Modeling

Empirical (honparametric) model.
o No theoretical basis for the model.
° An equation is simply fit to the data.

You must assume that the trend
continues outside the experimental
ranges.

Example - polynomial fit of a 6C trace.

Linear models, Y = b X

If X is known and we control it, then
0%, = 0and a b, (slope) is found that
minimizes:

(v,—¥)
Z Yi _2 Y ¢=predicted
Oy

We simply want to minimize the
difference the measured and
predicted values.

Theoretical (parametric) model
® Data follows from a theory.
® Uses known theoretical laws or principles.

® Example - Calibration curve of
absorbance vs. concentration.

® While the model may not be linear, we
typically attempt to transform it to make
it linear.

Example

Linear fit of a theoretical relationship.

absorbance, 550nm

concentration

Linear model

We're just trying to minimize the standard error (SE) for
our model.

/\2
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SE=3"gs =X g:(Yi=bX)

The optimum value for bl is the one that minimizes the
standard error.

We also must assume that the values are homoscedastic:
(unweighted least squares)

oh=0%=..=0%



Homoscedatic data

not homoscedastic

homoscedastic

Linear model

Weighted least squares
Used when the data is not homoscedastic.

(O3# O%# .. # O #)
Xiyi
Z 0'?/1
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Each measurement is weighted by the
reciprocal of its variance.

b=

o What if your data does not go
through the origin?

oY-intercept =Y - b, X

o You simply need to calculate the
mean for both X and Y and use the
above equation.

To find the value of b1 that minimizes
the standard error, we set:

dSE _
ob, =0
= b D IX=D XY

ppm abs Xy x2

1 0.020 0.020 1

2 0.038 0.076 4

3 0.064 0.192 9
4 0.077 0.308 16
5 0.105 0.525 25
sums 1.121 55

b Z Xiyi
1 =

STx? =0.0204 so Y =0.0204 X

i

How good is the fit?

An ANOVA can can be conducted to determine
the ‘goodness of fit’ for the model.

Source of Variance Sum of Squares DF
A\ 2
Model Z(y _ y> p
AN 2
Residual 2(_}/: _y) n-p-1
—\2
Total Z(y, —y) n-1

p = number of parameters.
n = number of data points.



Calculate absorbances based on Y = b X

b:=0.0204 Y =0.0608

ppm abs, ., abs., model residual
1 0.020 0.020 0.0402 0.0004
2 0.038 0.0408 0.0198 0.0028
3 0.064 0.0612 -0.0006 -0.0028
4 0.077 0.0816 -0.021 0.0046
5 0.105 0.102 -0.003 -0.0030

(y-y)  0.00416  0.000046

The ratio of model/total variance is
commonly referred to as the correlation
coefficient.

2

Z‘,()//\,-—y) _p,Ox
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This value is commonly reported by
programs and calculators that can conduct
linear regression fits.

Goodness of fit

» X » X

Both examples show a linear regression fit of
a data set. The one on the right indicates that
the ‘best’ model may not be a linear one.

ANOVA of our earlier example

Sum of Mean Square
S Squares DF (SS/DF)
Model 0.00416 1 0.00416

Residual 0.000046  5-1-1 0.0000153

Total 0.00441 5-1 0.001103

F test will show that the model accounts for a

significant amount of the variance compared
to the residual. F =272

The ratio of model/total variance tells us how much
variance the model accounts for (correlation
coefficient,r). The ratio of model to residual mean
squares would be the ‘F’ value.

o In the last example, r was 0.943 (88.9%) which is
a pretty good fit.

o If the model/total ratio is < 0.8, then you should
consider looking at a different model.

o Graphing the data is an excellent way to see the
nature of your relationship.

Values range between -1 to +1 where
o -1 indicates perfect correlation with a negative slope.

o +1 indicates perfect correlation with a positive slope.

o 0 no correlation - this is rare, even a 'bad’ fit will
have at least some correlation.

Y

A
+r




Relationship between correlation coefficient (r)

and proportion of variance ().

Correlation, Irl 100 12
0.10 1
0.20 4 Irl values
0.50 25 below 0.9
0.80 64 0 10
indicate a poor
0.90 81 3 3
relationship.
0.95 90
0.99 99
1.00 100

It should come as no surprise
that we can do the same
calculations using Excel.

Two approaches

o Data analysis add-on
Detailed analysis

o Trendlines
Quick and dirty regression

lines when producing a
graph.
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Excel trendline

o As one would expect, XLStat is
also able to do linear regression.

o It provides the same information
and then some.

Regression of absorbance by ppm
(R2=0.990)
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Data transformations

oIn some cases, it is best to do a
simple transformation of your data
prior to attempting a linear
regression fit.

o The goal of the transformation is to
make the resulting relationship
linear.

o

An ANOVA analysis can be conducted
on the fransformed data.

Multiple linear regression

MLR assumes a linear relationship between
X. and y, with superimposed noise (e). It
also assumes that there are no
interactions between Xl' XZ' Xn.

y:bo+b1X1+b2X2+....ann+e

We then 'fit' a regression equation. The bn
values are considered to be estimates of
the true population parameters, Bn.

¥ Results must be interpreted more
carefully that with simple regression.

¢ All of the b values are now tied
together and must be interpreted as a

group.

g 2 .

¥ R" values will increase as you add
additional X values to the model - even
random numbers.

¥ Use adjusted R values to see if new
predictors improved model.

Transform Equation of the line
Y X Y=bX+a

Y 1/X Y=a+b/X

1Y X Y=1/(a+bX)
XY X Y=X/(a+bX)
log Y X Y =abX

log Y log X Y=aXb

Y Xn Y=a+bX"

b = slope, a = intercept.

For a two variable model:
Y=b:X:+b:X:
As in the one variable model, we end up
with:
b1ZX12 +b22X1X2=ZYX1
szX§+b1ZX1X2=ZYX2

We can then solve these two '‘normal
equations.” It becomes more difficult
as additional variables are added in.

2 __ SS Total — SS residual
A= S8

H 2 __ MS Total — MS residual
adjusted R? = VISt

R? simply looks a how well all of the X
account for Y. The adjusted R’ is weighted
by the number of X used.



Multiple linear regression Octane number

One advantage of an MLR approach is that you
can obtain multiple measurements (X) for a
single response. This can help eliminate noise.

We'll look at one example using MLR -
Determination of Octane Number by NIR.

We'll revisit this example in a later unit when
we compare it to other multivariate calibration

methods.
Octane Number, NIR spectra Octane Number, XLStat MLR
0.8
D Single variable - 900 - just for comparison.
0.7 /I\ F
0.6 “ E _,2
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900 1000 1100 1200 1300 1400 1500 1600
‘Wavelength
A915 nm, CH2 stretch B 1021 nm, CH2/CH combination band
C 1151 nm, aromatic and CH,, stretch D 1194 nm, CH stre%ch
E 1394 nm, CH,, combination bands F 1412 nm aromatic & CH2 combination bands
G 1435 nm aromatic & CH2 combination bands

Regression of Octane # by 900 (R2=0.649)
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Standardized residuals / 900
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Octane Number

Using all values results in a significant
improvement in the fit..

. MLR

Octane Number, MLR

Sum of squares analysis shows which lines are

the most significant for the fit.

Type Il Sum of Squares analysis:

o A common problem with multiple linear
regression.

© Example - reporting both the pH and pOH

of a system.

° You need to eliminate redundant

information or it will skew your results.

° A common approach is to eliminate all but

one variable with similar correlations.

Source DF Sum of square: Mean squares F Pr>F
1080 1 0.002 0.002 0.034 0.855
960 1 0.002 0.002 0.037 0.849
1320 1 0.011 0.011 0.227 0.636
920 1 0.018 0.018 0.386 0.538
980 1 0.092 0.092 1.931 0.173
900 1 0.309 0.309 6.470 0.015
1060 1 0.445 0.445 9.317 0.004
940 1 0.540 0.540 11.316 0.002
1000 1 0.747 0.747 15.649 0.000
What happened to the other variables?
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o XLStat automatically does this.
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XLStat does a good job of switching to
the proper type of model based on the
type of data.

Octane #

93 +

91 +

89

87 +

85 +

83

Pred(Octane #) / Octane #

Pred(Octane #) / Standardized residuals
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s No significant change in the
. quality of the fit.

ed residuals
2

3
-% Means you only need 4 lines
- ‘ o determine octane number.

83 85 87 89 91 93
Pred(Octane #)

Number of X .

variables Qual Quant Mixed

Simple
! ANOVA LR -
2 or more ANOCA MLR ANCOVA
/ oge—>
/ e 09 o
e o

Both treatment and
covariate variables
are significant with
the same model.

o

Covariate variable
is significant,
treatment is not.

Treatment is
significant but
covariate isn't.

Neither are
significant.

Both treatment and
covariate variables are
significant but the
models are different.

You can use the method to tell:

o If the qualitative variables are
significant.

o If one gets the same basic model
(slope) for the quantitative variables.

o If you can build a model that can
account for both types of factors
(when significant.)

° The near IR spectra can vary based not
only on octane number.

o The presence of oxygenates can cause
changes.

o Seasonal blends can also cause changes.

o ANCOVA can be used to deal with this
type of situation.



For simplicity, we’ll look at a
single near IR region. It has
one of the highest correlations
with octane number of those
evaluated earlier.

Start with a simple linear
regression analysis, ignoring
the fact there are both summer
and winter blends included.

Standardized residuals / a1360

It seems pretty clear that a
simple linear regression has a
problem. It is also obvious that
there are two types of samples.
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Regression of Octane # by a1360 (R2=0.057)
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. R? = 0.8963
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covariate and the ‘blend’

type as an additional
factor.

o With many problems, it is not always

o Non-linear regression methods permit the
user to fit a set of parameters to a model
which can involve many variables.

possible to set up a simple linear regression
solution, even with data transformation.

o This type of problem is typically solved

using a computer program.

Let’s try an ANCOVA -



. The goal of any non-linear least squares regression fit is
The appr‘oach used to fit a model to minimize the error between experimental and

will vary based on the program used modeled values.

and the options chosen. 5
min 2 (y, - f(x))

We'll give an overview as to the

gener‘Cﬂ QOGI where f(x) is the function to be fit (Y = f(x))
typical user options
po‘renﬁal problems It is assumed that the function contains one or more

adjustable parameters.

Non-linear regression

. —aXiZ
EXGmple function. yi =e ’ Brute force approqch.
The goal is to find.  min Z(y’ e ) o Since this is a simple example, you could just

The adjustable parameter is Z. set up a simple program to test a range of Z

values.
X y
o Given enough time, such a search would
1 2 determine that the optimum solution for Z.
2 4 o With more complex models (more parameters
3 3 to fit), this approach becomes difficult to do.

Response surface.
o As a program attempts to find an optimum
solution, it is evaluating potential solutions,

looking for an error minimum. This results in Y
an N dimensional 'surface’ being produced of
possible solutions.
error

o Non-linear regression fitting programs
evaluate the best direction for subsequent

estimates based on changes in this surface. For our simple model, the program will

attempt to find this minimum value.



Response surface

error

This can be more difficult as the number of
adjustable parameters increases. There can
be several false minima that must be avoided.

Non-linear regression options

Typical options

Initial estimate of parameters
An initial guess of your values can not only
save processing fime but avoid false
convergence as well.

Scaling of parameters
The magnitude of your parameters can vary
greatly. Scaling will give them comparable
‘weight' during the fit.

Non-linear regression options

Maximum iterations
How many 'guesses’ it should attempt
before quitting.

Limits

Do you want to set any upper/lower
limits for the parameters?

Convergence
How good does the estimate need to be.

Most programs include a range of
options you can select or modify.

This not only permits you to
o speed up processing time
o avoid false convergence.
o control the tolerance of your fit

o

First Derivative Function
Some programs require that you provide
the first derivative (Jacobian) for your
function. It is used to determine the best
direction to try it's next estimate.

Tolerance
Various types including how big a jump it
can make to the next estimate, how good
the numbers are, ...

Each program has its own approach(s) as it attempts to
find the optimum solution.

Your best bet is to:
Try several different programs if possible.
Test each program using the various options available.
Try different rearrangements of your model to see
what effect it has.

Things are usually OK if the changes above still result is
the same basic solution



Actual model

For this model, the goal is to determine the

minimum error solution for the following:

|

4

R

@ - o

9
10
11

RT =2479.05
2{5 =0.34

Vu =molar volume of solvent
¢+ =polymer volume fraction

h  =(D,—D.)?+0.25[(P, — P.)" +(H,— H.)?

Ds,Ps,Hs —known constants

D,,P,,H, —parameters to be fit

Solvent
Acetonitrile
Acrylonitrile
Benzaldehyde
Benzene
Butanol, 1-

12 |Butanone, 2-

13

Butyl Acetate
CcCl4

Chloroform
Cyclohexane
Dichloroethane, 1,
Dichloromethane
Dimethylformamide
Dimethylsulfoxide
Dioxane, 1,4-
Ethanol

Ethyl Acetate
Ethyl Ether
Furfural
Isooctane

Pentane

Propanol, 2-
Pyridine

Toluene

TCE

Xylene, o-

Parameters and

A

Polymer density
Volume of polymer
Chi s
RT

Vm
.1 52.6
.1 67.1
.1 101.5
.1 89.4
.1 91.5
.1 90.1
.1 133.5
.8  97.1
.4 80.7
.2 108.7
.0 79.4
.9 63.9
.1 77
.1 71.3
.1 85.7
.1 58.5
.1 98.5
.1 104.8
.1 83.2
.2 166.1
2 117.4
.1 76.8
.1 80.9
.1 106.8
.4 90.2
.2 121.2

B
1.892
0.529
0.340

2479

0O OO MU WO U ®MWO’EENODD®MEOO & & W

% h+ys) ¢+ +in(1 — i) =0

P H Gain
18.0 6.1 0.463
17.4 6.8 0.617
7.4 5.3 0.222
0.0 2.0 0.117
5.7 15.7 0.027
9.0 5.1 3.312
3.7 6.3 1.571
0.0 0.6 0.158
3.1 5.7 0.207
0.0 0.2 0.031
7.4 4.1 0.116
6.3 6.1 0.230
13.7 11.3 1.152
16.4 10.2 0.540
1.8 7.4 0.788
8.8 19.4 0.032
5.3 7.2 2.949
2.9 5.1 0.279
14.9 5.1 0.207
0.0 0.0 0.015
0.0 0.0 0.034
6.1 16.4 0.027
8.8 5.9 0.487
1.4 2.0 0.114
3.1 5.3 0.150
1.0 3.1 0.107

constants

D E
Dp 20.0
Pp 10.0
Hp 10.0
SSE 17.5

Column B contains known constants for the
experiment

Column E contains the values to be
adjusted - Dp, Pp and Hp. SSE is the sum

of squares that will be tested.

vE

o The Solver is a built in non-linear least
squares function for Excel.

o Parameters are held in specific cells that it
will alter to find a solution.

o It tests by seeking a minimize or maximize
value held in another ‘cell’

o All intermediates must be also be cell
functions.

o Several options are available.

Hansen A Al
471 41.9 0.273 0.166 0.
.404 29.2 0.184 0.113 0.
714 7.6 0.331 0
797 43.6 1.215
941 28.7 1.239
113 22.3 0.015
226 37.4 0.121

.9 6
.4
.3
.4
0.5
.8
.5
0.1
5.1
.9

delta*2

(K hrxe) g7 +0+in(1 — o) =

A

Al

0

We will be minimizing
by tracking the sum

of squares - that is
what is held in the

delta2 column
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Using Excel’'s 'Solver’

[>] =|
012 [~] =] Nonlinea
Nonlinear | G ‘ 1 ‘ Solver Options N I
¢ | H | T [ J | K [ L [ ™M | N [_ 1
L SolverParameters -2 Mox Time: seconds
3 Set Target Cell: 4 Iterations:
4 Eusl To:  Otax @Min OYalwof: [0 | [Trigge | 5 Precision:  [0.000001 Load Model... |
5 By Changing Cells: Gain Vs
e i 76 Tol 3 S & S Model
6 | Gain [eres [ (Couess | 7 | 0.463 0.593 | Meraee [E_____1% [ Save Model.. |
70| 0-463| 0 Subject to the Constraints:—————————————————— i ] | 8 | 0.617 0.780 | Convergence: [0.0001 | [ —]ﬂelp
8 | 0.617 o | A to | 0.222 0.212
9 | 0.222 0 Add 9 . N [ Assume Linear Model [ Use Automatic Scaling
10 0.117 0 10| 0.117 0.134 [ Assume Non-MNegative  [] Show Iteration Results
11 | 0.027 0 13 B 11 | 0.027 0.033 | (Estimates Derivatives—  Search
12| 3.312 4 [~ 12| 3.312 4.138 @) Tangent @) Forward @ Newton A
13 | 1.571 13| 1.571 1.806 (O Quadratic () Central (2 Conjugate
14 | 0.158 0.100 0.841 51.9 1.681 1.000 0.463 14 | 0.158 0.100
15| 0.207 0.140 0.791 21.4 0.648 0.774 0.016 STl A TAT A AN A TaT L 8 A S A T A an s
Final results
Al B col D \ E =
1 Microsoft Excel 8.0 Answer Report
. . 2 |Worksheet: [Nonlinear model]Model
{ it S ormat Tools Data Window || =
é Te ECimViewanseviromt u atd ne AGL 3 [Report Created: 4/19/99 6:15:19 AM
DR SRAY $BRC v - Q& = A 43 1
Courier ~10o v B I U = =B | B % 50 3% S | .
‘ - ‘ ‘ G UL 6 Target Cell (Min)
o1z |EI 7 Cell Name Original Value Final Value
o=——— No 8 SES4 SSE 17.5 0.6
Iy B C | D | E | F o |
1 |Polymer density 1.892 Dp 15.4 o
2 Vo.!.ume of polymer 0.529 Pp 10.5 11 Adjustable Cells
3 Chis 0.340 Hp 2.5 12 Cell Name Original Value Final Value
4 |RT 2479 SSE 0.6 13 $ES1 Dp 20.0 15.4
5 14 S$ES2 Pp 10.0 10.5
6 Solvent MW Vm D P H 15 SES3 Hp 10.0 2.5
7 |Acetonitrile 41.1 52.6 15.3 18.0 6 16
8 |Acrylonitrile 53.1 67.1 16.4 17.4 6 17
18 |Constraints
19 NONE

Using XLStat
o XLStat takes a different approach.

o You still have X and Y variables but
you build the model on a separate
menu.

o Parameter to be fit are included in
the model equation as pril, pr2,
pr3.....



Using XLStat

Using XLStat

Pred(Al) / Al

0.5

1
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