1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117 | #include <iostream>
#include <vector>
#include <memory>
// Abstract base class for differential equation solvers
class DifferentialEquationSolver {
public:
virtual ~DifferentialEquationSolver() = default;
virtual void solve() = 0; // Pure virtual function
virtual void initialize() { std::cout << "Initializing solver\n"; }
};
// Derived class for Euler method
class EulerSolver : public DifferentialEquationSolver {
public:
void solve() override {
std::cout << "Solving using Euler method\n";
}
};
// Derived class for Runge-Kutta method
class RungeKuttaSolver : public DifferentialEquationSolver {
public:
void solve() override {
std::cout << "Solving using Runge-Kutta method\n";
}
};
// Abstract base class for boundary conditions
class BoundaryCondition {
public:
virtual ~BoundaryCondition() = default;
virtual void apply() = 0; // Pure virtual function
};
// Derived class for Dirichlet boundary condition
class DirichletBoundaryCondition : public BoundaryCondition {
public:
void apply() override {
std::cout << "Applying Dirichlet boundary condition\n";
}
};
// Derived class for Neumann boundary condition
class NeumannBoundaryCondition : public BoundaryCondition {
public:
void apply() override {
std::cout << "Applying Neumann boundary condition\n";
}
};
// Base Solver class with adaptive time-stepping capability
class Solver {
public:
virtual ~Solver() = default;
virtual void solve() = 0;
};
// Derived AdaptiveSolver class
class AdaptiveSolver : public Solver {
public:
void solve() override {
std::cout << "Solving with adaptive time-stepping\n";
}
void adjustTimeStep() {
std::cout << "Adjusting time step\n";
}
};
// Function to demonstrate polymorphism
void solveProblem(DifferentialEquationSolver& solver) {
solver.initialize();
solver.solve();
}
int main() {
// Demonstrate virtual functions and polymorphism
std::cout << "Demonstrating virtual functions and polymorphism:\n";
EulerSolver eulerSolver;
RungeKuttaSolver rkSolver;
solveProblem(eulerSolver);
solveProblem(rkSolver);
// Demonstrate abstract class usage
std::cout << "\nDemonstrating abstract class usage:\n";
std::vector<std::unique_ptr<BoundaryCondition>> boundaryConditions;
boundaryConditions.push_back(std::make_unique<DirichletBoundaryCondition>());
boundaryConditions.push_back(std::make_unique<NeumannBoundaryCondition>());
for (const auto& bc : boundaryConditions) {
bc->apply();
}
// Demonstrate dynamic_cast
std::cout << "\nDemonstrating dynamic_cast:\n";
std::vector<std::unique_ptr<Solver>> solvers;
solvers.push_back(std::make_unique<AdaptiveSolver>());
// Remove the following line since Solver is abstract:
// solvers.push_back(std::make_unique<Solver>());
for (const auto& solver : solvers) {
solver->solve();
// Try to cast to AdaptiveSolver
if (auto adaptiveSolver = dynamic_cast<AdaptiveSolver*>(solver.get())) {
std::cout << "This is an AdaptiveSolver. ";
adaptiveSolver->adjustTimeStep();
} else {
std::cout << "This is not an AdaptiveSolver.\n";
}
}
return 0;
}
|