
Signal detection and 
manipulation

Signal
A response obtained from a stimuli
It can arise from many sources

 Classical Methods
 Instruments

Either qualitative or quantitative.

Signals
A signal is actually composed of several responses.

Sample response
Background response
Interference responses

Variation of signal
σ2signal = σ2sample + σ2background +σ2interferences 

We’ll deal with sample and background signals.

Signal detection

signal
intensity

We can treat background and sample responses
as normal distributions.
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Signal detection
If you made a large number of background and 
sample measurements, you can construct a curve.

Average sample response 
is proportional to the 
amount of your analyte.

decreases as the amount 
of sample is reduced.

X
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Signal detection
As the sample signal approaches background, 
the two areas begin to overlap.

region of overlap
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Limit of detection
IUPAC definition of detection limit

The amount of sample that gives a signal 
centered about μbkg + 3 σbkg

This definition assures that you will have an 
error and must make a decision:

“Is the signal truly above the background?”



Limit of detection

The smallest amount of an analyte that can 
be detected with “absolute certainty.”

A sample that produces a response what 
a mean value of μ

bkg
 + 6 σ

Detection limit - often expressed as a 
concentration but is actually based on 
signal domain ( ex. volts, amps, ... )

Signal Detection
The amount of overlap is a measure of the uncertainty 
associated with the detection.

If σ2
bkg =  σ2

sample 

then the minimum for 
guaranteed detection 
is μbkg + 6σ

6 !

3 ! 3 !
0.13% overlap

IUPAC

Limit of detection
A - analyte
B - background

a = μA - 3 σA
b = μB + 3 σB
If measured signal
> b# analyte must be present
< a# no analyte is present
# between no absolute
       decision  can be make

A

a b

B

Measurement decision

Between a and b, you can give a ʻbest guessʼ
as to the source of a signal based on probability.

probability of
being sample
probability of
being sample

probability of
being background
probability of
being background

a                 b

Measurement decision
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Measurement decision

It is common to be willing to accept 2-3% error.  
This corresponds to ~2.7 σ.  This information can 
be found on a normal distribution table.

Now you end up with 5 regions

! 1. Sample must be present

! 2. No sample can be present

! 3. Confident that sample is present

! 4. Confident that sample is not present

! 5. Still not sure



Measurement decision

No sample Sample

likely to be
no sample

likely to
be sample

no decision

Improving detection limits

One way to improve detection limits 
is to make multiple measurements.

t tests can be used to estimate 
detection limits.

We’ll review the basic steps involved 
in using this approach.

Improving detection limits

Assume that several background measurements are 
made, NB, with an average of xB and s2B.

Do the same for a sample containing the analyte 
and obtain NA,  xA and s2A.

If you can’t run a large number of samples, assume 
that s2A =  s2B

Choose a confidence level, α, such as 0.01 - a one 
sided measurement so this is 99%

Improving detection limits

The number of degrees of freedom is

Now conduct a t test.

If calculated value is ≥ t, then the mean 
sample is different from the background.

DF =N A+NB -2

N A+NB

1 (N A-1)sA
2 + NB -1^ hsB

2

x A-x B^ h N A+NB -2^ h

Improving detection limits

This equation is just a modification of the t test to 
see if there is any significant overlap.

N A+NB

1 (N A-1)sA
2 + NB -1^ hsB

2

x A-x B^ h N A+NB -2^ h

x
bkg

+ N
t s x bkg Our signal must exceed

this value to be considered
as coming from a sample.

Signal to noise ratio basis for calculating t

Let D = x
A
-x

b` j

v 2
D=v 2

x A +v 2
x B = N A

v 2
A + NB

v 2
B

If v 2
A=v 2

B then v 2
D=v 2

N A

1 +NB

1c m

v 2 can be estimated by

s 2- v 2- N A+NB -2
N A-1^ hs 2

A+ NB -1^ hs 2
B

pooled statistics



Signal to noise ratio basis for calculating t

Weʼre just looking to see if the difference between
the two means is greater that the standard deviation.

sD

D = standarddeviation
Signal tonoise difference

if sD

D > t, signal is detectable

Signal to noise
At the 95% confidence level, the difference 
between the blank and sample must be at 
least 2.875 times larger that sbackground.

This assumes that NA = NB = 10.

As the number of measurements increases, 
the minimum difference in S/N will 
decrease.

Signal to noise
A statistical basis for determining a minimum S/N is 
important however it can be difficult to apply - based 
on method.

Example
Chromatographic methods

S/N based on peak heights or areas?
How many points do you use?

It can be confusing if the ‘response’ you use has been 
‘processed’ prior to your seeing it.

Signal to noise
With some methods, the minimum detection limit is a 
defined value.

Atomic Absorbance Spectroscopy.
DL = concentration at 1% absorbance.

Gas Chromatography.
DL = amount that gives a peak with an S/N=10, 
compared to a blank or blank area near the 
peak.

Precision at the
detection limit

We can define the precision as the relative 
standard deviation (RSD), so:

precision = RSD = 100 / (S/N)  
(assuming you want a % value)

At the detection limit, S/N = tα,v, so 
RSD = 100 / tα,v

Example
Assume you want 95% confidence with 

N = 10  (DF = 9).

RSD  =  100 / 3.25  =  30.8%

This is not very precise.

Experimentally determined detection limits may be so 
bad as to make quantitative analysis meaningless.



Optimization of a method

The key to improving a method is to improve 
the signal to noise ratio.

If we can reduce the variability of our signals,
we can obtain improved S/N even though 
xsample - xbackground is the same.  --

Optimization of a method

The first thing you should always do is:

Assure that all experimental parameters 
except the analyte are invariant (constant).

Examples - temperature, pH, solvent, 
matrix, instrumental conditions, steps in the 
procedure.

This will result in your ‘raw’ data having the 
smallest σ2

Optimization of a method

Prior to making each factor invariant, each must be 
evaluated for optimum response.
Example.  
You might find that the highest response is at pH = 2 or 
at a λ of 356nm.

In UV/Vis, we use a λ max to two reasons - highest response 
AND more invariant do to minor λ variations.

You must be concerned with the response of both the 
blank and the sample.
This will result in the largest (xsample - xbkg).--

Optimization of a method

After you have obtained the ‘best’ possible response, 
you may consider some type of signal treatment to 
improve S/N.

Types of signal treatment.Types of signal treatment.

Signal averaging Modulation

Boxcar integration Curve fitting

Filtering Smoothing

Signal averaging

A very common approach which involves conducting 
replicate assays.

Assumptions

Response is repeatable so as to give several values 
that can be averaged.

Noise is random and its effect will cancel out with 
an average of 0.

Signal = n
measurements

i =1

n

!

Signal averaging
For n measurements, S/N improves by N1/2.
Requires a large number of measurements to 
get a significant improvement in S/N.

N S/N improvement

2 1
4 2

9 3

16 4



Signal averaging
To get significant improvements, the method should be 
non-destructive and relatively fast.

That way you will be able to collect many 
measurements in a short period of time.

Example.  With a single λ, UV/Vis method, it is 
possible to make many measurements by continuously 
reading.  The same approach would not be valid for 
chromatographic methods.

Example
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Four identical traces with random 
(but different) noise added to each.
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Another view.
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Boxcar integration
A single-channel signal averager.

This method works by making multiple 
measurements at each point in a spectrum.

Steps
Turn detector on/off several times, storing the 
measured value when on.

Move to the next λ and repeat.

Boxcar integration
This approach will increase n ( the number 
of measurements ) at each λ.

The sample must be stable with respect to 
time and being analyzed.

Method will make run times longer but not 
as much as taking multiple spectra.

Goal is to cancel out noise by making 
several ‘on-the-fly’ measurements



Signal filtering and modulation

Filtering

Reduces noise by not allowing rapid changes in the 
signal.

Modulation

Applies a frequency to the signal that can be 
monitored and evaluated.

These are common approaches that can be used 
along with other methods.  Typically are part of an 
instrument’s electronics.

Signal filtering and modulation

Types of noise
! White

Random background.

! Flicker 
Changes in response with changing !operation 
or conditions.

! Interference
Noise spikes of random occurrence ! and 
intensity.

Signal filtering and modulation

white

flicker

interference

Signal modulation
Commonly done by ‘chopping’ the signal, 
usually at the source.

Many other approaches can be used 
(Zeeman effect for AA).

Detector (lock-in) will only be able to 
detect the modulated portion of the signal 
- from the sample.

Signal modulation

so
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chopper sample detector

modulated source

Approach will reduce noise because it does not
occur at the same frequency as the signal.

Signal modulation
The approach will also eliminate flicker and signal 
drift.

We can look
at the ratio of
background to
sample.

This allows for
the elimination
of drift and
flicker.

signalbkg

signalsample

zero
Rate must be significantly greater than sample changes



Post collection improvement 
of signal quality

Curve fitting.
Estimate signal parameters such as 
maximum amplitude, area, general shape

Smoothing, deconvolution, differentiation.
Enhance quality of data.

Curve fitting
Application of a function that approximates the data.  
Common in chromatography and spectral signals.

Curve fitting

RMAX

XMAX

f(x)MAX give
maximum response.

Integral of f(x) give
area.

Curve fitting
You don’t need to actually generate a 
function (or fit one) to get the desired 
results.

Lets look at how software for 
chromatographic integration works for 
detecting peaks.

The same approaches can be applied to 
many other types of signals.

Peak recognition

A peak is initially subjected to A/D conversion. This 
results in a series of discrete measurements at known 
time internals.  The instrument usually handles this.

width of a single
A/D reading

Peak recognition
The sampling rate must be high 
enough so that the number of 
points represents the signal 
being measured.

This example shows what
can happen if the sampling
rate is too low compared
to variations in the signal.



Peak recognition

Let’s assume that

The sampling rate is high enough to give a 
good measure of the peak.

Sampling is conducted at regular internals.

The sensitivity is good enough that we can 
adequately see the start and end of a peak.

Now, lets find the start, top and end of our 
peak and determine its area.

Peak recognition
Start of peak.Start of peak.

We can evaluate the change in our data (first
and second derivative) as a way of detecting
the start of a peak.

1st and 2nd derivative
are zero - no peak.

1st and 2nd derivative
are positive - possible peak.

1st and 2nd derivative
are still positive 
OK - its a peak.

Prior to this starting, the background variation is tracked and 
counting wonʼt start until you exceed a set S/N threshold.

Peak recognition
Top of peak.Top of peak.

We need to know the point of RMAX.

positive
slope

negative
slope

We can look for a change in slope as a way of
detecting the top of a peak.
The ʻtrueʼ apex can be calculated by using a
quadratic fit of the surrounding points.

Peak recognition
End of peak.End of peak.

Essentially the reverse of detecting the start
of a peak.

Typically, a system will
look for a minimum
slope for termination of
a peak.

The maximum peak width can also be used
as a factor for ending a peak.

Peak recognition
Peak area
Determined by summing responses over the 
determined peak region.  The baseline is typically 
estimated and subtracted.

Other integration options are usually available to 
improve the ‘fit’ of the model.
! Examples
!   peak width         tangent skimming
!   threshold           ‘non-peak’ baseline shifts. 

Data smoothing
These methods can be used to remove small variations 
in your data.

It can actually enhance larger ones. If overused, it can 
‘trash’ all of your data.

Boxcar averaging
Moving window
Golay smoothing

Least-squares polynomial smooth
Fourier transform smooth

Signal differentiation



Boxcar averaging
Takes the average or sum of a set of points as 
specific ranges.  This is best when you must be fast 
and can tolerate a loss in resolution.

This approach
is very useful

for GC/MS

box c
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Moving window
Pick a number of points and calculate 
an average.  
Store the value on a new array.
Move over one point and repeat the 
process.
You lose the first and last points for a 
three point smooth but the resolution of 
your data is maintained.

Moving window
Windows
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Golay smooth
Similar to a moving window smooth but 
applies Gaussian weight to the points.

Method assumes that each point is actually 
the center of a Gaussian peak.

The application of the weight will enhance 
the peak shape if the shape is truly 
Gaussian.



Golay smooth

For a 7 point Golay
smooth, XNEW would
be calculated as:

XNEW =

weights
100
60
20
1

100 x + 60 (x-1 + x+1) + 20 (x-2 + x+2) + 1 (x-3 + x+3)
262

golay c
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Smoothing noise.

Here is a data set that contains ‘white’, ‘flicker’ and 
‘spike/interference’ types of noise.

Boxcar

Raw!

boxcar+5!

Poly.(boxcar+5)!

Reduced 
white and 
spike 
noise.

Moving window.
Again, some improvement in white and spike.

Golay
Did the poorest job on spikes but they approximated peaks.



Smoothing is not always a good idea

Let’s look at a different data set.

FT-IR of 2-chlorotoluene, condensed phase.

Displayed in microns vs absorbance.

Standard dataset taken from NIST databook.

Unprocessed spectrum
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Signal differentiation
Used to make it easier to see small effects.

Examples. peak shoulder, peak resolution.
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IR example again.
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Not of much help in this case.  At 
least it would help find the 
location of peak tops.

It turns out that you 
simply don’t have good 
enough resolution for 
this type of filtering.

Some other methods
Least-squares polynomial smooth.
Fit a curve, linear or quadratic, to your 
data.  Used to model a subset of the 
data.

Fourier transform smoothing.
Take IFT of data, apply a smooth function 
(typically a simple multiplier) then take FT 
to re-transform.


