
Experimental design 
and optimization

To get usable results, you must test properly.  Prior to 
starting, you need an acceptable experimental 

design.

Experiment 
 Process by which information is acquired by 

observing the reaction of a subject to certain stimuli.

Basic elements of an experiment

Observer - you
Subject - experimental unit or sample - what 
you’re conducting test on.
Stimuli - factors - environment which is created or 
controlled by the experiment - X variable(s).
Completely controlled - experimental factors
Characteristic of the experiment or subject  - 
classification factors
Response variable - what you are actually 
measuring - Y variable(s).
Information obtained.

Example

Which acid is best for dissolving granite?

Subject granite
Stimuli  HCl, HF, HClO4

Each stimuli can be broken down into levels 
or treatments.  In this case, this might be the 
evaluation of various concentrations.

Experimental design

The approach you use to determining the best acid 
(HCl, HF, HClO4) to dissolve granite would be 
your experimental design or plan.

A well designed experiment will have:
A well defined objective
The ability to estimate error
Have sufficient precision
The ability to distinguish various effects by 
randomization and factorial design.

Comparative experiment

This type of experiment is used to tell the 
difference between two or more processes 
or conditions.

Analysis of variance (ANOVA) can be used 
to help sort out effects as a result of using 
different conditions.

Again, proper experimental design is critical 
if ANOVA is to be of much use. 



Assume we have three groups of sample results, 
each collected using different experimental 
conditions.

This may indicate an effect due to the conditions.

Logic behind ANOVA and the F ratio

A B C
xxx xxx xxx
xxx xxx xxx
xxx xxx xxx
xxx xxx xxx
90 100 110 means

Logic behind ANOVA and the F ratio

To tell if the results are truly different, we need to 
compare differences within and between 
experimental conditions.

! !          !            A!             B!            C
   mean!             90              100              110
   range                89 - 91        99 - 101      109 - 111

   mean!             90              100              110
   range               80 - 120       80 - 120       80 - 120  

In this case, knowing the range for the data tell you 
a lot about whether the means are truly different.

ANOVA and the F ratio
When between treatment differences are greater 
than within treatment differences - treatments differ 
significantly.
(variance of means > variance of replication)

When between treatment differences are less than or 
equal to within treatment differences - treatments 
have no significant effect.
(variance of means < variance of replication

This is the basis for simple ANOVA.  With a 
properly designed experiment, we can sort out even 
more sources of variance (more treatments).

Two factor experiment with levels

Factors can be any change in conditions.  Levels can be quantitative 
changes (temperature, pH, concentration,…) or qualitative (on/off, 
male/female, …).  This design does not include replicates.

Response F1,1 F2,1

Response F1,2 F2,1

Response F1,3 F2,1

Response F1,4 F2,1

Response F1,1 F2,2

Response F1,2 F2,2

Response F1,3 F2,2

Response F1,4 F2,2

Response F1,1 F2,3

Response F1,2 F2,3

Response F1,3 F2,3

Response F1,4 F2,3
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ANOVA and the F test
Let’s work out the basic steps involved.

General model 
It can an be used with many means and the 
data sets can vary in size. 

Each data set is assumed to be normally 
distributed.

An ANOVA table can be constructed and the 
effect of each source of variation examined 
using an F-test.

ANOVA and the F-test
For each observation, xij, is assumed to be 
expressible as:

Xij  =  μ + αi + βj + εij

where " μ" = overall mean
" " " αi " = effect of row i (Factor One)
" " " βj" = effect of column j (Factor Two)
" " " εij " = random error

We just need to sort out it all out.



ANOVA and the F test

n1 ...nk

k
X ij

T j = X ij
i =1

n j

!

T = T j
j =1

k

!
n = n j

j =1

k

!

number of measurements/factor

total number of factors

datum at ith trial in the jth sample

Sum of all values for a given factor

sum of all T values

Total number of measurements

Calculations to make
1.  Sum of squares - SS1.  Sum of squares - SS

SS =             xij
2

2.  Total sum of squares - TSS2.  Total sum of squares - TSS

TSS =  SS - T2  / n

3.  Between sample sum of squares, BSSS3.  Between sample sum of squares, BSSS

BSSS =

! !i j

!
k

j=1

T2

n
Tj
2

nj
-

Together, steps one and 
two calculate:

ssT = x i -x
T` j! 2

Comparable to:

ssbetween= nr x
s
-x

T` j! 2

4.  Residual, R - random error4.  Residual, R - random error
R = TSS - BSSS

5.  Residual mean square, RMS5.  Residual mean square, RMS
RMS = R / ( n - k)

6.  Between sample mean square, BSMS6.  Between sample mean square, BSMS
BSMS = BSSS / (k - 1)

7.  Test static F at 7.  Test static F at !! confidence level confidence level
F = BSMS / RMS

 Look up Fc as F(k-1,n-k,!)

ssT =ssbetween+sswithin

A! B! C
xx! xx! xx
xx! xx! xx
xx! xx! xx
xx! xx! xx
xx! xx! xx

Replicate variance
(method error)

Sample variance
(level/treatment effect)

With earlier examples, we were asking a simple question - 
“are the results different.”

If A,B,C actually represents an experimental factor, we 
can determine if that factor has an effect compared to 
experimental error.

Example.  Effect of temperature on an extraction

TempA TempB TempC
   86   98   107
   90  100   110
   94  102   113
   90  100   110

x    90  100   110
sx

2       10.7       2.7    6.0
n      4     4     4
Tj  360  400   440      T = 1200

# of factors = 3, n = 12
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Example, continued
SS = 120858
TSS = 120858 - 12002 / 12 = 858
BSSS = 120808 - 12002 / 12 = 800
R = 858 - 800 = 58
BSMS = 800 / 2 = 400
RMS = 58 / (12 - 3) = 6.444
F = 400 / 6.444 = 63.07



Example, continued

Assuming you want 95% confidence then:
Degrees of freedom to use.
  Between 3 temperatures - 1     = 2
  Within 12 values - dfbetween - 1 = 9

Use F at 2,9  at 0.05 = 4.26
F>Fc  so there is a temperature effect.

We donʼt know what it is or its magnitude.

Using Excel
BSSS

R

TSS

BSMSRMS

Two way ANOVA

Simple ANOVA is fine for looking at the effect 
of a single treatment.

What if you wanted to look at temperature, pH 
and concentration?

You could separately evaluate each treatment 
but this is not only time consuming, it may also 
be a waste of time. 

Two way ANOVA
To assess the effect of two or more 
treatments, you must rely on a proper 
experimental design.

We’ll look at"
Randomized Blocks

!  Latin Squares
!  Factorial Design

Randomized blocks

A study is sub-divided into blocks of 
relatively uniform conditions.

Blocks of experiments are selected 
randomly.

Individual experiments in a block are 
also selected randomly if possible.

The goal is to minimize the chance for 
introducing a ‘false’ effect based on 
the order in which samples are run.

Randomized 
blocks

ʻlevelsʼ are NOT
replicate values.
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Randomized 
Blocks

Factor 1Factor 1
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block
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factor totals

First calculate:

T = !  !  xij

TFj = !  xij

TBi = !  xij

m k

i j

m

i = 1

j = 1

k

Two way ANOVA
Now we can do a two way ANOVA.

This will show the effects of each 
factor or treatment.

The procedure is similar to a one way 
ANOVA.  We just end up doing a 
few additional calculations

All we’re doing is to calculate 
the variance of the means for 
each factor.

If you have an adequate 
experimental design, there is 
no limit to the number of 
factors you can include.

More on that in a bit.

Factor 1

Level 1 Level 2 Level 3

Level 1 F11 F21 F12 F21 F13 F21 TB1

Factor 2 Level 2 F11 F22 F12 F22 F13 F22 TB2 s2B

Level 3 F11 F23 F12 F23 F13 F23 TB3

TF1 TF2 TF3

s2F
DF = 

levels - 1

Two way ANOVA
Calculate each of the following:

Sum of squares.Sum of squares.

SS = ! ! x2
ij

Total sum of squares.Total sum of squares.
TSS = SS - T2 / (mk)

Between block sum of squares.Between block sum of squares.

BBSS = ! (TBi)2 / k - T2 / (m k)

i=1 j=1

m k

m

i=1

Two way ANOVA

Between factor sum of squares.Between factor sum of squares.
BFSS = ! (TFi)2 / m - T2 / (mk)

Residual.Residual.
R = TSS - BBSS - BFSS

Between block mean square.Between block mean square.
BBMS = BBSS / (m - 1)

Between factor mean square.Between factor mean square.
BFMS = BFSS / (k - 1)

j=1

k
Two way ANOVA
Residual mean square.Residual mean square.

RMS = R / [ (m - 1) (k - 1) ]
Effect of factors.Effect of factors.

Ffactor = BFMS / RMS
Effect of blocks.Effect of blocks.

Fblock = BBMS / RMS
Degrees of freedom.Degrees of freedom. factors - (k-1),

blocks - (m-1), residual - (k-1)(m-1)



Example

You are directed to determine if a local 
metal refinery facility is a significant source 
of lead in the local soil.

If the facility is found to be responsible, you 
are also to determine the most likely mode 
of transport.

A series of soil samples are assayed for lead 
using atomic absorption spectroscopy.

Example data

Distance from site, kmDistance from site, kmDistance from site, kmDistance from site, km
Depth, m 1 2 3 4 Totals

0.0 50.0 30.5 20.2 10.3 111.0

0.5

50.0

30.4 18.0 8.0

111.0

0.5 46.0 30.4 18.0 8.0 102.4

1.0 45.0 27.5 15.0 6.0 93.5

Totals 141.0 88.4 53.2 24.5 366.9

ppm lead in soil

Source of Variation Sum of 
Squares DF Mean Square

Between locations 2523.13 3 841.04

Between depths 38.28 2 19.14

Residual 4.41 6 0.705

Total 2565.82 11

Effect of location. F = 841.04/0.735 = 1144.27 > F3,6,0.05

Effect of depth.    F = 19.14/0.735    = 26.04 > F2,6,0.05

Example as an 
Excel spreadsheet

Again 
with 
XLStat



Example results
Both depth and distance are 
significant effects on the lead 
concentration.

Can we take it a step farther and 
draw any conclusions about what 
is going on.

Lets look at that data again.

Example data

Concentration goes up as we get closer to the
site.  It goes down as we sample deeper.

This would indicate that the plant is the source
and that the lead may initially be airborne.

Distance from site, kmDistance from site, kmDistance from site, kmDistance from site, km
Depth, m 1 2 3 4

0.0 50.0 30.5 20.2 10.3

0.5

50.0

30.4 18.0 8.00.5 46.0 30.4 18.0 8.0

1.0 45.0 27.5 15.0 6.0

XLStat helps by providing a correlation matrix 
that indicates how the variables are related.

Randomized blocking summary

Blocking data allows for evaluation of 
non-random variation conditions.

Larger F values indicate bigger effects.

You must be careful not to introduce 
additional factors based on order that 
samples were collected or assayed.

" It’s best to randomize the order.



Latin Squares
Modification to randomized blocking.

• Allows you to determine an additional 
effect - how the sampling or analysis was 
implemented (or any other effect).

• Used to introduce a new effect or to 
insure that a potential one does not exits.

• A randomized block experiment is set up 
but the sampling order is predetermined. 

A Latin square

A, B, C and D represent four different 
levels of a third factor.

Factor 1Factor 1Factor 1Factor 1

Level 1 Level 2 Level 3 Level 4

Factor 
2

Level 1 A B C D

Factor 
2

Level 2 B C D AFactor 
2 Level 3 C D A B

Factor 
2

Level 4 D A B C

Latin Squares
A - D could represent an additional factor 
like:

Analyst used.
Instrument or method used.
Date/time sample was taken or analysis 
was conducted. 
Comparison of different labs.

It’s a way of determining if any factors 
have accidentally been introduced.

Latin Squares
Calculations
Similar to two way ANOVA.

You can calculate the between factor, 
between block and now a between 
treatment mean square.

Each measurement is now
xijk = μ + αi + βj + γk + εijk

Latin Squares

Example.
You collect a series of samples from a waste 
stream and assay it for ppb Cd.

Four different operators, using four different 
instruments are tested.  As an additional 
factor, you collect samples at four different 
time intervals (every 6 hours).

Latin Squares
        Operator

1 2 3 4
 1 28.8 (A) 31.2 (B) 35.2 (C) 30.8 (D)

2 30.0 (B) 31.6 (A) 30.0 (D) 33.2 (C)
3 36.0 (C) 36.0 (D) 29.6 (A) 30.8 (B)
4 30.4 (D) 35.6 (C) 29.6 (B) 26.6 (A)

A, B, C, and D represent 0, 6, 12, and 18 hours

Note: Every possible combination of  operator,
instrument and time is included.
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Latin Squares

Excel is not able to automatically 
calculate more than a 2-way ANOVA.

XLStat can deal with multiple variables 
AND using both quantitative and 
qualitative variables

If you conducted a two way ANOVA, neglecting the time 
factor, you would get the following:

Error appears to be the biggest effect.

Latin Squares
To determine the effect of time, all you need 
to do is to calculate the between treatment 
mean square.

This is done just like the between factor 
mean square but you sum on the basis of A, 
B, C and D.

TA = sum of all A based responses, ...

This shows that the sample time is the most critical factor -- 
may obscure the other factors.



While the instrument used had the smallest effect, it was 
still significant.  Tukey test indicated two instrument groups.

One operator (II) was clearly different from the other 
three

Time had the greatest impact on results with three groups 
identified.

Factorial design
This approach can be used to determine:

!Effects of individual qualitative factors.

  Quantitative effects of ‘quant’ variables

! Interrelationship between factors.

It takes a little more thought in setting up 
this type experiment.

It can also significantly reduce the number 
of samples that must be run.

Factorial design
Assume that you want to evaluate n 
factors. 
!

Each factor is to be evaluated at 
! ! l1, l2 ,. . ., ln levels.

The levels need not be the same size.

You would have have a l1 x l2 x ... x 
ln  factorial design.

Factorial design
LevelLevelLevel

pH 1 2 3
oC 25 50 75

%Cl- 5 10 15

Fa
ct

or

This would be a 33 factorial design.

Adding %K+ with values of 5, 10, 15, 
and 20  would make it a 3x3x3x4 
factorial design.



Factorial design

Works best if:
Levels are uniformly applied over 
your region of interest.  Each level 
can have its own range.

Use replicates for each (or most) 
factor/level combinations to 
establish experimental error/
precision.

Run samples in a random order.

Example

Measure the activity of a catalyst at 
different amounts of two promoters    
(T and I).

Factor TFactor T

20% 40%

0.2% 29, 24 35, 40

0.5% 76, 72 45, 47Fa
ct

or
 I

This is a 22 factorial 
design in duplicate.



If you use Excel
Example, ANOVA analysis

F test shows that each factor has a  
significant effect.

However, interaction between T 
and I is greater than T effect.

This indicates that I is the most 
important and that T is meaningless 
unless the value for I is specified.

Analysis of Covariance

ANOVA - X variable(s) are qualitative.  Simply trying to see if an 
effect is significant or not.

Regression - attempting to find a relationship between two or 
more quantitative variables.

ANCOVA (Analysis of Covariance) is of combination of ANOVA 
and linear regression.

ANCOVA will used both qualitative and quatitative variables 
when building a model..

Qualitative variables are called treatments.  Quantitative ones 
are covariates.

XLState will automatically use ANCOVA (rather than ANOVA) 
when both variable types are used.

ANCOVA example

Not really a chemistry example but it includes 
qualitative and quantitative variables we can 
use.

Study to see if different species of fish swim at 
different rates (#m/min)

Also tracked fish age, since larger, older fish 
are expected to swim faster.

Age will be the covariate in the analysis.

All are significant but the SS I/III differences indicate some sort of bias 
in the model.  

Ideally, you’d prefer that there was NO interaction - it indicates that 
the bias is due to the species.



The model indicates that the slopes based on species differ - 
with Bass (the reference) being significantly different than 
for Bluegill and Perch.

Species
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XLStat will produce a plot 
of predicted means for the 
model.

Actual means were:
    Bass - 107.3
    Bluegill - 104.2
    Perch - 102.7

Clearly there is a 
significant problem when 
it comes to predicting Bass 
using the model.

The residual plot confirms 
this.
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Swim Rate 

Swim Rate / Standardized residuals 

y = 3.7477x + 
57.83

R2 = 0.7692

y = -0.0035x + 104.25

R2 = 3E-05

y = 0.1768x + 100.01

R2 = 0.0341
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Here is a simple set of 
trendline plots where each 
plot and equation is for a 
separate species (just a 
normal Excel graph 
function.)

Results

Assumption that older/larger fish will swim faster 
only appears to be valid for Bass.

We’ll return to ANCOVA in the next unit (Simple 
Modeling).

y = 3.7477x + 
57.83
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Full factorial design
The best design is a full factorial.

One where there are as many levels for
each factor as there are factors.

      Experiments
Factors      Design      (2 replicates)

2 22       8
3 33     54
4 44    512
5 55  6250

Full factorial 
design

44 example

factor A
factor B

factor D

fa
ct

or
 C

512 experiments
if done in duplicate



Full factorial design
For experiments involving many factors it 
would be impractical or impossible to do a 
full factorial experiment.

However, you can’t simply drop levels as 
you might miss some significant effect.

Fortunately, we can reduce the number of 
samples required through proper 
experimental design.

Blocked factorial design
Modification where you hold all but two

factors constant at a time.
A series of 22 factorial experiments are
conducted.

Total experiments = 22 x 2 x ( n - 1)

A full 44 would require 512 experiments
but would be reduced to 24 if blocked.

replicatesreplicates

factorsfactors

Blocked factorial design

Effect of B and D
- interaction

Effect of A,B & D
- interaction

Effect of B,C & D
- interaction

This model would be
best if A and C have
minimal interaction.

Blocked factorial design
When you block the design, you risk 
not seeing some interrelationships 
between two or more factors.
One option would be to reduce the 
number of replicates or a drop a 
single level from one or more factors.
Regardless of the approach, you need 
some knowledge regarding the system 
prior to knowing what is best.

Possible Blocked Designs.

11

22

Use 1 if you
suspect A-C
interaction is
A > C

Use 2 if you
suspect A-C
interaction is
A < C

Possible Blocked Designs.

This approach
is called cross
validation
 - skip 1

You can
increase
the skip rate
but with
increasing
error.



Using JMP to create the design


