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1 Introduction

This project is intended to explore and examine the ideas presented in a recent paper in the field
of computational material science. Specifically we hope to analyze and attempt to implement the
methods presented in the paper entitled: Time Series Analysis of Molecular Dynamics Simulation
using Wavelets by Mikito Toda. The object of this paper is to use a combination of wavelet
compression techniques coupled with the singular value decomposition to generate a reduced order
approximation of a molecular dynamics simulation. The first two sections will present a method
for designing a molecular dynamics simulation along with the algorithms used as well as some
additional caveats. The third section of this work will discuss the methods presented in the paper
as well as the reasoning including comments on the presented work. The final section will present
the results of our molecular dynamics simulation and attempt to implement the concepts presented
in the paper we wish to analyze.

2 Lennard Jones

In any particle simulation, one must define how the particles interact with one another in terms
of the forces that they exert on one another. For large body simulations, Newton’s gravitational
equations are typically used where the force from each particle interaction is dependent on the
inverse of the squared distance from one another and a gravitational constant. Unfortunately this
model is not very good at approximating small neutral particles and if we wish to consider quantum
effects. In order to circumvent these shortcomings, and provide a more robust method for modeling
small particles Lennard-Jones Potential is commonly used.

The Lennard-Jone potential is well known and often used mechanism for determining the forces
of particles within a system on one another. Additionally due to the simplicity of the method, it is
also used in many computational simulations. There is a plethora of existing software dedicated to
modeling particle interactions within a system yet for the purposes of this project we will attempt
to implement our own Lennard-Jones simulation. The most common representation of the Lennard-
Jones potential is in its potential energy form given in equation 1
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where ε is the depth of the potential well that the particle would be sitting in, σ is the diameter
of the set of particles themselves and rij is the radial distance between each particle respectively.
One thing that we notice from this equation is that the rij term accounts for a set of two particles
and not just a single particle. This means that the pairwise interaction between the two particles
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is going to have the same amount of energy applied to each one. Thus we must be careful to
implement an efficient algorithm such that the forces that act on each particle are not computed
twice.

Using the definition of the potential energy given by the Lennard-Jones potential in equation 1
we can define the force acting on a set of particles as:
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from this equation we can see the dilemma in computing the force on every pair of particles. The
first thought would be to include a double loop over all the particles which would require O(N2)
computational cost. But if we inspect the equations a little closer we can see that this method
would induce unnecessary computation. To avoid this problem we can modify the inner loop of
our force calculation to only compute the force over particles that have yet to be computed, this

incurs only a O(N(N−1)
2 ) computational cost. It is important to note that this new implementation

is still O(N2) except there is now a sizeable pre-factor in front of of the N2. We can visualize this
implementation using the pseudo-code provided below:

for iF=1:N

for jF=iF+1:N

Keep running sum of the force on the particle

With this algorithm we can more efficiently calculate the force acting on each of the particles
within our system.

3 Velcity Verlet

Now that we understand how to compute the force on each of the particles within our system,the
question becomes: how do we determine the positions and velocities of each of our particles within
the system. One of the most commonly used methods in the area of computational material science
is known as the Verlet algorithm. The Verlet algorithm seeks to compute the velocities and positions
of each of the particles within a system. To compute the positions, one can use the form:

r(t+ ∆t) = 2r(t)− r(t−∆t) +
F (t)

m
∆t2 +O(∆t4) (3)

where r and v represent the position and velocity information respectively and m defines the mass
of the particle. The velocity component can be calculated with the equation:

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2) (4)

These equations for the positions and velocity components of our particles have a number of
benefits but some major drawbacks as well. The benefits include numerical accuracy and stability,
which is paramount in a computational simulation. Also the energy and momentum within the
system is relatively conserved which is good for the practicality of this simulation. Unfortunately
though, this method requires a large amount of data from each time step to be stored. For the case
of the velocity calculation, we see that positional information from the past time step and the next
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time step are required which means this information must be stored in memory. To get around this
problem we can introduce the Velocity Verlet method.

The Velocity Verlet method seeks to decrease the amount of memory that must be stored in the
computation of the positions and velocities, while maintaining the accuracy of the standard Verlet
method. The positional equation for the Velocity Verlet method can be given by the form:

r(t+ ∆t) = r(t) + v(t)∆t+
1

2m
F (∆t)∆t2 (5)

and the velocity equation:

v(t+ ∆t) = v(t) +
F (t) + F (t+ ∆t)

2m
∆t (6)

At first the velocity equation looks as if we are going to need to store the force information
for multiple time steps. But with some closer inspection, we can see that the force term used to
calculate the velocity can be split apart and calculated in different steps of the algorithm. The idea
being that we calculate all the forces acting on a specify particle, use them to calculate the new
position of said particle and the first half of the new velocity. Then we compute the forces at the
new positions so we can apply this final piece to determine the velocities at the new positions. Using
this algorithm we do not need to store as much information and we can maintain the accuracy and
stability of the Verlet method. It can also be shown through some algebraic manipulation that this
Velocity Verlet method is in fact the same as the standard Verlet method.

4 Paper Analysis

The paper we wish to analyze, Time Series Analysis of Molecular Dynamics Simulation using
Wavelets, presents the concepts for applying a wavelet compression technique coupled with the
singular value decomposition to create a reduced order approximation of a molecular dynamics
simulation. The idea behind coupling these two methods is to account for the temporal oscillatory
nature of the particles using wavelet compression and then use the singular value decomposition to
reduce the degrees of freedom in the system. The object of this paper is to apply this method to
protein atom movement within a system. The proteins being analyzed in this paper are Adenylate
Kinase (ADK) from Escherichia coli and Thermomyces lanuginosa lipase (TLL). ADK is used as
an enzyme that catalyzes the interconversion of adenine nucleotides and is an protein for cellular
energy homeostasis. Homeostasis is a mechanism that allows a property to be regulated in order to
preserve homogeneity. Unfortunately this authors knowledge of proteins is very limited so there will
not really be any more discussion on the properties and uses of the proteins in this study. Instead
the focus will be on the computational methods of the work.

4.1 Morlet Wavelet

After giving a brief explanation on the motivation behind the study along with some further expla-
nation of the proteins being used, the author then moves into the explanation of using the wavelet
transform to decompose the positional data into a set of wavelet coefficients. The paper explains
how the wavelet transform can be thought of as a windowed Fourier transform because wavelets
are not infinitely defined unlike the sine and cosine terms in a Fourier transform. Also the paper
notes that there is a large number of discrete and continuous wavelets that have been proposed and
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analyzed in a wide area of research. This paper will specifically focus on the Morlet wavelet which
is a continuous wavelet that can be a real or a complex valued function. The nice thing about
the Morlet wavelet is that it is not defined by a recurrence relation like the Daubechies family
of wavelets, meaning a specific value can be mapped directly to the Morlet wavelet. An example
Morlet wavelet is provided in Figure 3 and has support over the domain [−4, 4].

Figure 1: Morlet Wavelet

The paper then goes on to define the Morlet transform in terms of a function f(t) which can be
sampled at f(s). Using the definition of the function along with the time t, frequency ω and the

window 2πσ
ω , the Morlet wavelet transform f̂(t, ω) can be defined:

f̂(t, ω) =
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4.2 Singular Value Decomposition

Once the wavelet transform has been defined, the next step in the paper we are analyzing is the
singular value decomposition (SVD). The idea of the singular value decomposition is to reduce
the degrees of freedom of the system in the hopes that the system could be operated on and then
reconstructed with minimal effort. From a computational scientists viewpoint, the singular value
decomposition is an invaluable tool to have at your disposal. The SVD can be defined by the
relation:

A = USV T (8)
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where A is the matrix that one would like to decompose, U and V are unitary matrices that
represent the column and row space of A respectively and S is a diagonal matrix containing the
singular values. The singular values can be thought of as the importance of each column/row in the
U and V matrices. When one wishes to form a reduced order model, the hope is that the majority
of the information contained within A can be represented in only a few singular values. This way
minimal information is needed to construct a reduced order solution.

After explaining these two concepts, the paper then turns its attention to using these methods
to generate a reduced order approximation to a molecular dynamics simulation. The first step
is to decompose the time series approximations into wavelet coefficients using the Morlet wavelet
decomposition. The paper defines a time series as qn(t) where n is the number of degrees of
freedom. So in the case of our molecular dynamics simulation that we would like to construct, the
degrees of freedom is going to be dependent on the number of particles we have in the system.
Then we can form the decomposed time series q̂n(ti, ωl) at the discrete time intervals ti. We also
wish to perform the decomposition with a number of different frequencies in order to capture the
oscillatory nature of the particle so we can define a number of different frequencies ωl to test for.
Using q̂n(ti, ωl) we now have all we need to construct the A matrix to be used in our singular value
decomposition. The paper instructs us to assemble our A matrix at a discrete time step A(ti) as
{An,l(ti)}n,l. This means that the number of particles in the system determine the number of rows
of A while the test frequencies define the columns. With this definition of A, the paper believes
that the oscillatory nature of the particles in a system can be adequately represented using only a
few degrees of freedom.

4.3 Comments

Apart from being at times difficult to read, this paper is relatively concise in explaining its method-
ology to one that is already familiar with the concepts of wavelet’s and the singular value decom-
position. For one not familiar with either of these topics, this could be a very difficult paper to
understand due to its brevity in explaining difficult computational science topics. Additionally this
paper could benefit dramatically by including an example problem with more plots and figures
intended to illustrate its point. But in the end this is really just an exploratory theoretical paper
intended to propose a new methodology that could be used in future research applications.

5 Implementation and Results

Now that we have read the paper: Time Series Analysis of Molecular Dynamics Simulation using
Wavelets by Mikito Toda and understood the process of creating a reduced order approximation
to a molecular dynamics simulation, we hope to be able to implement this new proposed method.
Due to time restrictions we will not be able perform much post processing on the reduced order
model, like reconstructing a solution. There is also very little contained within the paper regarding
how one would actually reconstruct the reduced order simulation. So instead we will focus on
constructing our molecular dynamics simulation and then building the reduced order model using
the techniques defined in the paper. To do this we must first we must construct the Molecular
Dynamics simulation with the Lennard-Jones Potential embedded in a Velocity Verlet Algorithm.
Then using the results from this simulation we will build an A matrix at every time step with the
wavelet transform. Finally using the singular value decomposition we will reduce the degrees of
freedom that the system depends on.
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5.1 About the Molecular Dynamics Algorithm

As mentioned, we will be using a Lennard-Jones Potential embedded in a Velocity Verlet algorithm
to construct our molecular dynamics simulation. Following the general outline of the Velocity Verlet
algorithm was straight-forward but there were a few difficulties. One of the biggest difficulties was
the implementation of periodic boundary conditions which required us to consider particles near
the boundaries within 2.5σ. Additionally because we need to store positional information for each
of the particles at each time step for use in the wavelet transform, we had to use a three-dimensional
matrix to define each of our (x, y) coordinates at each time step ti. One last thing that is worth
mentioning is that the initial velocities and positions of the particles were generated randomly
within a given domain. This means that in all likelihood the system will not reach an equilibrium
state as the particles will continue upon their trajectories until influenced by other particles.

5.2 About the Code

The code is written in MATLAB and arranged into three parts:

1. Verlet.m: contains all the molecular dynamics simulation with the velocity Verlet algorithm
and Lennard-Jones Potential

2. pbc.m: takes as input two points and decides whether they are close enough to be considered
in the force calculation. The periodic boundary conditions are also handled here

3. Decompose.m: Runs through the wavelet transform and singular value decomposition as de-
fined in the paper.

5.3 Results

The majority of the time spent on this project was put into getting the molecular dynamics simu-
lation working with more than two particles. But after some struggles this author believes that the
code is now an acceptable implementation of the velocity Verlet algorithm using the Lennard-Jones
potential. To verify whether the simulation was working a system of two particles was observed
under the following conditions:

• ∆t = 0.01

• T = 4

• σ = 0.05

• Particles of mass m = 1 placed randomly in a square domain of size 1

• Initial velocities randomly selected between [0, 0.005]

With this set of parameters, we can track the particles over time shown in Figure 2
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Figure 2: Two particle system in a box with periodic boundary conditions

Figure 2 also contains a zoomed in figure where we see the two particles clearly acting on each
other at the end of the simulation. It appears that the particles may be close enough initially
but due to the random positions and trajectories they must be far enough away to not affect one
another. Using this simulation as a guide we now have some confidence in our molecular dynamics
simulation.

The next step is to consider a system with more particles occupying the same domain and under
the same conditions. So if we increase our system size to 20 particles, our plot becomes a little
more cluttered:

Figure 3: 20 particle system
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From this plot we see a jumbled mess of information which is to be expected. Since we now have
ten times the number of particles in our box, the paths that each of them follow is difficult to keep
track of although we should note a few things from this plot. First we see that there are a number
of particles that appear to just jump back and forth across the box. This is due to the periodic
boundary conditions that we have imposed because if a particle leaves our box it must enter the box
on the other side with corresponding velocity components. Also we notice that the particles appear
to zoom quickly across the domain, this is most likely due to the large mass compared to the size
of the particles and size of our system. More massive particles mean greater forces and increased
velocity after being influenced by a new particle. Because this is a study of the computational
methods and not the application we note that some of the parameter values may be unrealistic.

Now that the difficult part of building the molecular dynamics simulation is done, all that is left
to do is the wavelet transform and singular value decomposition. Using the methods discussed in
this study based of the ones proposed in the paper we analyzed we can perform the Morlet wavelet
transform on our particle positions. The built in MATLAB function, cwt is used to generate the
continuous wavelet coefficients using a logarithmically generated vector of frequency components
from 10−2 to 101. Once we have generated these wavelet coefficients we can plot them with respect
to the particle that they are trying to represent:

Figure 4: Wavelet Coefficients
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Once the position data has been transformed into the wavelet coefficients we can perform the
singular value decomposition on the data to extract the singular values and the two unitary matrices.
Figure 5 displays the singular values for the four time instances we are analyzing. Figure 6 shows
the reduced wavelet coefficients with respect to the particles and Figure 7 shows the reduced wavelet
coefficients with respect to the frequency wavelet they are analyzed with.

Figure 5: Singular Values
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Figure 6: Reduced Basis with respect to the particle
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Figure 7: Reduced Basis with respect to the frequency

From this set of plots we can see that the singular values appear to decrease logarithmically as
expected meaning that only the first few basis functions contain the majority of the information
about the wavelet coefficients. In Figure 6 we see that the coefficients appear to be zero mean
oscillatory with respect to the particles in the system. Finally in Figure 7 we see that the fre-
quency appears to play a large effect on whether the wavelet coefficients are captured, which is
understandable.

5.4 Final Comments

Work of this kind is very exploratory in nature and has really yet to be exposed to real practical
problems. But until these methods are subjected to rigorous practical testing the best thing we, as
computational scientists, can do is to continue to experiment with the tools available to us. There
is a lot of future work that would need to be done with this sort of study but there certainly is
some potential.
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