Experimental design
and optimization

Basic elements of an experiment

Observer - you

Subject - experimental unit or sample - what
you’re conducting test on.

Stimuli - factors - environment which is created or
controlled by the experiment - X variable(s).

Completely controlled - experimental factors
Characteristic of the experiment or subject -
classification factors

Response variable - what you are actually
measuring - Y variable(s).

Information obtained.

Experimental design

The approach you use to determining the best acid
(HCI, HF, HCIO4) to dissolve granite would be

your experimental design or plan.

A well designed experiment will have:
A well defined objective
The ability to estimate error
Have sufficient precision

The ability to distinguish various effects by
randomization and factorial design.

To get usable results, you must test properly. Prior to
starting, you need an acceptable experimental
design.

Experiment

Process by which information is acquired by
observing the reaction of a subject to certain stimuli.

Example

Which acid is best for dissolving granite?

Subject granite
Stimuli HCI, HF, HCIO4

Each stimuli can be broken down into levels
or treatments. In this case, this might be the
evaluation of various concentrations.

Comparative experiment

This type of experiment is used to tell the
difference between two or more processes
or conditions.

Analysis of variance (ANOVA) can be used
to help sort out effects as a result of using
different conditions.

Again, proper experimental design is critical

if ANOVA is to be of much use.



Ass
each collected using different experimental
conditions.

A B C

XXX XXX XXX

XXX XXX XXX

XXX XXX XXX

XXX XXX XXX

90 100 110 means

This may indicate an effect due to the conditions.

Logic behind ANOVA and the F ratio

ANOVA and the F ratio

When between treatment differences are greater
than within treatment differences - treatments differ
significantly.

(variance of means > variance of replication)

When between treatment differences are less than or
equal to within treatment differences - treatments
have no significant effect.

(variance of means < variance of replication

This is the basis for simple ANOVA. With a
properly designed experiment, we can sort out even
more sources of variance (more treatments).

ANOVA and the Ftest

Let’s work out the basic steps involved.
General model

It can an be used with many means and the
data sets can vary in size.

Each data set is assumed to be normally
distributed.

An ANOVA table can be constructed and the

effect of each source of variation examined
using an F-est.

To tell if the_results are truly different, we need to

compare differences within and between
experimental conditions.

A B C
mean 90 100 110
range 89 - 91 99 -101 109 - 111
mean 90 100 110
range 80-120 80-120 80-120

In this case, knowing the range for the data tell you
a lot about whether the means are truly different.

Logic behind ANOVA and the F ratio

Two factor experiment with levels

Factor Two
Level 1 Level 2 Level 3

o Level 1 |Response F,, F,,|Response F, , F,, | Response F, ; F,,
c
(@) Level 2 |ResponseF,,F,|Response F,,F,, | Response F,, F,3
S
% Level 3 |Response F,;F,;|Response F,; F,, | Response Fy 3 F, 4
L

Level 4 |Response F,, F,,|Response F,, F,,|Response F, 4, F,,

Factors can be any change in conditions. Levels can be quantitative
changes (temperature, pH, concentration,...) or qualitative (on/off,
male/female, ...). This design does not include replicates.

ANOVA and the Ftest

For each observation, Xij, is assumed to be
expressible as:
Xjj = W+ o+ Bj+ &

where p = overall mean
o; = effect of row i (Factor One)

Bj = effect of column j (Factor Two)
&j = random error

We just need to sort out it all out.
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ANOVA and the F test

4. Residual, R - random error

R=TsS - BSSS

5. Residual mean square, RMS
RMS=R/(n-k)

6. Between sample mean square, BSMS
BSMS =BSSS/ (k - 1)

7. Test static F at o. confidence level

F = BSMS / RMS
Look up F. as F(k_1,n_k,a)

Example. Effect of temperature on an extraction

Temp, Tempg Tempg
= 86 98 107
=]
g_ 0 90 100 110
o g 94 102 113
© 90 100 110
X 90 100 110
s2 [107 2.7 6.0
n 4 4 4
T 360 400 440 T=1200

# of factors =3, n =12

Calculations to make

1. Sum of squares - SS

8S= 3 Ix°
2. Total sum of squares - TSS

TSS= SS-T? /n
3. Between sample sum of squares, BSSS

kK 12 72
BSSS =3 J -~

=1 j n SS between = an<75 - 71_)2

SST= Z(Xi —YT)Z

With earlier examples, we were asking a simple question -
“are the results different.”

If A,B,C actually represents an experimental factor, we
can determine if that factor has an effect compared to
experimental error.

A B C

XX XX XX
XX XX XX
XX XX XX
XX XX XX
XX XX XX

Replicate variance
(method error)

Sample variance
(level/treatment effect)

Example, continued

SS = 120858

TSS = 120858 - 12002/ 12 =858
BSSS  =120808 - 12002/12 =800
R = 858 - 800 =58
BSMS =800/2 = 400
RMS  =58/(12-3) = 6.444
F = 400/ 6.444 = 63.07
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Assumlng—yGH—Wa-H-t—gé%—GGn-f-léeHGe—t-heni Temp A TempB TempC Anova: Single Factor
86 08 107 SUMMARY
Degrees Of freedom to use. 90 100 110 Groups  Count Sum _ Average Variance
Between 3 temperatures-1 =2 30T os | 10 Temp8 | 4| 400 700l n.6eer
e _ Temp C 4 440 110 6
Within 12 values - df geen -1 =9 =P
ANOVA
Source of Variation SS df MS F P-value  F crit
UseFat2.9 at0.05 =4.26 Between Groups 800 2 400 62.069 5E-06 4.2565
’ Within Groups 58 o 6.4444
F>F. so there is a temperature effect.
We don’t know what it is or its magnitude.
R RMS BSMS
BSSS 15
Using Excel

Example, continued

Simple-ANOVA-isfine-for-fooking-at-the-effect—— Two WGQ’—ANM

of a single treatment.
To assess the effect of two or more

What if you wanted to look at temperature, pH treatments, you must rel)’ on a proper
and concentration? experimental design.

You c?u!d separate!y evaluate faach' treatment we'll look at

but this is not only time consuming, it may also

be a waste of time. Randomized Blocks

Latin Squares
Factorial Design

Two way ANOVA

Randomized
relatively uniform conditions Factor |
y ) level 1 level2 | level 3 bIOC kS
Blocks of experiments are selected -
randomly. 0 TB,
Q
- (2]}
Individual experiments in a block are e s
also selected randomly if possible. % 3 TB, §
>
The goal is to minimize the chance for L2 2
introducing a ‘false’ effect based on 2 .
the order in which samples are run. > 3

. TF, TF, TF; ‘levels’ are NOT
Rcmdom IZed bIOC kS g replicate values.



First calculate:

m k
T =2 X X;
i j Factor 1
m ! 11 level 2 level 3
TF] - i§1 Xij : TB,
B Zk S g, block
i = § ° 2 totals
! BRI
: e,
Randomized T
Blocks factor totals

Factor 1

All we're doing is to calculate
Level 1 Level 2 Level 3 . 9
the variance of the means for

each factor.
Level 1/ F11F21 | F12F21 | FI3F21 | TB;
If you have an adequate
Factor 2 Level 2| F11 F22 | F12 F22 | F13 F22 experimental design, there is
no limit to the number of
Level 3| F11F23 | F12F23 | F13F23 | TBy factors you can include.

TF TF, TFs More on that in a bit.

Between factor sum of squares.
k
BFSS =j=21 (TF,)2/m - T2/ (mk)
Residual.
R =TSS - BBSS - BFSS

Between block mean square.
BBMS =BBSS/(m-1)

Between factor mean square.
BFMS =BFSS/ (k- 1)

Two way ANOVA

Two way ANOVA

Now we can do a two way ANOVA.

* This will show the effects of each
factor or treatment.

% The procedure is similar to a one way
ANOVA. We just end up doing a

few additional calculations

Two way ANOVA

Calculate each of the following:
Sum of squares.

ss 33

i=1j=1 |
Total sum of squares.
TSS =SS - T2/ (mk)
Between block sum of squares.
BBSS =i: (TB)2/k - T2/ (m k)

Two way ANOVA

Residual mean square.
RMS =R/[(m-1)(k-1)]

Effect of factors.
Fiactor = BFMS/RMS

Effect of blocks.
FblOCk = BBMS / RMS

Degrees of freedom. factors - (k-1),
blocks - (m-1), residual - (k-1)(m-1)



You are directed to determine ifalocal

metal refinery facility is a significant source
of lead in the local soil.

If the facility is found to be responsible, you
are also to determine the most likely mode
of transport.

A series of soil samples are assayed for lead
using atomic absorption spectroscopy.

Example

Source of Variation Sum of DF Mean Square
Squares

Between locations 2523.13 3 841.04

Between depths 38.28 2 19.14

Residual 4.41 6 0.705

Total 2565.82 N

Effect of location. F = 841.04/0.735 = 1144.27 > F3.60.05

Effect of depth. F=19.14/0.735 =26.04> Fy 6005

Depth, m
0.0

0.5

1.0

Totals

Again
with
XLStat

ppm lead in soil

Example data

Distance from site, km

1

50.0

46.0

45.0

141.0

2

30.5

30.4

27.5

88.4

3

20.2

18.0

15.0

53.2

4 Totals
10.3 111.0
8.0 102.4
6.0 93.5
24.5 366.9

Example as an
Excel spreadsheet



Example results Example data

Both depth and distance are Distance from site, km
significant effects on the lead Depth, m 1 2 3 4
concentration. 0.0 500 305 202 103
Can we take it a step farther and 05 460 30.4 X0 8.0
draw any conclusions about what 1.0 45.0 27.5 15.0 6.0
is going on. Concentration goes up as we get closer to the

site. It goes down as we sample deeper.

Lets look at that data again.
This would indicate that the plant is the source

and that the lead may initially be airborne.

Blocking data allows for evaluation of

non-random variation conditions.
Larger F values indicate bigger effects.

You must be careful not to introduce
additional factors based on order that
samples were collected or assayed.

It’'s best to randomize the order.

XLStat helps by providing a correlation matrix
that indicates how the variables are related.

Randomized blocking summary



Latin Squares

Modification to randomized blocking.

® Allows you to determine an additional
effect - how the sampling or analysis was
implemented (or any other effect).

® Used to introduce a new effect or to
insure that a potential one does not exits.

® A randomized block experiment is set up
but the sampling order is predetermined.

Latin Squares
A - D could represent an additional factor

like:

® Analyst used.
® |nstrument or method used.
® Date/time sample was taken or analysis
was conducted.
® Comparison of different labs.
It's a way of determining if any factors
have accidentally been introduced.

(SETIS

You collect a series of samples from a waste
stream and assay it for ppb Cd.

Four different operators, using four different
instruments are tested. As an additional
factor, you collect samples at four different
time intervals (every 6 hours).

Latin Squares

A Latin-square

Factor 1

Level 1 | Level 2 | Level 3 | Level 4

Level 1 A B C D

F Level 2 B C D A
actor

2 Level 3 | € D A B

Level 4 D A B C

A, B, C and D represent four different
levels of a third factor.

Latin Squares

Calculations

Similar to two way ANOVA.

You can calculate the between factor,
between block and now a between
treatment mean square.

Each measurement is now
Xijk = M+ o + Bj + vk * gjik

Latin Squares

Operator

1 2 3 4
28.8 (A) 31.2 (B) 35.2 (C) 30.8 (
30.0 (B) 31.6 (A) 30.0 (D) 33.2 (
36.0 (C) 36.0 (D) 29.6 (A) 30.8 (

4 30.4 (D) 35.6 (C) 29.6 (B) (
6,

12, and 18 hours

W N =

Instrument

A, B, C, and D represent 0,

Note: Every possible combination of operator,
instrument and time is included.



th n SqUQLeS— If you conducted a two way ANOVA, neglecting the time

factor, you would get the following:

Excel is not able to automatically
calculate more than a 2-way ANOVA.

XLStat can deal with multiple variables
AND using both quantitative and
qualitative variables

Error appears to be the biggest effect.

Latin Squares

To determine the effect of time, all you need
to do is to calculate the between treatment
mean square.

This is done just like the between factor
mean square but you sum on the basis of A,

B, Cand D.

TA = sum of all A based responses, ...

This shows that the sample time is the most critical factor -
may obscure the other factors.



While the instrument used had the smallest effect, it was One operator (ll) was clearly different from the other
still significant. Tukey test indicated two instrument groups. three

Time had the greatest impact on results with three groups FCI Ci'OFIGJ—deélg n

identified.
This approach can be used to determine:

Effects of individual qualitative factors.
Quantitative effects of ‘quant’ variables
Interrelationship between factors.

It takes a little more thought in setting up
this type experiment.

It can also significantly reduce the number
of samples that must be run.

Factorial design Factorial design

Assume that you want to evaluate n Level
factors. . | pH 1 2 3
o I3 o
Each factor is to be evaluated at 8 C | 25| 50 | 75
%cl | 5 10 | 15

I, l2,. .., |, levels.

The levels need not be the same size. This would be a 3° factorial design.

You WOU!d hCIV? have a ly x I x ... x Adding %K+ with values of 5, 10, 15,
|l factorial design. and 20 would make it a 3x3x3x4

factorial design.



Works best if:

Levels are uniformly applied over
your region of interest. Each level
can have its own range.

Use replicates for each (or most)
factor/level combinations to
establish experimental error/
precision.

Run samples in a random order.

Factorial design

Measure-the activity of a catalystat

different amounts of two promoters

(T and ).

Factor T
20% 40%
0.2% 29, 24 35, 40
0.5% 76,72 45, 47

Factor |

This is a 22 factorial
design in duplicate.

Example



If you use Excel

ANOVA - X variable(s) are qualitative. Simply trying to see if an

effect is significant or not.

Regression - attempting to find a relationship between two or
more quantitative variables.

ANCOVA (Analysis of Covariance) is of combination of ANOVA

and linear regression.

ANCOVA will used both qualitative and quatitative variables
when building a model..

Qualitative variables are called treatments. Quantitative ones
are covariates.

XLState will automatically use ANCOVA (rather than ANOVA)
when both variable types are used.

Analysis of Covariance

F-test shows that eachfactor-hasa——

significant effect.

However, interaction between T
and | is greater than T effect.

This indicates that | is the most
important and that T is meaningless
unless the value for | is specified.

Example, ANOVA analysis

ANCOVA example

Not really a chemistry example but it includes
qualitative and quantitative variables we can
use.

Study to see if different species of fish swim at
different rates (Am/min)

Also tracked fish age, since larger, older fish
are expected to swim faster.

Age will be the covariate in the analysis.

All are significant but the SS I/Ill differences indicate some sort of bias
in the model.

Ideally, you’d prefer that there was NO interaction - it indicates that
the bias is due to the species.



The model indicates that the slopes based on species differ -
with Bass (the reference) being significantly different than
for Bluegill and Perch.

Here is a simple set of

Species

Swim Rate

Bluegil
Species

Swim Rate / Standardized residuals

Swim Rate

XLStat will produce a plot
of predicted means for the
model.

Actual means were:
Bass - 107.3
Bluegill - 104.2
Perch - 102.7

Clearly there is a
significant problem when
it comes to predicting Bass
using the model.

The residual plot confirms
this.

s trendline plots where each
Y= 37477% 4 plot and equa.hon.|s fora
57.83 separate species (just a
120 | R? = 0.7692 normal Excel graph
function.)
115
Bass
® = Bluegill
110 | perch
——Linear (Bass)
y = -0.0035x + 104.25 ——Linear (Bluegill)
. R? = 3E-05 =——Linear (Perch)
105 | .
-y / L] -y L] r Y
Il a T
s y = 0.1768x + 100.01
100 - * - R? = 0.0341
. N
95 . . . :
10 12 14 16 18 20

Full factorial design

The best design is a full factorial.

One where there are as many levels for
each factor as there are factors.

Experiments
Factors Design (2 replicates)
2 22 8
3 S 54
4 44 512
5 5° 6250

¥ = -0.0035x + 104.25
R? = 36-05

¥ = 0.1768x + 100.01

Assumption that older/larger fish will swim faster
only appears to be valid for Bass.

We’'ll return to ANCOVA in the next unit (Simple
Modeling).

Results

factor D

\ factor A

factor B

512 experiments
if done in duplicate

factor C

Full factorial
design

44 example




Full factorial design Blocked-factorial design—

For experl.ments |f1vo|vm.g mcmy. factors it Modification where you hold all but two
would be impractical or impossible to do a factors constant at a-time.

full factorial experiment. . . .
P A series of 22 factorial experiments are

However, you can’t simply drop levels as conducted. /Ml
you might miss some significant effect. Total experiments =22 x 2 x (n - 1)
Fortunately, we can reduce the number of factors |
samples required through proper A full 4* would require 512 experiments
experimental design. but would be reduced to 24 if blocked.

Blocked factorial design BIOCk@d—EQQtQH—G—Ld—&SI-g-H—

\ H H | —

| Effect of B and D When you block the design, you risk
- interaction not seeing some interrelationships
— between two or more factors.
Effect of A B & D
- interaction One option would be to reduce the
— number of replicates or a drop a

Effect of B,C & D

single level from one or more factors.

- interaction

This model would be Regardless of the approgch, you need
best if A and C have some knowledge regarding the system
minimal interaction. prior to knowing what is best.

This approach
u is called cross
validation
Use 1 if you - - skip 1
suspect A-C u
interaction is | You can
A>C u increase
the skip rate
u .
Use 2 if you a put W'th.
suspect A-C increasing
interaction is . error.
A<C

Possible Blocked Designs.



Using JMP to create the design



