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Abstract. A new method is presented to extract nonstationary features of slow collective motion
toward time series data of molecular dynamics simulation for proteins. The method consists of the
following two steps: (1) the wavelet transformation and (2) the singular value decomposition (SVD).
The wavelet transformation enables us to characterize time varying features of oscillatory motions
and SVD enables us to reduce the degrees of freedom of the movement. We apply the method
to molecular dynamics simulation of various proteins such as Adenylate Kinase from Escherichia
coli (AKE) and Thermomyces lanuginosa lipase (TLL). Moreover, we introduce indexes to char-
acterize collective motion of proteins. These indexes provide us with information of nonstationary
deformation of protein structures. We discuss future prospects of our study involving “intrinsically
disordered proteins”.
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INTRODUCTION

Dynamical properties of proteins offer a crucial clue to understand how proteins perform
their functions [1, 2, 3]. In particular, slow collective motions involve large conforma-
tional changes of proteins, and play an important role in various aspects such as ligand
binding and signal transduction [4]. In order to investigate such dynamical behavior,
molecular dynamics simulations involving all atoms are performed to obtain time se-
ries data of how proteins move [5]. These data provide us with a detailed information
concerning motions of individual atoms which constitute the protein.

In order to capture large conformational changes, we need a method to extract slow
collective behavior from time series of individual atoms. Principal Component Analysis
(PCA) is one of the most frequently used methods for this purpose [6, 7, 8, 9]. However,
PCA is not suitable for extracting dynamical information, since PCA only pays attention
to the static properties of the distribution. This leads us to develop new methods for
characterizing slow collective movement [10, 11, 12].

Importance of these methods can be readily seen by considering a gap of time scales
between the all-atom simulation and functional behavior of proteins. We should also
note a large gap of time scales between the simulation and experiments such as single
molecule spectroscopy [13, 14]. Thus, direct comparison of these experiments with the
simulation is still difficult. This gap propels us to construct coarse grained models
which only take into account collective degrees of freedom [15, 16, 17, 18]. If we
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establish definite methods to extract slow collective motions from time series of the all-
atom simulation, such information provides us with a guideline for constructing coarse
grained models.

In extracting slow collective motions, nonstationary features of the dynamics are also
of interest. It is known that the dynamics of proteins involves a wide range of time
scales [1]. This comes from hierarchical structures of energy landscapes with many local
minima [19]. Wandering around such a rugged energy landscape, the protein changes its
tertiary conformation. Then, slow collective motions would vary depending on where
the system moves around on the landscape. Such time dependent features of collective
motions will be captured only by developing methodology which can treat nonstationary
time series. However, the methodology has not yet been fully developed which reveals
nonstationary features of slow collective motions.

The purpose of our study is to present a new method to extract nonstationary features
of coarse grained behavior from time series data of molecular dynamics simulation [20].
Our method consists of two steps: (1) the wavelet transformation and (2) the singular
value decomposition (SVD). The wavelet transformation enables us to characterize time
varying features in frequency components [21, 22, 23, 24, 25, 26, 27], and SVD enables
us to reduce the degrees of freedom of the data [28]. Combining these two, we can
extract nonstationary features of coarse grained behavior for proteins. Moreover, we
introduce indexes to characterize collective motion of proteins. These indexes provide
us with information of nonstationary deformation of protein structures. In this article,
we will focus our attention to our methodology, thereby leaving detailed discussion of
our application to our papers concerning Adenylate Kinase from Escherichia coli (AKE)
[20] and Thermomyces lanuginosa lipase (TLL) [29].

HOW FUNCTIONAL MOTION IS EXHIBITED BY PROTEINS

Here, we give a brief explanation of the present ideas on how proteins exhibit their func-
tions [3]. Concerning the relationship between conformational changes of proteins and
their functions, there exists two ideas: (1) “induced-fit” and (2) “population shift”. Sup-
pose that the protein changes its conformation to a closed structure binding the ligand.
According to the idea of “induced fit”, it is supposed that ligand binding induces col-
lective motions of the protein leading toward the closed structure. On the other hand,
based on the idea of “population shift”, it is proposed that the protein exhibits large con-
formational motions even without ligands binding, exploring those conformations near
the closed structure. Ligand binding only shifts the population of these conformations in
favor of closed structures. This ideas is also called the “conformational selection”.

Recently, a single molecule experiment using fluorescence resonance energy transfer
(FRET) reveals that a protein which works as an enzyme, Adenylate Kinase from
Escherichia coli (AKE), actually explores those conformations near the closed structure
even without ligands binding [13]. Their experiment has shown that ligand binding
increases the population of those conformations near the closed structure. Their results
indicate that the idea of “population shift” is relevant for AKE [30].

The “population shift” model implies that collective behavior exhibit transient fea-
tures as the system exhibits different conformations. This leads us to realise importance
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of time series analysis which reveals nonstationary aspects of the dynamics. In particu-
lar, it implies that functional motion of proteins can be extracted by analysing dynamical
behavior of these proteins even without ligands. This is a basic strategy of our study to-
ward understanding molecular function of proteins.

EXPLANATION OF OUR ANALYSIS

In this section, we explain the wavelet transformation and the singular value decompo-
sition, the two components of our method. Then, we present an overview of our method
to apply time series data of molecular dynamics simulation.

Wavelet Transformation

The wavelet transformation is regarded as a windowed Fourier transformation where
the width of the window is adjusted according to the frequency. The transformation
is suitable to analyse time series data whose frequency components vary as time goes
on. It has been applied in various fields including time series analysis for vibrational
motions of small molecules [22, 23, 24, 25, 26, 27]. There exists a variety of wavelet
transformations depending on the choice of the window functions [21]. There also exist
two types of wavelet transformations, i.e. continuous and discrete ones. Among them,
we adopt the Morlet wavelet transformation, one of the continuous transformations. It is
the simplest extension of the Fourier transformation, and can be regarded intuitively as
a finite time Fourier transformation. This is the reason why we use the Morlet wavelet
in our analysis.

For a given time series f (t), the Morlet wavelet transformation f̂ (t,ω) is defined by

f̂ (t,ω)≡
(

2ω2

σ2π3

) 1
4 ∫ ∞

−∞
ds f (s)exp

(
−iω(s− t)− ω2

σ2π2 (s− t)2
)
, (1)

where t is time and ω is frequency. In Eq.(1), the width of the window is 2πσ/ω and the
period of the oscillation is 2π/ω . Therefore, σ gives the number of oscillations within
the window. Thus, the width of the window changes according to the frequency. If the
value of σ is too small, we have difficulty of precisely assigning the frequencies. If it is
too large, the information concerning the transient features will be lost.

In actual calculation, the data is discrete and their number is finite. Therefore, we
approximate the integral over the infinite interval using a sum of finite terms. This
approximation introduces an artifact which is caused by the discontinuity between the
values of f (t) at the boundary points. This artifact affects the values of the wavelet
transformation f̂ (t,ω) for t which lies within the range of 2πσ/ω from the boundary.
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Singular Value Decomposition(SVD)

In the following, the singular value decomposition (SVD) plays the role of reducing
the number of degrees of freedom to represent a data. In general, a rectangular complex
matrix A of N rows and M columns can be decomposed as follows

A =UΣV †, (2)

where U is a N ×N unitary matrix, V is a M ×M unitary matrix, and Σ is a diagonal
matrix which has at most K ≡ min(N,M) non-zero diagonal elements, s1 ≥ s2 ≥ ·· · ≥
sK ≥ 0. This decomposition is called the singular value decomposition (SVD). Denote
the first K column vectors of U and V as U = (u1, · · · ,uK, · · ·) and V = (v1, · · · ,vK, · · ·)
respectively. Then, the original matrix A is represented by

A =
K

∑
k=1

skukv†
k . (3)

Here, the multiplication ukv†
k indicates the tensor product uk ⊗v∗k between the vector uk

and the vector v∗k which is the complex conjugate of the vector vk. We call u1, · · · ,uK
the left singular vectors, v1, · · · ,vK the right singular vectors, respectively. The non-zero
diagonal elements of the matrix Σ, i.e. s1 · · ·sK , are called the singular values.

Note that the following equalities hold

A†A =V Σ2V † (4)
AA† =UΣ2U† (5)

because of Eq.(2). Thus, Eq.(4) is an eigenvalue decomposition of the matrix A†A, and
Eq.(5) an eigenvalue decomposition of the matrix AA†. Therefore, the squares of the
singular values s2

1, · · · ,s2
K are the common eigenvalues of both A†A and AA†, the column

vectors of U are eigenvectors of AA† and the column vectors of V are eigenvectors of
A†A.

Suppose that the first K̄ of the singular values are much larger than the rest of them.
Then, Eq.(3) can be approximately written as

A ≈
K̄

∑
k=1

skukv†
k . (6)

This means that the matrix A can be well represented by the reduced number of vectors
uk,vk (k = 1, · · · , K̄). Thus, SVD provides us with a method of reducing a given data
to smaller degrees of freedom. In the following, we will use SVD for this purpose.

Overview of our method

Our analysis combine the wavelet transformation with the low-pass filter and SVD.
In the following, we explain our method when we apply it to time series data of the
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alpha carbons of the protein. First, we apply the wavelet transformation to each of the
time series of the Cartesian coordinates of the alpha carbons, and retain lower frequency
components of the wavelet transformation, i.e. we utilize the wavelet transformation
with the low-pass filter. Then, for each of the times, singular value decomposition is
applied to the matrix thus obtained. In the following, we explain our method for each of
the steps.

• Wavelet Transformation with low-pass filter
For a given times series qn(t) of the n-th degree of freedom with n = 0, · · · ,N −1,
we apply the wavelet transformation to obtain q̂n(t,ω). In actual calculation, we
apply the wavelet transformation to discrete time series {qn (ti)}i (n = 0, · · · ,N−
1) where i ranges from 0 to M−1, ti = iδ t with δ t the time step of the data. Then,
we obtain the transformed data {q̂n (ti,ωl)}i,l where both i and l range from 0 to
M − 1 and ωl =

2πl
Mδ t . Note that, for real time series {qn (ti)}i, q̂n (ti,ωM−l) is the

complex conjugate of q̂n (ti,ωl) for l = 1, · · · ,M/2−1.
We expect that oscillations with lower frequencies exhibit collective behavior in-
volving larger number of alpha carbons. Thus, we focus our attention to lower
frequency components of the wavelet transformation, that is, q̂n(ti,ωl)i,l and their
complex conjugates q̂n(ti,ωN−l)i,l ranging from l = M1 to l = M2 with 0 << M1 <

M2 << M/2− 1. Here, M1 is chosen to avoid the artifact caused by the finiteness
of the time series.
For each of the time ti, we construct the matrix A(ti) =

{
An,l(ti)

}
n,l where An,l(ti)

equals to q̂n(ti,ωl) for l = M1, · · · ,M2 or l = M − M2, · · · ,M − M1 with n =
0, · · · ,N −1. Otherwise, An,l(ti) is set to be zero.

• Singular Value Decomposition
Applying SVD to the matrix A(ti), we obtain the k-th singular value sk(ti), the
corresponding left singular vector uk(ti), and the right singular vector vk(ti), re-
spectively. Note that the left singular vectors can be chosen to be real and that the
M− l-th elements of the right singular vectors are the complex conjugates of their l-
th elements. While the left singular vectors describe oscillations in space, the right
singular vectors capture information concerning frequencies. The singular values
indicate the amplitudes of these components. In our study, the number of singular
values K is equal to min(N,2(M2 −M1 +1)) since we apply the low pass filter to
construct the matrix A(ti).

INDEXES CHARACTERIZING COLLECTIVE MOTION

In general, only a few singular vectors are sufficient for describing collective degrees of
freedom for proteins [20][29]. After extracting those degrees of freedom describing col-
lective motion of the protein, we characterize how the protein changes its conformation.
In order to do it, we define indexes which quantify collectivity of the motion for those
cases when the largest singular value is dominant [29].

We consider collective motion of the protein as a kind of motion when neighboring
Cα atoms oscillate along similar directions. Then, we characterize collective motion

371

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

98.230.36.231 On: Fri, 22 Nov 2013 18:41:29



around the p-th Cα as follows. Note that the three-dimensional vector ūp(t) is defined
using the first left singular vector by uk=1(t) = (ū1(t), · · · , ūp(t), · · · , ūN(t)) . We call
ūp(t) the oscillation vector of the p-th Cα atom at time t. Then, similarity of the
oscillation vectors can be captured by either their inner product or the cosine of the
angle between them. Neighborhood of the p-th Cα atom can be taken either along
the sequence of the protein or within its three-dimensional conformation. Thus, we can
introduce four indexes x(i)p (t) (i = 1, · · · ,4),

x(1)p (t)≡ 1
2n−1

∣∣∣∣∣ ∑
|p−q|<n

ūp(t) · ūq(t)

∣∣∣∣∣ , (7)

x(2)p (t)≡ 1
bp,r(t)

∣∣∣∣∣∣ ∑
|rp(t)−rq(t)|<r

ūp(t) · ūq(t)

∣∣∣∣∣∣ , (8)

x(3)p (t)≡ 1
2n−1

∣∣∣∣∣ ∑
|p−q|<n

ūp(t) · ūq(t)∣∣ūp(t)
∣∣ ∣∣ūq(t)

∣∣
∣∣∣∣∣ , (9)

x(4)p (t)≡ 1
bp,r(t)

∣∣∣∣∣∣ ∑
|rp(t)−rq(t)|<r

ūp(t) · ūq(t)∣∣ūp(t)
∣∣ ∣∣ūq(t)

∣∣
∣∣∣∣∣∣ , (10)

where n is the difference of Cα atoms from the p-th Cα atom along the primary
structure, rp(t) is the position of the p-th Cα atom in the three-dimensional space at
time t, r is the distance from the p-th Cα atom in the three-dimensional space, and
bp,r(t) is the number of Cα atoms within the distance r from p-th Cα atom at time t.

Our application of these indexes to AKE [20] and TLL [29] reveals that time de-
pendence of the indexes characterize nonstationary features of conformational change
for these proteins. For TLL, our analysis shows the following; First, time evolution of
the collective motion involves not only the dynamics within a single potential well but
takes place wandering around multiple conformations. Second, correlation of the collec-
tive motion between secondary structures shows that collective motion exists involving
multiple secondary structures. These results indicate that time series analysis of molec-
ular dynamics simulation is a fruitful approach for understanding dynamical behavior of
proteins.

INTRINSICALLY DISORDERED PROTEINS (IDPS)

As a future target of our method, “intrinsically disordered proteins (IDPs)” are important
subjects [31]. These proteins exhibit large conformational motion to the extent that their
secondary structures are not fully determined. Moreover, such motion is supposed to
play an important role in their functions. For example, “fly-catching“ mechanism is
proposed meaning that unfolding of a part of these proteins is efficient for searching for
ligands which they bind [32]. Then, new methodology is necessary which is applicable
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to large conformational motion which is exhibited by IDPs. We expect that our method
becomes an important tool to understand dynamical behavior of IDPs since our method
is applicable to such transient movement.

CONCLUSIONS

Here, we have explained our method to extract nonstationary features of slow collective
motion toward time series data of molecular dynamics simulation for proteins. The
method consists of the following two steps: (1) the wavelet transformation and (2)
the singular value decomposition (SVD). The wavelet transformation enables us to
characterize time varying features of oscillatory motions and SVD enables us to reduce
the degrees of freedom of the movement. Moreover, we have introduced indexes to
characterize collective motion of proteins. These indexes provide us with information of
nonstationary deformation of protein structures. As a future prospect, we have discussed
application of our method toward “intrinsically disordered proteins (IDPs)”.
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