of orthogonal axis.

σ2
EV1 >  σ2

EV2 > σ2
EV3 >  . . .  > σ2

EVNV

!
Data structure is not changed.

Eigenvector rotations

• These rotations are accomplished by 
diagonalization of either the 
correlation or covariance matrix.

• Which matrix you use will be based 
on the actual pattern recognition 
method is being evaluated.

• We’ll discuss the differences as we 
introduce the various methods.

Eigenvector rotations

In this example, our original data is reduced to
one variable after it is scaled and rotated.

Why?

Original Autoscaled Rotated

Eigenvector rotations

This example shows
both the original
variables and
the resulting
eigenvectors

EV1

EV2

Variable 1

Variable 2Va
ria

bl
e 

3



Information obtained
An eigenvector rotation results in a 
series of loadings and scores along with 
a residual.

Loading - 1-D array
Contains the eigenvector coefficients 
required for the rotation to a specific 
score.

Loading coefficients show the relative 
significance or contribution of each of 
our original variables.

Loading example

Autoscaled
arson
related
samples,
19 variables

Information obtained

Score
A linear combination of the original 
variables where:

score1,1 = EV1,1 var1 + EV1,2 var2 ...EVN,NV varNV

Each score reflects the contribution of 
all variables for a specific case.

This results in related variables being 
combined into a single variable and a 
significant data reduction

Score example
Autoscaled arson 
related samples.  
19 variables

Information obtained

Residual
The portion of the original array that 
could not be correlated.

This could be random noise.

Many methods do not require a 
complete eigenvector solution.  So, the 
residual could also be any remaining 
information that had yet to be used 
when the method terminated. 

Eigenvector rotation components

Original
matrix

loading 1

sc
o

re
 1

+ + . . . + Residual

loading 2

sc
o

re
 2

loading NV

sc
o

re
 N

P

+



Eigenvalues

Another term that we typically 
obtain is the eigenvalue. 

One eigenvalue for each 
eigenvector.

It indicates how much of the 
original information is contained 
in each eigenvector.

Eigenvalues

Assume that our data had been 
scaled such that the total variance 
was NV.

You can then determine how much of 
the original information is contained 
in each eigenvector by

%variance= NV
eigenvalue i

Eigenvalue example

Autoscaled arson 
related samples, 
19 variables

Advantages of eigenvector rotation

Inherent data reduction
It is often possible to reduce complex 
data sets to 2-5 eigenvector / score sets 
and still express the majority of the 
information.

Display
Reduction of the number of variables 
makes it easier to evaluate our data.

Noise reduction
Truly random noise never correlates so 
it remains in the residual matrix.

Example

• The car exhaust problem from the first 
exam.

• CO, NOx and HC levels from a set of 
‘tailpipe’ tests. 

• We already know that the three 
measurements are correlated.

• Now, let’s look that the effect of 
autoscaling and an eigenvector rotation.

Original 
data



y = -0.074x + 
1.7355

R2 = 0.9186

y = 0.0279x + 0.3316

R2 = 0.9103

0.00

0.20
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0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 5.00 10.00 15.00 20.00 25.00

NOx
HC
Linear (NOx)
Linear (HC)

Autoscaled

y = 0.9541x - 1E-16

R2 = 0.9103

y = -0.9584x - 3E-16

R2 = 0.9186
-3.000

-2.000

-1.000

0.000

1.000

2.000

3.000

4.000

-1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000

NOx
HC
Linear (HC)
Linear (NOx)

Now, intercepts are both zero and |slopes| are the same.

Rotated data

Note that variable labels have been replace to reflect 
the fact that these are no longer our original ones.

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-10 -5 0 5 10 15 20

F2
F3

Note that almost all of the data variance 
now is on the X axis (F1).  Also, F2 
accounts for more variance than F3.


