
Modeling

Just knowing that there is an effect 
or having some idea as to its source 
may not be very useful.

We want to be able to:
• make predictions
• estimate the effects of levels not 

studied

We must develop a model.

Types of models

Theoretical (parametric) model

Data follows from a theory.

Uses known theoretical laws or principles.

Example - Calibration curve of 
absorbance vs. concentration.

While the model may not be linear, we 
typically attempt to transform it to make 
it linear.

Types of models

Empirical (nonparametric) model.
No theoretical basis for the model.
An equation is simply fit to the data.

You must assume that the trend 
continues outside the experimental 
ranges.

Example - polynomial fit of a GC trace.

Example

Linear fit of a theoretical relationship.
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Linear models, Y = b1X

If X is known and we control it, then 
σ2

X = 0 and a b1 (slope) is found that 
minimizes:

We simply want to minimize the 
difference the measured and 
predicted values.
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Linear model
We’re just trying to minimize the standard error (SE)  for 
our model.

The optimum value for b1 is the one that minimizes the 
standard error.

We also must assume that the values are homoscedastic: 
(unweighted least squares)
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Homoscedatic data

homoscedastic
not homoscedastic

Linear model
To find the value of b1 that minimizes 
the standard error, we set:

Solving for b1 gives 
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&b 1 x i
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b 1= x i
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x i y i!

Linear model
Weighted least squares
Used when the data is not homoscedastic.

Each measurement is weighted by the 
reciprocal of its variance.
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Example
  ppm  abs   xy             x2

1 0.020 0.020    1
2 0.038 0.076    4
3 0.064 0.192    9
4 0.077 0.308 16
5 0.105 0.525 25

sums 1.121 55

b 1= x i
2!

x i y i!
=0.0204 soY =0.0204X

Y-intercept

What if your data does not go 
through the origin?  

Y-intercept = Y  -  b1  X

You simply need to calculate the 
mean for both X and Y and use the 
above equation.

How good is the fit?
An ANOVA can can be conducted to determine 
the ‘goodness of fit’ for the model.

y -ŷa k
2
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Source of Variance Sum of Squares DF

Model p

Residual n-p-1

Total n-1

p = number of parameters.
n = number of data points.



ANOVA of our earlier example

y -ŷa k
2

!

ppm absexp abscalc model residual

1 0.020 0.020 0.0402 0.0004

2 0.038 0.0408 0.0198 0.0028

3 0.064 0.0612 -0.0006 -0.0028

4 0.077 0.0816 -0.021 0.0046

5 0.105 0.102 -0.003 -0.0030

0.00416 0.000046

Calculate absorbances based on Y = b1X
b1=0.0204 Y =0.0608

ANOVA of our earlier example

Source
Sum of 
Squares

DF Mean Square
(SS/DF)

Model 0.00416 1 0.00416

Residual 0.000046 5-1-1 0.0000153

Total 0.00441 5-1 0.001103

F test will show that the model accounts for a 
significant amount of the variance compared 
to the residual. F = 272

Correlation coefficient
The ratio of model/total variance is 
commonly referred to as the correlation 
coefficient.

This value is commonly reported by 
programs and calculators that can conduct 
linear regression fits.
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Goodness of fit.
The ratio of model/total variance tells us how much 
variance the model accounts for (correlation 
coefficient,r). The ratio of model to residual mean 
squares would be the ‘F’ value.

In the last example, r was 0.943 (88.9%) which is 
a pretty good fit.

If the model/total ratio is < 0.8, then you should 
consider looking at a different model.

Graphing the data is an excellent way to see the 
nature of your relationship.

Goodness of fit
Y

X

Y

X

Both examples show a linear regression fit of
a data set.  The one on the right indicates that
the ‘best’ model may not be a linear one.

Correlation coefficient

Values range between -1 to +1 where
-1 indicates perfect correlation with a  negative slope.

+1 indicates perfect correlation with a positive slope.

0 no correlation - this is rare, even a  ‘bad’ fit will 
have at least some correlation.

Y
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Correlation coefficient

Correlation, |r| 100 r2

0.10 1
0.20 4
0.50 25
0.80 64
0.90 81
0.95 90
0.99 99

1.00 100

Relationship between correlation coefficient (r) 
and proportion of variance (r2).

|r| values 
below 0.9 
indicate a poor 
relationship.

Correlation coefficient
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r = 0.90

r = 1.00
r = -1.00

r = 0.60

The same thing with Excel

It should come as no surprise 
that we can do the same 
calculations using Excel.

Two approaches
Data analysis add-on

Detailed analysis

Trendlines
Quick and dirty regression 
lines when producing a 
graph.

Excel Data Analysis add-on



Excel Data Analysis add-on Excel trendline

Excel trendline Excel trendline

Excel trendline Excel trendline



Excel trendline Using XLStat

As one would expect, XLStat is 
also able to do linear regression.
It provides the same information 
and then some.

Regression of absorbance by ppm 
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Data transformations
In some cases, it is best to do a 
simple transformation of your data 
prior to attempting a linear 
regression fit.

The goal of the transformation is to 
make the resulting relationship 
linear.

An ANOVA analysis can be conducted 
on the transformed data.

Data transformations

     Transform     Equation of the line
Y X Y = b X + a
Y 1/X Y = a + b / X
1/Y X Y = 1 / ( a + b X )
X/Y X Y = X / ( a + b X )
log Y X Y = a bX

log Y log X Y = a Xb

Y Xn Y = a + b Xn

b = slope, a = intercept.

Multiple linear regression
MLR assumes a linear relationship between 
Xi and y, with superimposed noise (e).  It 
also assumes that there are no 
interactions between X1, X2, … Xn.

Y = b0 + b1X1 + b2X2 + . . . . bnXn + e

We then ‘fit’ a regression equation.  The bn 
values are considered to be estimates of 
the true population parameters, βn.

Multiple linear regression

For a two variable model:

As in the one variable model, we end up 
with:

We can then solve these two ‘normal 
equations.’  It becomes more difficult 
as additional variables are added in.

Y =b 1X 1+b 2X 2

b 1 X 1
2! +b 2 X 1X 2= YX 1!!

b 2 X 2
2! +b 1 X 1X 2= YX 2!!

Multiple linear regression

Results must be interpreted more 
carefully that with simple regression.  
All of the b values are now tied 
together and must be interpreted as a 
group.

R2 values will increase as you add 
additional X values to the model - even 
random numbers. 

Use adjusted R2 values to see if new 
predictors improved model.

Multiple linear regression

R2 simply looks a how well all of the X 
account for Y.  The adjusted R2 is weighted 
by the number of X used.

R 2= SSTotal

SSTotal -SSresidual

adjusted R 2= MSTotal

MSTotal -MSresidual



Multiple linear regression

One advantage of an MLR approach is that you 
can obtain multiple measurements (X) for a 
single response.  This can help eliminate noise.

We’ll look at one example using MLR - 
Determination of Octane Number by NIR.  

We’ll revisit this example in a later unit when 
we compare it to other multivariate calibration 
methods.

Octane number
Rating Octane of Gasoline using near-IR.
ASTM method is complex and expensive.
A simple spectral method would be more desirable.

Experimental
A series of unleaded gasoline samples were assayed 
by the ASTM method.

NIR spectra (900-1600 nm) were also obtained.

A matrix was constructed from the spectra (20 nm 
intervals) were the X matrix and the ASTM octane 
number was the Y matrix.

A 915 nm, CH
2
 stretch                                           B 1021 nm, CH

2
/CH

3
 combination band

C 1151 nm, aromatic and CH
3
 stretch                   D 1194 nm, CH

3 
stretch

E 1394 nm, CH
2
 combination bands                      F 1412 nm aromatic & CH

2
 combination bands

G 1435 nm aromatic & CH2 combination bands

Octane Number, NIR spectra
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Octane Number, XLStat MLR
Single variable - 900 - just for comparison.
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Octane Number, MLR
Standardized residuals / 900
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Validation

Octane Number, MLR

Using all values results in a significant 
improvement in the fit..

Octane Number, MLR

Sum of squares analysis shows which lines are 
the most significant for the fit.

What happened to the other variables?

Multicollinearity
A common problem with multiple linear 
regression.

Example - reporting both the pH and pOH 
of a system.

You need to eliminate redundant 
information or it will skew your results.

A common approach is to eliminate all but 
one variable with similar correlations.

XLStat automatically does this.

Pred(Octane #) / Octane #
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Octane Number, MLR
Octane # / Standardized residuals
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Using the ‘best’ 4 lines Pred(Octane #) / Octane #
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No significant change in the 
quality of the fit.

Means you only need 4 lines 
to determine octane number.

Pred(Octane #) / Standardized residuals
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ANCOVA
XLStat does a good job of switching to 
the proper type of model based on the 
type of data.

Number of X 
variables Qual Quant Mixed

1 Simple 
ANOVA LR -

2 or more ANOCA MLR ANCOVA

ANCOVA

You can use the method to tell:

If the qualitative variables are 
significant.

If one gets the same basic model 
(slope) for the quantitative variables.

If you can build a model that can 
account for both types of factors 
(when significant.)

ANCOVA examples

Both treatment and 
covariate variables 
are significant with 
the same model.

Covariate variable 
is significant, 
treatment is not.

Neither are 
significant.

Both treatment and 
covariate variables 
are significant.

Treatment is 
significant but 
covariate isnʼt.

Both treatment and 
covariate variables are 
significant but the 
models are different.

Modified Octane example

The near IR spectra can vary based not 
only on octane number.

The presence of oxygenates can cause 
changes.

Seasonal blends can also cause changes.

ANCOVA can be used to deal with this 
type of situation.



For simplicity, we’ll look at a 
single near IR region.  It has 
one of the highest correlations 
with octane number of those 
evaluated earlier.

Start with a simple linear 
regression analysis, ignoring 
the fact there are both summer 
and winter blends included.
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Octane # / Standardized residuals
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It seems pretty clear that a 
simple linear regression has a 
problem.  It is also obvious that 
there are two types of samples.

Evaluating a simple 
scatterplot may help.

y = 0.0023x + 0.159

R2 = 0.9072

y = 0.0021x + 0.2249

R2 = 0.8963
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Let’s try an ANCOVA - 
using a1360 as the 
covariate and the ‘blend’ 
type as an additional 
factor.
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Non-linear regression

With many problems, it is not always 
possible to set up a simple linear regression 
solution, even with data transformation.

Non-linear regression methods permit the 
user to fit a set of parameters to a model 
which can involve many variables.

This type of problem is typically solved 
using a computer program.



Non-linear regression

The approach used to fit a model 
will vary based on the program used 
and the options chosen.

We’ll give an overview as to the 
general goal

typical user options
potential problems 

Non-linear regression

The goal of any non-linear least squares regression fit is 
to minimize the error between experimental and 
modeled values.

min Σ ( yi - f(x) )2

where f(x) is the function to be fit (Y = f(x))

It is assumed that the function contains one or more 
adjustable parameters.

Non-linear regression
Example function.

The goal is to find.

The adjustable parameter is Z.

y i =eXi Z

min y i -eXi Z_ i! 2

x y
1 2
2 4
3 8

Non-linear regression

Brute force approach.

Since this is a simple example, you could just 
set up a simple program to test a range of Z 
values.

Given enough time, such a search would 
determine that the optimum solution for Z.

With more complex models (more parameters 
to fit), this approach becomes difficult to do.

Non-linear regression

Response surface.
As a program attempts to find an optimum 
solution, it is evaluating potential solutions, 
looking for an error minimum.  This results in 
an N dimensional ‘surface’ being produced of 
possible solutions.

Non-linear regression fitting programs 
evaluate the best direction for subsequent 
estimates based on changes in this surface.

Response surface

For our simple model, the program will 
attempt to find this minimum value.

Yi

f(x)

error



Response surface

Yi

f(x)

error

This can be more difficult as the number of
adjustable parameters increases.  There can
be several false minima that must be avoided.

Non-linear regression options

Most programs include a range of 
options you can select or modify.

This not only permits you to 
speed up processing time 
avoid false convergence.
control the tolerance of your fit
. . .

Non-linear regression options

Typical options
Initial estimate of parameters

An initial guess of your values can not only 
save processing time but avoid false 
convergence as well.

Scaling of parameters
The magnitude of your parameters can vary 
greatly.  Scaling will give them comparable 
‘weight’ during the fit.

Non-linear regression options

First Derivative Function
Some programs require that you provide 
the first derivative (Jacobian) for your 
function.  It is used to determine the best 
direction to try it’s next estimate.

Tolerance
Various types including how big a jump it 
can make to the next estimate, how good 
the numbers are, ...

Non-linear regression options
Maximum iterations

How many ‘guesses’ it should attempt 
before quitting.

Limits
Do you want to set any upper/lower 
limits for the parameters?

Convergence
How good does the estimate need to be.

Non-linear regression

Each program has its own approach(s) as it attempts to 
find the optimum solution.

Your best bet is to:
Try several different programs if possible.
Test each program using the various options available.
Try different rearrangements of your model to see 
what effect it has.

Things are usually OK if the changes above still result is 
the same basic solution



Actual model
For this model, the goal is to determine the 
minimum error solution for the following:

RT
VM h +| sb lz f

2+z f + ln (1 -z f )=0

RT =2479.05
| s =0.34
VM =molar volume of solvent
z f =polymer volume fraction
h =(Dp -Ds )2+0.25 Pp -Ps^ h2+(H p -Hs )28 B
Ds ,Ps ,Hs -knownconstants
Dp ,Pp ,H p -parameters to be fit

Using Excel’s ‘Solver’

The Solver is a built in non-linear least 
squares function for Excel.

Parameters are held in specific cells that it 
will alter to find a solution.

It tests by seeking a minimize or maximize 
value held in another ‘cell’

All intermediates must be also be cell 
functions.

Several options are available.

Experimental data Calculated values

We will be minimizing 
by tracking the sum 
of squares - that is 
what is held in the 
delta2 column

RT
VM h +| sb lz f

2+z f + ln (1 -z f )=0

A              A1

Parameters and constants

Column B contains known constants for the 
experiment

Column E contains the values to be 
adjusted - Dp, Pp and Hp.  SSE is the sum 
of squares that will be tested.

Using Excel’s ‘Solver’



Using Excel’s ‘Solver’ Using Excel’s ‘Solver’

Final results Solver summary of results

Using XLStat

XLStat takes a different approach.

You still have X and Y variables but 
you build the model on a separate 
menu.

Parameter to be fit are included in 
the model equation as pr1, pr2, 
pr3.....

Using XLStat



Using XLStat Using XLStat
Pred(A1) / A1
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