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In this unit, we will review how to construct a
calibration curve.

Each calibration has its own limits.

A proper understanding of those limits will help
you develop the ‘best’ possible calibration and
avoid many problem:s.
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For a simple two variable calibration curve we
commonly assume that we are dealing with two types
of variables:

Independent - the one we set
Dependent - the one we measure

In reality, both variables should be considered
independent.

We rely on developing a model to show that the two
variables are related.
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Our response may actually rely on a
vast number of factors:

Examples
matrix
interfering analytes
random errors
sample preparation
sample collection method
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You typically have two (or more) variables
to work with.

One (or more) is set at known values.
v/ Your analyte
v/ Other experimental conditions

One is a measured response.
v/ Absorbance, current, area, ....
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The simplest approach to developing our model is to:
® Select a series of known analyte standards.

® Hold other factors constant - or as many as possible
® Measure the response.

® Develop a model (calibration curve).
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So our response is actually a measure of an
entire method.

The relationship between analyte and
response is a function of the type of method.

Examples
gravimetry f(mass) = amount
chromatography f(area) =amount
N)= f(mV) =log[]
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Most methods have a fixed range
where the relationship between
response and analyte amount is valid.
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LOD
limit of detection

LOQ
limit of quantitation

LOL
limit of linearity
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Assumptions

® Standards are correct and all errors come from
the measurement of response.

® Variances are independent of analyte
concentration.

We've already showed how to
calculate the slope and intercept.

v gx NG

— <zx>

slope

Y - b 3X
==

intercept

To initially establish linear range, sensitivity
and detection limits, we commonly rely on
the external standard method.

Separately run knowns and unknowns.

Assume that the only difference in response
if due to the analyte.

Develop a model to show any relationships
and limits.

R=b:X+bot+e

R =response

b: =slope parameter

X =Standard value

b. =intercept parameter
e =residual error

We can estimate the
variances via propagation
of errors - produced
during ANOVA analysis.
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® Determine the desired confidence limit and look
up the proper t value (df = N - 2)

Any linear model has some degree of uncertainty

associated with it. At a given confidence level, our

model actually represents a regression band. ® Calculate the predicted X’ value based on the
predicted R’ (response) value. This is so you can

make a more complete plot.

Sloperange =b;+ t Sh ® For each point, calculate your interval value as:
Use one , 11
. sided _ 1 (X =X)
intercept uge =bo+ t Sp, MRRGIS CEIIN S (X - x)°
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Your regression band is then calculated as:

e Lower bIX’+bO-C

e Upper bIX’+b0+C

You are just plotting out the confidence
limits for each data point.
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v ) confidence intervals

The calibration curve and regression band can determine{

Detection limit. Smallest amount we can see with a known
level of confidence. The upper CL atY=0, then converted to
concentration (X).

Sensitivity. Smallest change in amount we can see with a
known level of confidence. Often based on smallest change
that an instrument can display.

Relative error

Linear range. Range where we can quantify with a known
level of confidence. (lower = DL, upper = where curve
number of measurements intersects upper/lower CL.

sensitivity

detection
limit
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Saved time by using
upper 95% confidence
limit value that XLStat
provided for [] =0
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A plot of the residuals can give you an idea of
how well your model fits the data.

Residual = measured - predicted

This residual
plot indicates
a reasonable
fit of the data
to the model.

concentration
analyte
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So, by using standardized residuals, we can directly
compare the two data sets - even though the actual
noise level is significantly different.
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This residual plot indicates that an improper
model was used.




Here is an example that demonstrates a ‘bad’ model.

We're going to try and model MPG vs. car weight.

Regression of MPG by Weight, tons
(R2=0.816)
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® The model clearly has a problem.

® Researchers attempted different models and
found that log(weight) gave a better fit.

® Also, MPG is determined differently in other

countries - USA uses miles traveled/gallon. It is

often full consumed per fixed distance (100
miles).

® So, they used log(wt) vs 100/MPG
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® Residual range is excessive.

® Ultimately, the best model had to
include other factors.

® Including Drive Ratio turned out to be
the key in developing the best model.

Pred(100/mpg) / 100/ mpg
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This residual plot indicates that there is
some sort of response dependency based
on the sample used. Consider using
Analysis of Covariance to confirm.
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Standardized residuals

100/ mpg / Standardized residuals

100/ mpg

Standardized residuals / a1360

It’s clear that there
are two different
types of samples so a
simple calibration
model won’t work.

This was a candidate
for ANCOVA,
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Initial response. No standard addition.
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® A calibration method where standards are
added to replicates of your sample.

® You then measure the total response. Response when a standard is added.

® The matrix is near identical for all samples. Rr=Ro+Rs Zk(H)

® You can measure the response away from

LOD and LOQ values. We can then set Q as:

Q:RT(VO+ Vs) =kno+Kkns

We can then plot Q vs. ng added using
different amounts of the standard.

Sample

With an
approach like
this,Vn+Vs would
be the same for
all standards.

No n n2 n3
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By extrapolating to the x intercept, where
Q=0, we have

kno=—kn, and no=—n,

The primary advantage of this method is that
you can move your measurement from an area
of high relative error.




