example1.cpp

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include <iostream>
#include <vector>
#include <cmath>

// Vector class to represent both 2D and 3D vectors
class Vector {
public:
    Vector(std::vector<double> components) : components_(components) {}

    Vector operator+(const Vector& other) const {
        if (components_.size() != other.components_.size()) {
            throw std::runtime_error("Vector dimensions do not match");
        }
        std::vector<double> result(components_.size());
        for (size_t i = 0; i < components_.size(); ++i) {
            result[i] = components_[i] + other.components_[i];
        }
        return Vector(result);
    }

    Vector operator*(const double& other) const {
        std::vector<double> result(components_.size());
        for (size_t i = 0; i < components_.size(); ++i) {
            result[i] = components_[i] * other;
        }
        return Vector(result);
    }


    friend std::ostream& operator<<(std::ostream& os, const Vector& v) {
        os << "(";
        for (size_t i = 0; i < v.components_.size(); ++i) {
            os << v.components_[i];
            if (i < v.components_.size() - 1) os << ", ";
        }
        os << ")";
        return os;
    }

    std::vector<double> components_;
};

// Function overloading for vector norm
double norm(const Vector& v) {
    if (v.components_.size() == 2) {
        return std::sqrt(v.components_[0] * v.components_[0] + v.components_[1] * v.components_[1]);
    } else if (v.components_.size() == 3) {
        return std::sqrt(v.components_[0] * v.components_[0] + v.components_[1] * v.components_[1] + v.components_[2] * v.components_[2]);
    } else {
        throw std::runtime_error("Norm function only supports 2D and 3D vectors");
    }
}

class Particle {
public:
    Particle(double mass, const Vector& position, const Vector& velocity)
        : mass_(mass), position_(position), velocity_(velocity) {
        std::cout << "Particle created at position " << position_ << std::endl;
    }

    ~Particle() {
        std::cout << "Particle destroyed at position " << position_ << std::endl;
    }

    void updatePosition(double time) {
        position_ = position_ + velocity_ * time;
    }

    void printState() const {
        std::cout << "Particle - Mass: " << mass_ << ", Position: " << position_
                  << ", Velocity: " << velocity_ << ", Speed: " << norm(velocity_) << std::endl;
    }

private:
    double mass_;
    Vector position_;
    Vector velocity_;
};

/* Given a particle, what can one do? 
   - Create a collection of particles
   - Create multiple collection of particles
   - Mix 2D and 3D particles
   - Make the particles move
   - Benchmark the motion
*/

int main() {
    // Create a 2D particle
    Particle particle2D(5.0, Vector({0.0, 0.0}), Vector({1.0, 2.0}));
    std::cout << "Initial state of 2D particle:" << std::endl;
    particle2D.printState();

    particle2D.updatePosition(2.0);
    std::cout << "2D particle after 2 seconds:" << std::endl;
    particle2D.printState();

    // Create a 3D particle
    Particle particle3D(10.0, Vector({0.0, 0.0, 0.0}), Vector({1.0, 2.0, 3.0}));
    std::cout << "\nInitial state of 3D particle:" << std::endl;
    particle3D.printState();

    particle3D.updatePosition(2.0);  // ERROR
    return 0;
    std::cout << "3D particle after 2 seconds:" << std::endl;
    particle3D.printState();

    // Demonstrate vector addition
    Vector v1({1.0, 2.0});
    Vector v2({3.0, 4.0});
    Vector v3 = v1 + v2;
    std::cout << "\nVector addition: " << v1 << " + " << v2 << " = " << v3 << std::endl;

    return 0;
}
Back to wk02_OO_basics