Exploratory data
analysis

\

‘ve dealt with simple statistical problems.
‘were to

antify a single analyte.

ationships between an analyte and a response.
cperiment design and methods used to
Sponse.

data analysis.

¥

Exploratory data analysis

© When we obtain many measurements
from a number of samples and attempt
to learn something about our sample
beyond simple numbers.

& ‘Real world’ problems are typically much
more complex. A true understanding of
a system may only be possible if many
factors are considered.

Complex samples

Examples
Gasoline

Its overall performance as a fuel is
not based on the amount of any
single component.

Coffee
This material contains hundreds of
components. The flavor can’t be

attributed to any single component.

Confirmatory data analysis

When we obtain a set of samples and
make one type of measurement.

Many analytical methods are developed
to quantify a single analyte or a limited
number of analytes.

All other factors are held constant or
eliminated.

Complex samples

Complex sample consists of many components.

¢ Each may contribute to the overall properties
of the sample.

¢ A measurement of any single component or
property is unlikely to tell you much about
what the sample is.

¢ Any type of sample can be either simple or
complex based on the type of information
desired regarding the sample.

Complex samples

With current analytical tools, its possible to
detect and quantify most materials in a
complex sample.

Knowing that information, its still impossible
to state what the original sample was or be
able to precisely reproduce it.

Example - perfume reproductions.




When more is better

Exploratory data analysis attempts to
detect and evaluate underlying trends a
data set.

This is accomplished by collecting as
much information about a problem as
possible and multivariate data analysis.

The introduction of the personal
computer made it possible for routine
evaluation of complex data sets (many
variables and samples.)

When more is better
% N

Time

7:00 am 15.1

7:30 14.9
8:00 14.6
8:30 14.8
9:00 1.4

The 9:00 value appears low.

What should you do?

When more is better

When more is better

When more is better

Time % N %P
7:00 am 15.1 6.2
7:30 149 64
8:00 14.6 5.9
8:30 148 6.0
9:00 14 06

By evaluating two components in our
sample, we now know more.

When more is better

Example.

Assume you are doing QA/QC for a fertilizer
company.

You are provided with representative samples at 30
minute intervals. If there is a problem, you must
stop production. If you are wrong - you are fired!

Let’s see what happens to you level of knowledge as
we increase the amount of data.

A simple statistical calculation for the first
four samples shows:

mean = 4.9, sy = 0.21

Your 9:00 sample is -9.6 s.

So you know that the value is significantly
lower (different) than the first four.

You don’t know why!

Your analysis could be bad or something
could be truly wrong in the plant.

Another statistical evaluation shows
that for the first four samples:

% N %P
mean 14.9 6.1
Sx 0.2 0.2

The 9:00 sample is low by 9.6 s for both
nitrogen and phosphorous.

You can be pretty confident that
something is wrong with the sample.
But what?




When more is better

Time % N %P %K All of the components are low by
7:00 am 15.1 6.2 20.1 about the same amount.
7:30 14.9 6.4 214
8:00 14.6 5.9 19.2 You immediately call the operator in
. charge of blending the chemical W
8:30 148 6.0 19.0 additives with the ‘inert’ filler - fixing
9:00 I .4 0.6 I .9 the Prob'em_

You decide to look at all of the ‘active You boss give you a promotion!

components’ in the sample.

Multivariate leverage Multivariate leverage

As the amount if data is increased:

Sample %N %P %K %S %0 %C %Fe
* The amount of information also increased 1 151 62 201 023 801 25 0.02
2 153 6.1 193 012 292 16 0.01
* Your potential for understanding a 38 148 59 214 022 288 31 0.03
blem can improve 4 163 69 202 015 315 20 0.10
pro P . 5 127 61 201 023 335 22 0.02
6 159 58 202 019 209 26 0.05
We can also work with any type of 7 159 43 203 028 275 18 0.04
information 8 103 7.1 221 023 279 25 0.01
: 9 201 66 201 022 303 25 0.03
10 159 66 204 022 331 29 0.02
* Quantitative and qualitative data : : o :
While more data/information is good, we reach a point where we can no
. Data from any sort of analysis. longer simply look at it to gain understanding.

Pattern recognition

Data exploration

Exploratory data analysis presents
us with a set of tools to evaluate
complex data sets.

The goal is to be able to extract
useful information for complex
data sets. One way to do this is
to detect and evaluate patterns in
our data set.

The basic steps include:

We have several general types of
tools available to use.




Pattern recognition

Preprocessing
Data transformations such as scaling.

Artificial intelligence

N

\ Neural networks

Supervised ‘ Unsupervised '

Pattern recognition

Unsupervised learning

Pattern recognition

Display
Projection of our data into a limited
number of dimensions.

Methods that require no initial assumptions.
" Examples - cluster analysis and PCA.

A
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Pattern recognition

Supervised learning

Methods that require initial assumptions or
a model. SIMCA and KNN are examples.

“ r3

For most systems, we want an
overdetermined dataset with at
least three samples for each

measured variable.

This is not always possible but the
ratio of samples to variables
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15, we need a ‘standard’ way of
ith our data.

The data matrix

Cases

A row of data where each value
corresponds to measured properties of a
specific sample

Variables or features

A column of data which corresponds to
one measured property for all samples.

While many of our methods would still
work if the definitions were reversed, its
useful if we have a ‘standard’ matrix.

Initial data evaluation
Category data.
Convert to a numerical form.
Examples
hot/cold, day/night, gender
- convertto | and 0

color - convert to RGB index

Your goal is to convert descriptive
information into a representative numerical
format.

matrix where:

We typically must initially convert our
data so that all measurements can be
compared.

It would be difficult to directly relate pH
of a solution to the peak area resulting
from its chromatographic analysis.

Qualitative data must also be converted
to a form that we can process.

Missing data

©Some samples may be missing one
or more variables.

© Its best to avoid this by only using
cases that are complete.

o If you must use incomplete data
then you have several filling
options.

The data matrix

The first step is to convert our data into a

NV
X1V

Pre-processing methods|

Initial data evaluation




Initial data evaluation

Filling options
Mean fill. Use the average for the other
cases.

Random fill. Generate random values
in the appropriate range.

PCA fill. Use an estimate based on
other features.

All are bad as they change the nature of
your data.

Translation and scaling of data

The goal is to make all variables directly comparable.

pPm
cl Fe |
| 245 Il 0.0001
2 233 .4 0.0002
3 290 45 0.0001
4 300 72 0.0003

In this example, while the units are the same, the
range and average values differ dramatically.

Scaling

One common approach would be to
mean-center our values.

X :Xik_yk

Our data becomes

While all data is now centered around
0, CI still swamps out Fe.

Constant variables.
If a given measurement always gives the same
value then eliminate it. It will only contain

noise.

Redundant variables.

If two or more variables are strongly Initial data
correlated (cc > 0.97) then remove all but evaluation

one. Also, don’t include two measurements of
the same thing.
Example - Na via ISE and AA

Translation and scaling of data

An evaluation of the ranges shows that
for Cl and Fe:

Rangeq = 300 - 233
Ranger. = 7.2 - 1.1

67
6.1

On a percentage basis though,
Rangeq, = 25.1
Range;, = 150

So Fe actually has a larger variance range.

Scaling

Another approach is range-scaling

X’= (Xik _Xikmin)
(Xmax — Xmin )

Our data becomes

The problem with this approach is that while it is
very sensitive to outliers, it falls apart if you have
several points clustered at a high or low value.




One of the best approaches is autoscaling. Autoscaling
@ Use mean-centering and units of X. —X
standard deviation. A K
X ik — Sk
@ In essence, you are converting the data
into the ‘reduced variable.! Actual units 12
are ‘standard deviation. v 2
(X=X,
@ All variables will have the same units Sk = N —1
and occur over the same range.
@ Total variance of each variable = I. Total variance of your autoscaled
matrix will be = NV

Autoscaling Autoscalin g

If your variables are already correlated -

in the same units - you can use: We commonly do a type of autoscaling when we

produce a graph.
, (X = Xk> | Example - ppmc; vs. ppme
X k= Z N . )12 ‘ | 8 .
(Xu—X,) : : .
This results in a variance of 1/(NP-1) for 09
each feature and NV/(NP-1) overall. 0 300 200
PP ppmg; 5%
AUtoscaIIng Or|g|na| data Scallng examp|e
ppm As|Absorbance
! po 1 ° Y e Absorbance
2| 0.0492 20
o ® 4 00905 e
106—————2——>100 -1 >1 6| 01325 14 ]
8  0.1706 15 1
10| 0229 g |
100 ° A 12| 02604 ‘)
14 03051 5]
. . |6 03422 0 e‘\“...\..
Autoscaling insures that all features are sl 04018 0 > 10 I 20
expressed with the same units and weight. 20l 04368




Mean Centered Scaling example Range Scaling example

ppm As| Absorbance

Absorbance 0 0.0000
0.1 0.1118

Absorbance 0.2 0.2066
0.3 0.3027

0.4 0.3901

0.5 0.5254

0.6 0.5960

0.7 0.6985

0.8 0.7836

0.9 0.9203

1.0 1.0000

Data: (O Range:
@ seet
(O Workbook

Absorbance

XLStat results

1 1
Original data: Transformed data:

ppm As Absorbance ppm As Absorbance

0 0.0004 -1.508 -1.521

2 0.0492 -1.206 -1.183

4 0.0905 -0.905 -0.897

6 0.1325 -0.603 -0.606

8 0.1706 -0.302 -0.342

10 0.2296 0.000 0.067

12 0.2604 0.302 0.281

14 0.3051 0.603 0.591

16 0.3422 0.905 0.848

18 0.4018 1.206 1.261

20 0.4366 1.508 1.502

Mean 10 0.2199 2.0186E-17 1.2112E-16
Stdev 6.633 0.144 1.000 1.000
Variance 44 0.021 1 1




Variance weighting

Weighting for 2 categories (I and Il) based on the
ratio of the intercategory variance to the sum of
the intracategory variances.

1 1 2 1
_, N, 22X N, 22X e, 2, 23X
Wi =2 1

N (X)) + e Dk x,)’

Intracategory - within group variance.
Intercategory - between group variance.
So, we’re weighted based on F values.

Approach can be used to calculate feature weights,
giving a measure of their ability to discriminate.

Once the weight of each variable has been
calculated for each category pair, you can use it
for scaling:

x’ikzwkxik

This can be done before, after or in place of
autoscaling.

Either Fisher or variance weights can be used. Feature

weighting

* First, the weights were calculated
for each category.

* This is done by taking the average
of each element based on paper
grade.

* Weights are then calculated based
on paper source.

Example

Fisher weights

An alternative to variance weighting.

Wion=

N, 260X ) g xx,)

Simply replaced the numerator with the
difference of the category means.

A Fisher weight may actually go to zero for a
nondiscriminating feature so the overall weight
can be calculated as:

1 &
W =N ZWK(J)

J J=1

Example

* In a study, | 19 paper samples were
assayed for |3 trace elements by
neutron activation analysis.

* Each paper could be classified based
on paper grade (40 types) and
manufacturer (9 companies).

* Goal - can we identify the paper
grade and manufacturer based on
trace element composition.

Example
Paper Grade Source

Variance Fisher Variance Fisher
Na 7.39 6.62 1.49 0.048
Al 66.95 22240.00 3.03 0.650
Cl 9.96 137.10 1.67 0.085
Ca 13.24 11.08 1.98 0.141
Ti 17.94 12.78 1.66 0.092
Cr 8.67 41.53 1.75 0.106
Mn 13.01 15.53 237 0.182
Zn 4.87 18.24 1.99 0.163
Sb 10.19 31.68 1.92 0.138
Ta 2.06 1.71 1.25 0.013

40 N =9

grade source




What do the weights show?

Paper grade N
All weights are large. a
All can provide a way to o
classify grade. e

Zn

You might want to consider s
only using 4-6 variables with ™
the largest weights to save
time and money.

Eigenvector rotations

Example

Paper Grade

Variance

Source

Fisher Variance

Fisher

739
66.95
9.96
13.24
17.94
8.67
13.01
4.87
10.19
2.06

6.62
22240.00)
137.10
11.08
1278
41.53
15.53
18.24
31.68]
171

1.49
3.03
1.67
1.98
1.66
1.75
237
1.99
1.92
1.25

0.048
0.650
0.085
0.141
0.092
0.106
0.182
0.163
0.138
0013

Ngrade= G0

In general, if we treat our data set as a

matrix, we are free to translate it.

This does not alter the significance of

any of the information.

This translation can be some form of

scaling or weighting. X' =X-a

We can also rotate the matrix by
multiplying by a transform matrix.

X = XAT

Example

Nsource™ ?

Example

Paper Source

This would be harder to do
since the weights are smaller.

However, they are still > | for
variance weighting, so it can
be done.

Again, it would be best to pick
the 4-6 variables with the
largest weights.

This rotation changes the coordinates of
our matrix but not its variance.

Autoscaling and eigenvector rotations
work together to give us the best

possible viewpoint for our dataset.

As an example, lets say that you are

going to purchase your first truck.

Here, we
are too
close.




This is an
‘autoscaled’
view.

Its centered
and full
scale.

Eigenvector rotations

The goal is to rotate our matrix so that we
have the maximum amount of variation
present in the minimum number of axes.

Eigenvector rotation

Create a new set of orthogonal axis.

GZEVI > 0'2|5v2 > 0-2EV3 > ...

Data structure is not changed.

Eigenvector rotations

In this example, our original data is reduced to
one variable after it is scaled and rotated.

Why?

> g2

Unfortunately,
from this
angle, we
only get a
limited
amount of
information

EVNV

Rotated

Example

A scaled, rotated view
of our example

We get as much information from a single view as
possible. Some information still can’t be seen.

* These rotations are accomplished by
diagonalization of either the
correlation or covariance matrix.

* Which matrix you use will be based
on the actual pattern recognition
method is being evaluated.

e We'll discuss the differences as we
introduce the various methods.

Eigenvector rotations

Variable 3




Information obtained

An eigenvector rotation results in a
series of loadings and scores along with
a residual.

Loading - |-D array
Contains the eigenvector coefficients

required for the rotation to a specific
score.

Loading coefficients show the relative
significance or contribution of each of
our original variables.

Information obtained

Score
A linear combination of the original
variables where:

score| | = EV| | var| + EV| 2 varp ..EVN NV varNy

Each score reflects the contribution of
all variables for a specific case.

This results in related variables being
combined into a single variable and a
significant data reduction

Information obtained

Residual

The portion of the original array that
could not be correlated.

This could be random noise.

Many methods do not require a
complete eigenvector solution. So, the
residual could also be any remaining
information that had yet to be used
when the method terminated.

Loading example

04

Loadings for PC# 2
o o o
- n w

o

-0.1

3.

Score example

-0.3

-0.2 0.1 0.2

-0.1 0
Loadings for PC# 1

Autoscaled arson
related samples.

19 variables
“
4
8
3 4
4.4 4
4
3
2 44 44 4
44 4y 33
4 3 3
S "3.333
e “ 3.3 33
c
0 v5on
s B
2 !'\ ¥
.]"lé ’2,22
55 3
-3f 2y 2
-4} .55
+5
-5 " 1 L
-6 -4 -2 0 4
Scores on PC# 1

Eigenvector rotation components

Original
matrix




< Another term that we typically
obtain is the eigenvalue.

< One eigenvalue for each
eigenvector.

€ It indicates how much of the
original information is contained
in each eigenvector.

Eigenvalue example

Autoscaled arson
related samples,
19 variables

Eigenvalue
w &

0 T

8 10 12 14 18
PC Number

Example

® The car exhaust problem from the first
exam.

® CO,NOx and HC levels from a set of
‘tailpipe’ tests.

©® We already know that the three
measurements are correlated.

® Now, let’s look that the effect of
autoscaling and an eigenvector rotation.

Assume that our data had been
scaled such that the total variance
was NV.

You can then determine how much of
the original information is contained
in each eigenvector by

eigenvalue,
NV

% variance =

Advantages of eigenvector rotation

Inherent data reduction
It is often possible to reduce complex
data sets to 2-5 eigenvector / score sets
and still express the majority of the
information.

Display
Reduction of the number of variables
makes it easier to evaluate our data.
Noise reduction

Truly random noise never correlates so
it remains in the residual matrix.

Car co NOx HC
1 5.01 1.28 0.50
2 14.67 0.72 0.65
3 8.60 1.17 0.46
4 4.42 1.31 0.41
5 4.95 1.16 0.41
6 4.24 1.45 0.39
7 7.51 1.28 0.54
8 10.30 1.02 0.55
9 14.59 0.60 0.72
10 6.98 1.02 0.64
11 17.53 0.51 0.83
12 4.10 1.47 0.38
13 5.21 1.44 0.38
14 11.10 0.97 0.60
15 9.92 0.81 0.60
16 14.97 0.61 0.73
17 15.13 0.49 0.83
18 7.04 1.09 0.57
19 1.14 1.86 0.34
20 3.38 1.33 0.41
21 1.12 1.80 0.37
22 23.53 0.02 1.02
23 18.50 0.42 0.87
24 22.92 0.07 1.00

Eigenvalues

Original
data



2.00

¢ NOx
¢ = HC
1804 & » y = -0.074x + —Linear (NOx)
. 1.7355 =——Linear (HC)
R? = 0.9186
1.60 4
1.40 4
1.20 4
y = 0.0279x + 0.3316
1.00 . . R? = 0.9103 .
0.80
0.60
0.40
0.20
0.00 . . . . :
0.00 5.00 10.00 15.00 20.00 25.00
4.000 Now, intercepts are both zero and |slopes| are the same.
+ NOx
" HC
—— Linear (HC)
= Linear (NOx) 3.000 1 y = 0.9541x - 1E-16 "
R? = 0.9103
-1.500 1.000 1.500 2.000 2.500 3.000
y = -0.9584x - 3E-16
R? = 0.9186
-3.000 4
0.6
Note that almost all of the data variance
“F2 now is on the X axis (FI). Also, F2
= F3 .
04 accounts for more variance than F3.
¢ : 0.29f .
¢ ¢ o
. .
] . *
el ! L ‘ E * u i o8
10 S -'I s :‘ 10 15 20
¢ off W° .
e st ¢
. ‘»o.g ®
_0.4 Eigenvalues:
F1 F2 F3
Eigenvalue 32.324 0.016 0.002
Variability (%) 99.945 0.049 0.007
Cumulative % 55.945 99.993 100.000

Autoscaled
Car cO NOXx HC
1 -0.465 0.252 -0.272
2 1.239 -1.028 0.631
3 0.168 0.000 -0.514
4 -0.569 0.321 -0.815
S -0.476 -0.022 -0.815
6 -0.601 0.641 -0.935
7 -0.024 0.252 -0.031
8 0.468 -0.342 0.029
9 1.225 -1.302 1.053
10 -0.118 -0.342 0.571
11 1.744 -1.508 1.716
12 -0.626 0.686 -0.996
13 -0.430 0.618 -0.996
14 0.609 -0.457 0.330
15 0.401 -0.822 0.330
16 1.292 -1.280 1.114
17 1.320 -1.554 1.716
18 -0.107 -0.182 0.149
19 -1.148 1.578 -1.237
Rotated data
Cars F1 F2 F3
1 -2.638 -0.088 0.014
2 7.037 0.084 -0.079
3 0.947 0.088 -0.099
4 -3.231 -0.090 -0.060
5 -2.692 -0.196 -0.093
6 -3.422 0.037 -0.055
7 -0.145 0.099 0.015
8 2.656 0.057 -0.061
9 6.968 -0.052 -0.028
10 -0.651 -0.214 0.080
11 9.909 0.069 0.020
12 -3.563 0.048 -0.059
13 -2.454 0.104 -0.081
14 3.458 0.062 -0.032
15 2.294 -0.187 -0.040
16 7.346 -0.014 -0.022
17 7.518 -0.136 0.054
18 -0.599 -0.129 0.021
19 -6.544 0.209 0.011
20 -4.269 -0.151 -0.041

Note that variable labels have been replace to reflect
the fact that these are no longer our original ones.




