
Calibration

In this unit, we will review how to construct a 
calibration curve.

Each calibration has its own limits.

A proper understanding of those limits will help 
you develop the ‘best’ possible calibration and 
avoid many problems.

Constructing a calibration curve

You typically have two (or more) variables 
to work with.

One (or more) is set at known values.
Your analyte
Other experimental conditions

One is a measured response.
Absorbance, current, area, ....

Constructing a calibration curve

For a simple two variable calibration curve we 
commonly assume that we are dealing with two types 
of variables:

! Independent - the one we set
! Dependent   - the one we measure

In reality, both variables should be considered 
independent.

We rely on developing a model to show that the two 
variables are related.

Constructing a calibration curve

The simplest approach to developing our model is to:

Select a series of known analyte standards.

Hold other factors constant - or as many as possible

Measure the response.

Develop a model (calibration curve).

Constructing a calibration curve

Our response may actually rely on a 
vast number of factors:

Examples
! matrix
! interfering analytes
! random errors
! sample preparation
! sample collection method
! ...

Constructing a calibration curve

So our response is actually a measure of an 
entire method.

The relationship between analyte and 
response is a function of the type of method.

Examples
! gravimetry             f(mass) = amount
    chromatography     f(area)  = amount
! ISE                        f(mV)   = log[ ]
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Most methods have a fixed range
where the relationship between
response and analyte amount is valid.

Constructing a calibration curve

To initially establish linear range, sensitivity 
and detection limits, we commonly rely on 
the external standard method.

Separately run knowns and unknowns.

Assume that the only difference in response 
if due to the analyte.

Develop a model to show any relationships 
and limits.

Linear modeling

General unweighted least squares 

Assumptions

Standards are correct and all errors come from 
the measurement of response.

Variances are independent of analyte 
concentration.

Linear model

R =b 1X +b 0+e
R =response
b 1 =slopeparameter
X =Standard value
b 0 =intercept parameter
e =residual error

Linear model

We’ve already showed how to 
calculate the slope and intercept.

b 1=

X 2! - N
X!` j

2

XY - N
X! Y!!

slope

b 0= N
Y! -b 1 X! intercept

Linear model

We can estimate the 
variances via propagation 
of errors - produced 
during ANOVA analysis.

sb 0
2 =

N X i -X^ h2!
sY2 X 2!

sb1
2 =

X i -X^ h2!
sY2

se
2= N -2^ h

Y i -Y^ h2! -b 1
2 X i -X^ h2!



Linear models and uncertainty

Any linear model has some degree of uncertainty 
associated with it.  At a given confidence level, our 
model actually represents a regression band.

sloperange=b1! t s b1

intercept range=b0 ! t s b0

Use one
sided
t value

Calculating the regression bands

Determine the desired confidence limit and look 
up the proper t value (df = N - 2)

Calculate the predicted X’ value based on the 
predicted R’ (response) value.  This is so you can 
make a more complete plot.

For each point, calculate your interval value as:

C =t s y N
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X i -X^ h2!
X' -X^ h2
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Calculating the regression band

Your regression band is then calculated as:

Lower       b1 X’ + b0 - C

Upper       b1 X’ + b0 + C

You are just plotting out the confidence 
limits for each data point.
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Number of measurements and uncertainty
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Detection limit, sensitivity & linear range

The calibration curve and regression band can determine{

Detection limit.  Smallest amount we can see with a known 
level of confidence.  The upper CL at Y=0, then converted to 
concentration (X).

Sensitivity.  Smallest change in amount we can see with a 
known level of confidence.  Often based on smallest change 
that an instrument can display.

Linear range.  Range where we can quantify with a known 
level of confidence. (lower = DL, upper = where curve 
intersects upper/lower CL.
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Saved time by using 
upper 95% confidence 
limit value that XLStat 
provided for [ ] = 0

Using the residuals
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This residual
plot indicates
a reasonable
fit of the data
to the model.

This residual
plot indicates
a reasonable
fit of the data
to the model.

A plot of the residuals can give you an idea of 
how well your model fits the data.

Residual = measured - predicted



Using the residuals
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Concentration 

Regression of Noise +/- 2000 by Concentration 

(R!=0.965) 

-2000 

0 

2000 

4000 

6000 

8000 

10000 

12000 

0 20 40 60 80 100 120 

N
o

is
e
 +

/
- 

1
0

0
 

Concentration 

Regression of Noise +/- 100 by Concentration 

(R!=1.000) 

OK, these are reasonable fits of a linear model but we 
should check the residuals to be sure
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+/-2000 example
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+/-100 example

Residuals are normalized by the standard error.

This results in both of our plots looking pretty much 
the same since the error introduced was random 
(even if it varied by a large factor.

Typically,  expect to see residual values to be 
randomly distributed  around + 2 units for a good 
model.

+ 3 would indicate a problem.  + 4 shouldn’t happen.

Standardized residual
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Standardized residual.
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So, by using standardized residuals, we can directly 
compare the two data sets - even though the actual 
noise level is significantly different.

Using the residuals

This residual plot indicates that an improper
model was used.



Here is an example that demonstrates a ‘bad’ model.  
We’re going to try and model MPG vs. car weight.

Regression of MPG by Weight, tons 
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Now what?

The model clearly has a problem. 

Researchers attempted different models and 
found that log(weight) gave a better fit.  

Also, MPG is determined differently in other 
countries - USA uses miles traveled/gallon.  It is 
often full consumed per fixed distance (100 
miles).

So, they used log(wt) vs 100/MPG

Regression of 100/mpg by 
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Still not perfect.

Residual range is excessive.

Ultimately, the best model had to 
include other factors.

Including Drive Ratio turned out to be 
the key in developing the best model.
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Using the residuals

This residual plot indicates that there is 
some sort of response dependency based 

on the sample used.  Consider using 
Analysis of Covariance to confirm.

From the ‘Octane’ summer/winter blend example.

Standardized residuals / a1360
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It’s clear that there 
are two different 
types of samples so a 
simple calibration 
model won’t work.

This was a candidate 
for ANCOVA, 



From the ‘Octane’ summer/winter blend example.

Octane # / Standardized residuals
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ANCOVA can then 
be used to build a 
model that includes 
the ‘season’ factor as 
a way of merging 
what are clearly two 
different (but related) 
models.

Pred(Octane #) / Octane #
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Octane # / Standardized residuals
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Standard addition

A calibration method where standards are 
added to replicates of your sample.

You then measure the total response.

The matrix is near identical for all samples.

You can measure the response away from 
LOD and LOQ values.

Standard addition

R 0=k C 0=k V 0

n 0c m

RT =R 0+RS =k V 0+VS

n 0+nSc m

Q =RT V 0+VS^ h =k n 0+k nS

Initial response.  No standard addition.

Response when a standard is added.

We can then set Q as:

With an 
approach like 
this, Vn+Vs would 
be the same for 
all standards. 

Sample

n1 n2 n3no

We can then plot Q vs. ns added using 
different amounts of the standard.



Standard addition

By extrapolating to the x intercept, where 
Q=0, we have

!

The primary advantage of this method is that 
you can move your measurement from an area 
of high relative error.

k n 0=-k n1 and n 0=-ni


