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The planets

The stars form patterns that remain fixed, although the
sky as a whole seems to rotate from east to west. For example,
a distinctive group of seven stars shaped like a saucepan is
known as the Big Dipper in the west and as Bei Tou (north ladle)
in China. But there are five visible exceptions: the planets.
Let us start with the brightest.
‘yVenus_
You might look for Venus one night and look in vain, but
after a few nights you glimpsevit shortly after sunset when
the sky has just become dark enough for it to be seen. It is
just above the western horizon and sets almost 1mmed1ate1y. The
next night it sets a little later and can be seen for a little
longer. The length of time for which it is visible increases each
night for three or four monthsbut then begins to decrease and
eventually Venus disappears. This phase, Venus as "evening star')
lasts about nine months. Venus then remains invisible for a
period which varies from 2 days to 20. Then one morning you see
it just before sunrise. It is almost immediately swamped by the
glare of the rising sun. The next morning it rises a little
earlier and can be seen for aalittle longer. The length of
time for which it is visible increases and then decreases to
zero. Venus is the "morning star" for about nine months.
It remains invisible for about 50 days. Then it reappears
in the morning and the cycle of appearances and disappearances
is repeated. The technical name for this cycle is synodic
cycle and the time taken by it (which varies slightly) is a

synodic period.

(Venus behaves in this way because it it circuits the sun
in an orbit smaller than the earth's, and in a plane very close
to the plane of the earth's orbit. It is never more than
about 47° from the sun.)
The Incas said the the sun, as lord of all the stars, commanded
Venus to be near him, sometimes in front and sometimes behind,

because it was the most beautiful star.

The very early Greeks thought that Venus was two planets:

Fosphorus in the morning and Hesperus in the evening.



Venus is the planet for which we have the earliest known
details. The famous Venus tables of Ammisaduqa from ancient Babylon
well before 1000 B.C. gave dates of appearances and disappearances.
Historians have tried to match these with dates calculated from
modern data (impossible to do exactly: we don't knéw the stafe of
the sky nor the keenness of the observer's eyesight>. The
probable dates have been narrowed down to three, called the high,
middle and low chronologies.

Five pages in a Mayan codex deal with Venus. Along the bottom
of each page are the Mayan numerals for 236, 90, 250, 8.; These
are roughly the number of days in the four phases of the synodic
cycle, and they add‘up to 584, which is the number of days in
the average synodic cycle to the nearest whole day. (The Mayas
dealt only in whole days). J. E. S. Thompson had an ingenious
theory of a way in which the Mayas could have modified the
table for use over a long period, necessary because the average

period is not quite 584 days. ¥ou will find details in Anthony

Aveni's Skywatchers, pages 189 and 190, and in my Early astronomy,
on pages 119 and 120,

The later Babylonians, from about 300 B.C., treated Venus
and the other planets mathematically in detail.

The planets do not wander all over the sky.'In aplanetarium,
in which the visible sky is represented as a hemispherical dome,
the path of the sun is a semicircle. If the dome were completed
to a whole sphere the path would be a circle; in fact, a great
circle., This is the circle that you would get if you cut a
spherical ball in half by a cut through the centre. (If you miss
the centre, you get a small circle). The technical name for the
path of the sun on the sphere is the ecliptic. The planets
move along the ecliptic, never deviating far from it. The
Babylonians ignored deviations from the ecliptic.

They divided the ecliptic into twelve equal segments: the
signs of the zodiac. They often used Sumerian (just as mediaeval
Europeans used Latin, or Hindus used Sanskrit). The Sumerian names

of the signs (from west to east) are:-

7/ . 4 7z 4 sh b
hun mul mash kushu a absin rin gir Ra. mas gu zi

— ————




(mash and méﬁh 1ook similar in modern spelling, but the cuneiform
symbols are quite different.)

The Babylonians divided each sign into thirty equal parts
called ush (we use the same unit today, calling it a degree).
They used these to define positions on the ecliptic. The modern
name for angular distance round the ecliptic is celestial '
longitude and I shall translate Babylonian positions into longitudes,
treating hun 1 ush as longitude 1°, so mul 5 ush is 35°, zib 30
ush is 360° (or 0°), and so on.

The sun moves steadily eastward through the signs giving
rise.(through the Greeks and the Romans) to phrases 1ike "born
under Aries". .

When Venus first appears in the evening it is east of the
sun along the ecliptic-and as time passes it moves further east,
then it reverses jts motion. The reverse, westward, motion is
called retrogression. The four appearances and disappearances of
Venus and the beginning and end of retrogression are called

gynodic phenomena. The Babylonians investigated the times when

these phenomena occurred and the the longitude of Venus then,

Venus itself moves quite irregularly, but each individual
phenomenon moves much more regularly. For example, the
beginning of retrogression occurs when Venus is just past its
greatest angular distance east of the sun, and this angular distance
does not vary much. So this phenomenon moVveSs more or less in
step with the sun, . whose motion through the signs is only
slightly irregular.

The Babylonians devised (for all the planets) theories that
enabled them to calculate the time and longitude of an
occurrence of a phenomenon from the time and longitude of its
previous occurrence, and they produced tables giving times and
longitudes of successive occurrences.

Oné table for Venus is particularly simple. Fach occurrence
of the phnomenon is 215°30' further round the ecliptic than the
previous one, and 19}%% months later. (I have translated the
Babylonian sexagesimal fractions into modern ones.) The
synodic period of Venus is over a year but less than two years,
so between two occurrences Venus covers 360° *+ 215°30', which

is equal to 1151/720 revolutions. Then in 720 synodic periods

)
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the phenomenon makes 1151 revolutions, which takes 1151 years.
So the table appears to be based on the relation 720 synodic
periods = 1151 years.

Another tablet is a little more complicated. From it we
can deduce five synodic arcs: 210530', 214°30', 212°, 224°10",
and 216°20'. Other tablets give slightly different figures.

" The Chinese, in contrast, tracked Venus itself through its
synodic cycle, giving changes in longitude in Chinese degrees
and the time taken for each change in days. A Chinese degree
ijs the angular distance covered by the sun in one day. The
early Chinese took the year to be 365+ days, so.there are 365+
Chinese degrees to a complete circle.

The Si fen. almanac, about A.D. 100, gave the following
figures.

Days | 91 91 46 8 10 10 10 8 46 91 91 82 + 562/23320
Chinese degrees l 113 106 33 0 -6 -8 -6 0 33 106 113 100+

The table starts with a first appearance 1in the evening. Venus .~

then covers 113 Chinese degrees while the sun covers 91, so it is
getting further away from the sun, as explained earlier. Then
Venus slows down,slightly at first. It covers 246 Chinese degrees
in 246 days (the first five entries) so it 1is back at the same
angular distance from the sun and on the point of disappearing.
It remains invisible for 10 days, then reappears in the morning
on the other side of the sun. The last column gives the second
period of invisibility. The reason for the gargantuan fraction
is that the Chinese had an estimate that 2915 synodic periods
take 4661 years, and calculated the number of days in a synodic

period precisely.

Before 1 describe how later astronomers, starting with the
Greeks, treated Venus, let us see how the Babylonians dealt with

the other planets. (The Chinese treated them .all in the same way.)



Mercury

Mercury behaves like Venus except that it is nearer the sun

and much less bright.

It has the same synodic phenomena.

We are lucky enough to have found a tablet that explains how

the Babylonians dealt with Mercury.For a first appearance in the

morning, MF (the abbreviation is due to van der Waerden), they

divided the ecliptic into three zones: 121° to 236° to 60° to 121°.

If an MF occurs in the

first zone, to find the longitude of the

next MF, add 106°. If this takes us past the end of the zone,

multiply the portion past the end by 4/3. (If this takes us into

a third zone, another step will be needed.) If an MF occurs in the

second zone, add 141°20'; multiply any portion past the end by 2/3.

If an MF occurs in the

third zone, add 94°13'20"; multiply any

portion past the end by 9/8. (Note. 141°20' is 4/3 of 106°; -
94°13'20" is 2/3 of 141°20'; 106° is 9/8 of 94°13'20".)

The Babylonian description is quite terse, and this is an inter-—

pretation rather than a translation. However, we have found a

tablet that gives the longitudes of MFs of Mercury, and if we

apply the procedure above to it we get the right result whenever

two successive longitudes are preserved.

To find the date of an MF take the increase in longitude (in

degrees) between it and the previous MF and add to it 03 30 39 04120.

This is a sexagesimal fraction: the 30 means 30 sixtieths, the 39

means 39 sixtieths of a sixtieth, and so on. Interpret the result

as thirtieths of a month and add it to the date of the previous MF.

ML and EL are not

MF and EF respectively.

the longitude of MF an
(It varies from 12° to

to the longitude of EF

found by using zones; they are deduced from
The longitude of ML is found by adding to
amount that depends on the longitude of MF.
44°.) The longitude of EL is found by adding

an amount that depends on the longitude of

EF. (It varies from 14° to 46°). The dates of ML and EL are found
similarly by adding varying amounts to the dates of MF and EF.

0ddly enough, the

Babylonians had a second system for Mercury

that worked the other way round. ML and EL were computed using

zones and MF and EF were deduced from  them. We do not have a

Babylonian description

of this system, but we do have tablets

giving successive longitudes and, knowing the general method,

we can deduce the zones that fit (DIO, to be published).



The tablets were arranged in columns. One pair of columns
gave longitudes and dates of successive occurrences of MF, the
next pair ML, then EF, then EL. . So each column givesxsuccessive
longitudes and dates of one phenomenon; each row gives data for

all four phenomena in chronological order.

Mars

Mars behaves quite differently from Venus. One morning it

rises long enough before the sun to be seen briefly before

being swamped by the glare of the sun. This first appearance 1S
denoted by MF. Mars rises a 1ittle earlier each day and can be
seen for longer. This continues until Mars rises at sﬁnset-énd
sets at sunrise, and can be seen the whole night from dusk, when
the sky becones dark enough for Mars to be seen, until dawn, when
the sky becomes too light. Mars is then opposite the sun in the
sky. This is called opposition, OP. Eventually Mars rises just
after sunrise and sets just after sunset. It can be seen briefly
from dusk until it sets. It then becomes invisible, EL.

If you watch Mars against the background of the stars, you
will see that at opposition it 1is moving westwards along the
ecliptic: it is retrogressing. After awhile retrogression ends, RE.
After Mars reappears it is moving east, but after:.a while
retrogression begins again, RB. OP, RE, EL, MF, and'RB are the

synodic phenomena for Mars and form its synodic cycle, which takes

about 780 days.

Jupiter and Saturn behéve similarly, their cycles taking
about 400 and 380 days respectively.

These planets behave like'this because they circle the sun
in orbits larger than the earth's. They are the outer planets,
Mercury and Venus are the inner planets. :

For the MF, RB, and EL of Mars the Babylonians divided the
ecliptic into six zones and used the same procedure as for
Mercury. The boundaries of the zones are 30°, 90°, 150°, 210°,
270° and 330°. The arcs added in the first step are 45°, 30°, 40°,
60°, 90° and 67°30'. To get the date of an occurrence add
23 57 52 plus the increase in longitude to the date of the

previous - occurrence,



go far, the Babylonians have ignored the arc RB-OP-RE, the
arc of retrogression. They deduced the longitude of OP from the
longitude of RB and we have found four different ways in which
this could be done. The length of the arc depends on the longitude
v°f RB. In two of the systems it varies from 6° to 7°12', in the
other two from 6° to 7030', The arc from OP to RE is one—and-a-

half times the arc from RB to OP:

Jupiter

For Jupiter there were several systems. One had two zones,
with added arc 30° from longitude 85° to 240° and 36° for the rest
of the ecliptic. We have found tablets using this for RB, OP, RE,
and EL. One tablet gives the increases in date between occurrencces
as well as the actual dates. In the first zone the interval
between succeséive dates is 12 months plus 42 05 10 thirtieths,
(It is the thirtieths that are tabulated.) In the other sector
the number is 48 05 10. In each case we add 12 05 10 to the
increase in longitude (plus 12 months) to get the interval of
time. '

The Babylonians also had several systems using four zomnes

and one using six.

But besides all these the Babylonians had also an entirely
different‘system for Jupiter that does not use zones. Otto
Neugebauer called it system B.

Let us call the increase in longitude between one occurrence
and the next a synodic arc. Specifically, it is the synodic arc
corresponding to the longitude of the first occurrence.

In system B there is a fixed amount by which the synodic
arc changes from one occurrence to the next. There is also a
fixed maximum and a fixed minimum. The arc starts by increasing;
when it reaches the maximum it decreases; when it reaches the
minimum it increases again, and so on.

The maximum and minimum do not appear in the tablet because
they occuf between entries, but they are easily deduced. How

this is done is most easily explained by an example.



In ACT 620 the change from one entry to the next is 1°48".
The last entry before the maximum is 36°54'. The arc increases
from there to the maximum and then decreases to 37°22'. The total
change is 1°48' so the maximum must be at 38°02'. The minimum is
28°15'30".

The synodic period behaves in the same way; it increases
or decreases by 1°48' at a time. The maximum and minimum are
50°07'15" and 40°20'45", giving the same difference as for the
synodic arc.

We can make an interesting deduction. One synodic period
causes a change of 108' in longitude. The total change from maximum
back to maximum is 1173'. This corresponds to one revolution
round the ecliptic and so takes one sidereal period. So (dividing
both numbers by 3), 391 synodic periods equal 36 sidereal periods.

Relations of this sort seem to underlie Babylonian theory.
They can be found by noting when a synodic phenomenon is repeated
at the same longitude and counting the number of synodic cycles
and the number of circuits of the ecliptic between the two
occurrences.

They could also be built up from data that do not take so
long to find. (391 synodic periods take over 400 years.) For
example, ACT 812 shows that in 65 synodic periods Jupiter circles
the ecliptic 6 times plus 6°. ACT 813 shows that in 11 synodic
periods Jupiter circles the ecliptic once less 5°,., Combining
five of the first with six of the second, we find that in 391
synodic periods Jupiter circles the ecliptic exactly 36 times;
the odd degrees total zero.

Saturn

The same system is used in a table for Saturn. The changek
from one entry to the next is 12'. The maximum and minimum
synodic arcs are 25 32 03-07 30 and 2241 23 07 30 degrees, soO
the total change from maximum back to maximum is 341'20".

So (multiplying both figures by 3/4) we find that 9 sidereal

periods equal 256 synodic periods.




" Planets in general

Similar relations underlie the theory that uses .zones.

For example, one tablet says that for Mars 133 synodic periods
equal 151 sidereal periods (and take 284 years).

Such relations determine the average synodic arc. If X
synodic periods equal- Y sidereal periods, the average distance
round the ecliptic covered by the planet in one synodic period
'{s Y/X revolutions, and the average synodic arc is the fract10na1
part of this. So the average synodlc arc for Saturn is 9/256
revolutions, for Jupiter it is 36/391, for Mars it is the fractional
part of 151/133, which is 18/133. This, to the nearest minute of
arc,is 48°43', ‘a figure that is actually given in ACT 8lla.

This gives rise to an interesting piece of mathematics. The
Babylonlans seem to have regarded the different added arcs as
representlng the different speeds at which the synodic phenomena
progress throughthe ‘various zones. If a body goes at speed u for
a distance a, éﬁeed v for distance b, and so, the total time
taken is a/u + b/v + ... and the total distance is 2 + b +
so ‘the average speed is a/u + b/v + ... divided by a + b +

For the Babylonians, u, v,... are the added arcs, and a, b, ...
are the lengths of the zones. Then a + b + ... =.1 (one whole
revolution), so the averasge "speed", i.e. the average synodic
arc, is 1 divided by a/u + b/v + ....

For the tablet for Jupiter that uses two zones, a = 155°3
b = 36.°, u = 30° and v = 36°, ;o a/u + b/v = 155/30 + 205/36
= 186/36 + 205/36 = 391/36, giving an average synodic arc 36/391,
revolutions, just as we found from ACT 620.

Not only that, but one of the systems that uses four zones
has zones 120°, 53°, 135°, 52° and added arcs 30°, 33°45', 36°,
33°45' respectively. This gives the same result.

For Mars, the zones of 60° and the arcs of 45°%, 30°, 40°,
60°, 90° and 67°30' yield 133/18, as found earlier.

If we apply these calculations to Mercury, we find four

different synodics arcs for the phenomena MF, ML, EF and EL.



Ceometrical treatment

The earliest details that we have are from Eudoxus, shortly
after 400 B.C. He treated all the planets in the same way.

He pivoted one transparent sphere inside another. If the
inner sphere were set rotating relative to the outer sphere and
if the outer sphere were set rotating at the same speed in the
opposite direction about the same axis, the motions would cancel
and the inner sphere would remain still. But Eudoxus had the two
axes at a slight angle to each other and a point on the inner
sphere half-way between the pivots moved round a figure-of-eight.
Greek geometry was capable of proving this.

Eudoxus pivoted these spheres inside a third sphere that’ rotated
parallel to the ecliptic so that the figure-of-eight carrying the
planet moved round the ecliptic. He then pivoted this sphere
jnside a fourth sphere which rotated parallel to the equator.

This accounted for the rising and setting of the planets.

This ingenious piece of geometry has astronomical defects. It

has the planet on the ecliptic twice in a synodic period(whiéh is
presumably the time taken to go round the figure-of- elght) If
the planet moves round the figure-of-eight fast enough relative

to the speed at which the figure-of-eight moves round the ecliptic,
that will account for retrogression. But if the angle between

the axes is chosen to give the right maximum deviation from the
ecliptic it will give the wrong length to the distance covered in
retrogression, and vice versa. The description that has come down
to us (from Aristotle) has no numerical details, but if we try
real periods, latitudes and retrogressions, it just does not work.

Aristotle built Eudoxus's model not merely into a complete
solar system, but into a complete universe. He started with a

sphere rotating parallel to the equator carrying the stars.

This sphere serves as the outermost sphere for Saturn. To the
innermost sphere of Saturn he pivoted three spheres rotating in

the opposite direction to the spheres of Saturn and cancelling

their motion, ending with a sphere rotating parallel to the

equator, which serves as the outermost sphere for Jupiter. And

so on. Callippus tried to improve the model by adding extra spheres

but this led nowhere and later Greek theories were quite different.



We have very little information about Greek treatment of
the planets between the work of Eudoxus and the encyclopaedic
Syntaxis written by Klaudios Ptolemaios (usually called Ptolemy:
not one of the pharaohs of that name) about 150 A.D. The only
earlier work that he mentioned is a geometrical theorem by Apollonius
which enables us to find when retrogression begins and -ends.

Ptolemy pointed out'that a planet exhibits two anomalies
(departures from regularity), one depending on the position of the
sun, the other on the longitude of the planet. His aim was to
show that these can be accounted for by regular circular motions.
(As we shall see, he failed.)

In a traditional philosophical dogma, a point moving at
constant speed round a flxed circle is moving regularly, and so
is a point moving at constant speed round a circle whose centre
is moving regularly.

Ptolemy then listed some numerical data. He was clearly
thinking of retrogression being produced by the planet moving
round a circle (an epicycle) because he referred to a synodic

period as a return of anomaly, made up of 360 degrees of anomaly.

His data, in which revolutions are revolutions in longitude, are:-

Saturn
57 returns of anomaly = 59 years plus about 1% days = 2 revolutions
plus 1°43'
Jupiter
65 returns of anomaly = 71 years less about 4—- days .
= 6 revolutions less Az
Mars

79 years plus 3 + L 4+ 2 days

37 returns of anomaly ” o

42 revolutions plus 33

Venus
5 returns of anomaly = 8 years less 2 + %+ + i-days
= 8 revolutions less 2%°
Mercury
145 returns of anomaly = 46 years plus about 1 3% days

= 46 revolutions plus 1°.

11



Ptolemy noted that for an outer planet the number of years is
always the number of returns of anomaly plus the number of
revolutions.

Ptolemy's data are clearly corrections to the well-known

Babylonian relations

Saturn: 57 synodic periods = 59 years = 2 sidereal periods
Jupiter: 65 synodié periods = 71 years = 6 sidereal periods
Mars: 37 synodic periods = 79 years = 42 sidereal periods
~Venus: 5 synodic periods = 8 years = 8 sidereal periods
Mercury: 145 synodic periods = 46 years = 46 sidereal periods.

(These are found in texts called "goal-year texts".)

In later chapters of the §yntaxi§_Ptolemy‘compared observations
of his own with observatidns made some 400 years earlier and
computed the following results, in which I have converted Ptolemy's
Egyptian years plus days into days and revolutions in anomaly
into degrees (and minutes) .

Saturn: @267L°27' of anomaly take 133079% days

Jupiter: L24305°45‘ of anomaly take 137733 days less about an hour
Mars: | 69181°43" of anomaly take 149881§ days approximately
Venus: 02138°25' of anomaly take 149452 days

Mercury: 456726°53"' of anomaly take 147013 déys 133 hours.

' Calculations from these data give the following results
(rounded to the nearest 60th of a day).

Saturn

57 returns of anomaly take 21551;18 days 59 years 1;42 days

Jupiter

65 returns of anomaly take 25927337 days 71 years less 4:;31 days

Mars

I

37 returns of anomaly take 28857;41 days 79 years plus 3:56 days

Venus:

5 returns of anomaly take 2919;40 days 8 years less 2:18 days

Mercury

145 returns of anomaly take 16802;24 days = 45 years 1;03 days.
Ptolemy said that it was from these calculations that he made

his corrections to the periods of Mercury and Venus.




Ptolemy reduced his first set of data to days, rounded to
the nearest 60th, and degrees of anomaly:-

Saturn 20520° of anomaly take 21551:;18 days
Jupiter: 23400° qf anomaly take 25927;37 days

Mars: 13320° of anomaly take 28857:53 days

Venus: 1800° of anomaly take 2919;40 days

Mercury: 52200° of anomaly take 16802;24 days.

A correct calculation gives 28857:42 for Mars and 16802;23 for
Mercury.

Although the calculations from the data that Ptolemy cited
later do not agree very well with the intervals in years and
days in the first set of data, they agree four times out of five
with this second set. Only Mars is not exact. (All versions of
the Syntaxis give 53 for the fraction of a day. Calculation from
the first and second sets of data give 42 and 41, Toomer amends
the 53 to 43, claiming incorrectly that it is the rounding of
42:;18. Manitius, Halma and Taliaferro leave it as 53.)

Next Ptolemy said that he divided the number of degrees of
anomaly by the number of days and obtained the following daily
increases in anomaly, from which he built up his tables.

Saturn 0°57 07 43 41 43 40
Jupiter 0°54 09 02 46 26 00
Mars 0°27 41 40 19 20 58
Venus 0°36 59 25 53 11 28
Mercury 3°06 24 06 59 35 50
This is true for Saturn, Venus and Mercury, but for Jupiter and

Mars division does not give the result cited. For each of the

planets, when Ptolemy cited the later data he said that he
obtained the daily increase by dividing the number of degrees
there by the number of days. This is false all five times.
Ptolemy then explained that we can find the daily increase
in longitude of an outer planet by subtracting the daily increase
~in anomaly from the daily increase of the mean sun; there is no
need to reduce the revolutions in longitude to degrees and divide
by the number of days. However, if we do reduce the revolutions
in longitude for Jupiter in the first set of data to degrees and

divide by the number of days in the second set, we do get the daily




increase in longitude to the precision cited. So it looks as
though this is what Ptolemy did.

This technique does not work for Mars. But if we change the
fraction of a day from the 53 in the Syntaxis, not to either of
the correctly-calculated values 41 and 42 but to the 43 suggested

by Toomer, this technique does give the right result.

Next Ptolemy described his theory of motion for the planets.
Fach planet moves at constant speed once in its synodic period
round a small moving circle (the epicycle) whose centre C moves
round a larger circle (the deferent) whose centre D moves round
the earth T at the rate of precession (so the line TD’which I
call the axis, keeps pace with the stars: Ptolemy»regarded
the stars as moving and the equinox points as fixed). C moves
at constant*angular speed round a point E (the equant) on the
axis; D bisects TE. C completes a.revolution in a longitudinal
period.

While investigating longitude Ptolemy took everything to
be in the plane of the ecliptic, saying that this will not make
a noticeable difference. )

Mercury is an exception because the centre of its epicycle
reaches perigee (the point on its orbit nearest the earth) twice
in each revolution. Let Z be the point on the axis for which
ZE = ET. The centre D of the deferent moves round Z in a circle
whose radius equals ZE in the opposite direction from the motion
of the epicycle and at the same angular speed. This is illustrated
in diagram 1.

The angle TCE is called an equation of ecliptic anomaly.

If P is the planet, the angle PTC is the elongation. Although
Ptolemy did not say so here, it is clear from what he wrote later
that the longitude of C is the longitude of the mean sun: the mean
sun is an imaginary body that moves round the ecliptic at constant
speed having the same longitude as the sun at apogee and perigee.
Ptolemy could compute the longitude of the mean sun at any given

instant from his tables (which were out by just over a degree).
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Diagram 1

Ptolemv's theory for Mercury (mot to scale).

the earth

the equant

the point on the axis for which ZE = ET
revolves round Z. DZ = ZE .

is the centre of the deferent.
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the centre of the epicycle.
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How would we find a greatest elongation ? We might measure
the longitude of Mercury or Venus each night, recording the time
and date, compute the longitude of the mean sun, and subtract.
This gives the elongation. When the elongation stops increasing
and starts to decrease we have a greatest value. But this 1is
not the greatest value that Ptolemy needed; he needed the greatest
value for a given position of the epicycle. He would need many
observations of the elongation listed against the corresponding
longitude of C. He would have to pick the greatest elongation
for the longitude of C that he is using. I1f we represented this
graphically we would get diagrams 1ike the ones computed by Dennis
Duke (my diagrams 2 and 3, from DIO volume 11, page 64, in which
evening observations are eastern, and western elongations are
displayed as negative),

Ptolemy remarked that such combinations are rare.

Ptolemy started his work on the parameters with Mercury.

To find the direction of the axis he looked for two edual
greatest elongations, one eastern and one western. He maintained
that they must be symmetrical about the axis.?kihad earlier
proved the converse: that if they are symmetricél they must be
equal, but not that if they are equal they must be symmetrical.
Diagram 2 shows that if we have, say, a western elongation of
21° and look for an eastern elongation of 21° there will be two,
If one is symmetricél, the other will not be.

Ptolemy found an eastern elongation 21%° at longitude 309%°
and an equal western elongatiot’ 'at 70°, These made the axis run
from 189§° to 9§°. Elongations of 26%°, the eastern at 704° and
the western at 310°% made the axis run from 190&° to‘10ﬁ°. Ptoleny
concluded that the axis runs between about 190° and 10°. (According
to Duke's figures the western elongation never reaches 26%°).
From observations about 400 years earlier Ptolemy found a western
elongation of 25{° at longitude 318é°. He could not find an

equal eastern elongation, but he found 24t° at longitude 29%°
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and 26%°‘at longitude 62§°. Assuming that the elongation increaseed
at constant rate between these two longitudes he calculated that
it would be 255° at longitude 531°, This makes the axis run from
185§° to 5£°. (Here again Ptolemy's logic was faulty. The elongation
rose to a maximum and fell to 255° at about longitude 125°. This
would have made the axis run from about 41%° tp 221%°> A similar ><
calculation with an eastern elongation of 21§° at 14755 and western
elongations of 21° at 215%L° and 22%° at 234%° makes the axis run
from 186° to 6°. How the earlier astronomer recognised these
elongations as greatest elongations is not clear.
This is the reason for Ptolemy's statement that the axis
rotated with the stars under precession.
From elongations 195° (western) at 170§° and 23%+° (eastern)
at lléf Ptolemy concluded that the apogee is at 190°, not 10°.
The sum of the eastern and western elongations for a given
position of the epicycle gives the apparent size of the epicyéle
as seen from the earth, so the greater the sum the nearer the
epicycle. The elongations of 21%° and 26%° at 310° and again at
70° (rounding off the 309§° and 70%°) give a sum of 47%°. This
is greater than the sum at 10° (the point opposite . apogee), which
is 46%° (twice 23%+°. the eastern elongation at 11&”, which
Ptolemy evidently assumed was not appreciably different from the
value at 10°. On the axis the two elongations are equal). This
is the reason for Ptoleny’'s statement that Mercury reaches perigee
twice in a revolution.
Ptolemy then calculated the parameters for his model, citing
just enough observations ' of the right kind. The details can be
found in the Syntaxis and, slightly modernised, in R R Newton's

The crime_of Cluudius._Ptolemy and my Early astronomy.

Ptolemy finished»by citing the observations from which he
corrected the synodic period and by computing the longitude and
degrees of anomaly at the early date from which he started his
tables (the first day of the Egyptian: year in the first year,

747 B.C., of the reign of the Babylonian Nabu-nasir). We call

this the epoch.

Note: for each elongation Ptolemy cited the date but not the time~ . -
though the time is needed to calculate the longitude of the mean

sun as precisely as he did.



Next, Ptolemy dealt with Venus. He cited two greatest
elongations of 47%°, the eastern at 3441°, and the western at
125%°. Thése make the axis run from 235° to 55°. Another pair,
47§§° at 197}f° (western) and 272%3 (eastern) make the axis run
from 234%° to 54%°, which round to 235° and 55°.

Elongations of 44§° (western) at 55%° and 47§° (eastern) at
2351° ghow that 55° is the apogee and 235° the perigee.

Ptolemy added that everywhere on the ecliptic the sum of
the elongations is between the values at 55° and 235° and
concluded that the deferent is fixed, though the most that can
be deduced logically is that he did not have to make it move as
he did for Mercury.

There is something badly wrong with these elongatibns. The

greatest eastern elongations at 235%° and 2745; vere cited at
dates 37 days apart. This simply cannot happen.

Ptolemy took as his unit of length 1/60 of the radius of
the deferent, From greatest elongations at 55° and 235° it is
easy tc calculate the distance TD, 1%+, and the radius of the epicycle,
437 . |

Next Ptolemy found the position of the equant, using greatest
elongations 43%” (western) and 485° (eastern) at longitude 325%°,
very close to halfway between apogee and perigee.

In'diagram 4 T is the earth, E the equant, C the centre of
the epicycle. REC and TQ point to the mean sun (considered far
enough away that they are parallel). V and W are the two positions
of Venus. VTO and QTW are the elongations.
VTC = 3VTW = %(VIQ + QTW) = 45°57%'.
QTV - QTW = QTC + CTV —‘(CTW - CTQ) = 2CTQ, so CTQ = 2°22%",
ECT CTQ. Then ET = CTsin2°22%'. CT = CV/sin 45°57%'. CV =

43i°, from the previous calculation. Then ET = 2%, or very

slightly less. This is twice TD.

This calculation is very susceptible to errors in measure-
ment. An error of 1° in the longitude of the mean sun could
change TE from 2% to hi;or 2/5.

Ptolemy finished by correcting the synodic period and

computing the longitude and degrees of anomaly at epoch.



Diagram 4



Ptolemy treated the three outer planets alike. He assumed that
the axis kept pace with the stars, like Mercury, and that D bisects
TE as it does for.Venus. His reason: the eccentrcity found from
the greatest equation of ecliptic ‘anomaly 1is about twice the
eccentricity found from the sizes of the retrograde arc at apogee
and perigee.

The outer planets do not have greatest elongations.‘Instead
Ptolemy used oppositions. At an opposition the planet P and the
centre C of its epicycle have the same longitude. CP then points
to the mean sun.Ptolemy sgated that it always did, which is
equivalent to saying that P revolves round the epicycle in a year.
The epicycle revolves round D in the sidereal period.

To find the distances TD and TE and the longitudes of D and E
Ptolemy used the following technique. If we have three points
X, Y, Z on a circle and we know the angles subtended by them at
the centre E and at a point T, we can find the ratio of ET to the
radius of the circle and the angles between TE and EX, EY, and
EZ. He showed how to do this using Greek geometry and his table
of chords. ’ _

To apply this to the planets, let the circle shown in diagram
5 have radius 60 and centre E. Let Cl, CZ’ and C3 be the positions
of the centre of the epicycle on the deferent at three timed
oppositions.

We know the angles subtended at E by X, Y and Z because they
are the same as the angles subtened by the Ci' We do not know
the angles subtended by X, Y and Z at T, but we do know the
angles subtended by fhe Ci from the observed longitudes.

Ptolemy took the angles_subtended by the C; at T as first
approximations to the angles subtended by X, Y ;nd Z. From these
he calculated a first approximation to the length and direction
of of TE. This gave him a first approximation to the motion of
the planet so he could, from the times of the observations,
calculate the angles subtended at T by X, Y and Z. This second
approximation is better than the first and from it Ptolemy

calculated a second approximation to the length and direction
of TE. And so on.
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The successive approximations to the length of TE are:-

Mars 131 117 12
Jupiter 5% 5%

13 E2
Saturn 1+ 65 .

These are suspicious. Anyone who has used successive approximation
(perhaps using the Newton-Raphson method in elementary calculus)
will know that as approximations proceed they become less round.
Ptolémy's become rounder. It looks as though he were working
backwards from the answer (as he did when calculating the length
of the year.).

From a timed longitude not at opposition Ptolemy calculated
the radius of the epicycle. He finished by correcting the
synodic period and finding the longitude and degrees of anomaly

at epoch.

From his models Ptolemy could calculate the longitude of
a planet at any given time.

Ptolemy then investigated latitudes, but without much success.
The main reason for this is probably that he had the planes of
the deferents contain the earth,whereas in fact the planes of the

orbits contain the sun.



Tn a later work (Hypotheseis ton plamenon) Ptolemy formed
the planets into a solar system. He had, from calculations
using parallax, a fairly good eétimate of the greatest distance
of the moon from the earth. He took this to be the least distance
of Mercury. His theory for Mercury told him the greatest distance.
He took this to be the least distance of Venus. He fitted the
sun, Mars, Jupiter and Saturn in the same way.

We have no information about Greek astronomy after Ptolemy,
but a theory using epicycles was used by Hindu astronomers,
from about 500 A.D. onwards. It appearéd in a number of slightly
different forms. One of the earliest was described by Aryabhata,
who was born in A.D. 476, in the Aryabhatiya. This is the version
that I shall describe. A very sliéhtly different version, also
by Aryabhata, was described by Brahmagupta in the Khandakhadyaka.

He also described a system of his own in the Brahmasphuté SiﬁdhantaQ

Hindu coordinates, like the Babylonian and the Chineseﬁwere
sidereal: not tropical like the Greek.

The Hindus called the centre C of the epicycle madhya
gzgﬁg (literally mean planet) It moves at constant speed round the
earth T. In 4320000 years it revolves round the earth 4320000
times for Mercury and Venus, 2206824 times for Mars, 364224 times
for Jupiter and 146564 times for Saturn. All longitudes were
assumed to be zero at dawn on a day that has been identified as
3202 B.C. February 18th in our Julian calendar, so these figures.
enable us to calculate the longitude of C at any given time. C is
the centre of two epicycles.

The manda (slow) epicycle carries a point M. The direction of

M from C is called the longitude of the mandocca; it changes very

slowly. Aryabhata listed the longitudes in his time. The mandakendra

is the 1ongitude of C minus the longitude of the mandocca, so it
gives the position of M on the epicycle. The radius of the epicycle
depends on the mandakendra and varies as follows, on a scale on

which the radius of the orbit of C is 360:

Mercury, from 22% to 313
Venus, from 9 18
Mars, from 63 to 81
Jupiter, from 31% to 367
Saturn from 40% to 58%.

~
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The sighra (fast) epicycle carries a point S. The direction
of S from C is the longitude of the sighrocca. The sighrakendra is
the longitude of the sgighrocc minus the longitude of C, so it
gives the position of S on the epicycle. The radius of the
epicycle depends on the §ighrakendra, and varies as follows:

Mercury, from 130% to 139%

Venus from 256% to 265%

Mars from 229% to 238%

Jupiter from 673 to 72

Saturn from 40% to 46.
In 4320000 years S revolves round C 17937020 times for Mercury,
7022288 times for Venus, 4320000 times for each of the outer planets,
(We reqognize that these figures give the heliocentric sidereal
periodé'of Mercury and Venus. Possibly early Hindu astronomers
thought that these two revolved round the sun. 1f so, later
astronomers gave this idea up, just as later Greeks gave up the
ijdeas of Aristarchus.)

The longitude of a planet is found by applying two adjustments
to the longitude of C. One source spoke of heavenly bodies at S_

and M pulling on the madhya graha with cords of wind. Although

Aryabhata did not say so, it is clear that the manda adjustment

is the angle MTC and the sighra adjustment is the angle CTS.
Aryabhata's description is concise. For an outer planet:
For the mandocca and sighrocca half is taken
negatively or positively for the planet and
the manda. A true mean planet should be known
from the mandocca and the true planet from the
sighroccé,b (Literal translation.)
With the help of later commentaries we can interpret this as
follows:-

Apply to C half of the manda adjustment, shifting it to U

Apply to U half of its sighra adjustment, shifting it to X
Apply to C the manda adjustment for V, shifting it to W.
Apply to W its sighra adjustments

This gives the longitude of the planet.

For Mercury and Venus the first adjustment is omitted.

In A.D. 629 Bhaskara commented "It is really curious.
Tradition has it, so it must be respected? (Translation by D.A.

Somayaji)
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Aryabhata's second system applied the first two adjustments
the other way round: sighra first. And it used the same method
fof all five planets. In a commentary written in the eleventh
century Varuna gave a complete calculation.

(1) The longitude of the madhya graha 325°01'10"

(2) The longitude of the mandocca 127°

(3) The longitude of the sighrocca 168°01'55"

(4) The mandakendra 198°n1°10"

(5) The gighrakendra 203°00'45"

(6) The corresponding sighra adjustment 32°07'37" negative
(7) The first adjusted mandrakendra 181°57"'22" B
(8) The corresponding manda adjustment © 22'50" positive
(9) The second adjusted mandakendra 182°08'47"

(10) The corresponding manda adjustment 25" positive
(11) The third adjusted mandakendra 198°26'10"

(12) The corresponding sighra adjustment 31°47'35" negative
(13) The mandrakendra of the planet 166°38'35"

(14) The longitude of the planet 293°38'35".,

Items (1) and (3) are calculated from the time of the
observation, (2) is listed, (4) and (5) are found by subtraction.
The adjustments are found by interpolation from tables. Adjustment
(6) reduces the longitude of C and therefore the mandrakendra by
half of 32°07'37". This gives (7). Adjustment (8) increases
the mandrakendra by half of 22'50", giving (9). Adjustment (10),
which is applied to C, gives (11) from(3). Adjustment (12) then

gives (13). Addiné-(Z) gives the final result.

Varuna showed how to calculate the sighra adjustment.
Aryabhata listed the increases in sighra adjustment corresponding
to increases in gighrakendra, From these we can (and presumably

the Indians did) produce the following table:-

sighrakendra]O 28 60 90 121 135 148 164 173 180 187 196 212
adjustment lO 11 23 33 40 40% -373% ~-25% -123% 0 -12% -25% -373%

225 239 270 300 332 360
403 40 33 23 11 0
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To interpolate for the sighra adjustment corresponding to a

gIghrakendra s after the entry Sq let the previous and following

increases in égghrakendra be x and y, and let the previous and
following increases in the adjustment be u and v.

Step 1, If (v + uy/x) is larger in magnitude than v, subtract
L(v + uy/x)(s - so)/y; if smaller, add.

Step 2. Multiply by (s - so)/y and add to the adjustment for Sg-

Interpolating for 203°00'45" we have Sg = 196, x = 9, y = 16,

u = -13, v = -12. Then L(v + uy/x) = - 17°33'20", which is larger
than 12.Multiply by (s - SO)/y, i.e. by (7°00'45")/16, getting
-2°26'06". Subtraction gives -15°07'14". Multiplying by (s - SO)/Y

yields -6°37'37". Adding to —25% yields -32°07'37".

The distance of the planet from the earth is the distance TS
multiplied by TM and divided by TC.

Kryabhata built up a complete solar system. A yojana is
8000 times tﬁe height of a man. The circumference of the sky is
ten times the number of minutes of arc in 57753336 revolutions,

the number of revolutions made by the moon in 4320000 years. The
length of the orbit of a planet is the circumference of the sky

divided by the number of revolutions of the planet in 4320000

years.

Later Hindu astronomy was not substantially different from
Kryabhaga's. The next people to tackle the motions of the planets
were the Moslems: mostly Arabs, but also Persians, Uzbeks and
others. Their theories were firmly based on Ptolemy's but with
some important differences.

Around A.D. 1000 Ibn al-Haytham wrote a treatise whose title

has been translated as Doubts about Ptolemy, objecting to motions

that could not be produced by a combination of regular circular
motions. (Motion produced by an equant is not regular).

The first model without an equant, by Mu’ ayyad al-Din
al—‘Ur@T (who died in 1266% is shown in diagram 6. (the dashed
lines are only for comparison with other models.) D is the
centre of the deferent, whose radius is R. E is distant 2r
from D and K is the midpoint of DE. L revolves round K in a
circle of radius R, making one revolution in the longitudinal

period of the planet. C revolves round L in a circle of radiuvs

)




¥ at the same rate relative to XKL as L round K, so angle CLK
is always equal to angle EKL. Then CE is parallel to LK. But LK
revolves uniformly; therefore so does CE , and al—'Urq{ has
produced uniform motion round E using only regular circular
motions. If angle EKL is 8, the distance DC is Vv(R® + 4r’sin’8),
so C is outside the deferent except at apogee A and perigee P.
For Venus , r is 1/96 of R, so the greatest value of DC is
1.0002R; al—‘Ur@i has very nearly produced motion of C round
the deferent. This model, like the following two, and, indeed,
like Ptolemy's, applies to four planets but not to Mercury.

Na§§r al-Din. al-Tisi (who died in 1274) has M revolving
round E at a distance R in the longitudinal period, as shown in
diagram 7. N revolves round M at a distance r at the same rate
relative to EM, so angle EMN is always equal to angle AEM,
C revolves round N at a distance r at a rate that keeps NC
parallel to AE. This ensures that C is on the line EM. In fact,
it coincides with‘aliUrqz's C in diagram 6.

The linkage ¥MNC, by which two circular motions combine to
give motion in a straight line, has come to be known as a Tusi
couple. It was used also in models for the moon and for Mercury.
And it was used later by Copernicus.

Ibn al—ShﬁEir (who died in 1375) had a point Q revolving round
the earth T, which was distant 2r from D, in a circle of radius R
in the longitudinal period, as shown in diagram 8. L revolves
round Q) at the same rate in the opposite direction (which keeps
QL parallel to ET) at a distance 3r. This makes L coincide with
al—‘UrQE's L in diagram 6. C revolves round L in the same way as
in al—‘Urgi's model. The advantage of this, from the point of
view of Arabic astronomers, is ﬁrobably that it starts with Q
revolving round a real point T, anchoring Q and the rest to reality.
By contrasf, the earlier models start with revolutions round
imaginary points ® and K; al—ﬂhégir's model has been described as
"without eccentrics".

This brings us to the start of modern investigations of thg

planets. Copernicus had them orbiting the sun. Kepler found their
orbits to be ellipses. Newton found physical laws governing their

motions. And now we have space-craft visiting Mars.
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Modern comments

Because of the inconsistencies and implausibilities in
Ptolemy's treatment of the planets and because of the importance
of the Syntaxis in the development of western astronomy, many
writers have made criticisms and suggestions, the most extreme
criticism being by R R Newton, who claimed that every observation
made by Ptolemy was fabricated and that the longitudes for the
pla;éfgﬂwere substantially less accurate than they should have been.

It is fairly obvious why Ptolemy's longitudes were inaccurate.
Irregularity has two causes: the irregular motion of the planet
and the irregular motion of the earth from which the longitudes
are meésured. Ptolemy made motion of the planet round the
epicycle regular and tried to account for all the irregularity by
irregular motion of the epicycle. For real accuracy the sun should
have an equant, as Kepler discovered.

Dennis Duke investigated the apparent size of the epicycle_qf
;'Mercury (diagram q, from DIO volume 11.3) and found that it
does not reach perigee twice in a revolution. Ptolemy's I
complication was not needed.

As explained earlier, it seems unlikely that Ptolemy found
that D bisects TE for Venus. Perhaps he assumed it (because he
had reason to believe it for the outer:planets) and fudged his
measuremant to give this result.

James Evans suggested that the bisection could be deduced
(most easily for Mars) by comparing the irregularity deduced from
the sizes of the retrograde arcs with the.irregularity deduced
from their spacing.

Dennis Duke suggested that Ptolemy ‘found TE as he}described
and found TD by using elongations at apogee and perigee (DIO

11.3, page 58). .This would make TE about twice TD.

Dennis Rawlins, perhaps taking a hint from Ptolemy's use of
successive approximation, starting with three oppositions, for
the outer planets, suggested that Ptolemy could have used

successive approximation for Venus, starting withthree greatest

elongations.
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In diagram]', T is the earth, D is the centre of the deferent, C
is the centre of the epicycle, V is Venus at greatest western
elongation, DO is the direction of zero longitude, DM is
perpendicular to TV, TZ to DQ, ZN to TV, ZH to DM, and OF to CV.
X is the angle between DC and DF, amiﬂ is the angle between

DQ and TV.

Where a modern geometer would use trigonometrical functions,
an ancient Greek used a table of chords: chd is the length
of a chord that subtends an angle@ at the centre of a circle of
diameter 120.

Angle ZTN = 90° - p. ZN subtends an angle 2ZTN at the
centre of the circumcircle of the triangle ZTN, whose diameter is
ZT, so ZN =(ZT/120)chd2ZTN = (ZT/120)chd(180° - 2p). Similarly,
from the triangle HZD, HD = (DZ/120)chd2HZD = (DZ/lZO)chdZP.

From the triangle CDF, in which CD = 60, CF = 3chd2CDF =3chd2«.
Then CV CF 4+ FV = CF + DM = CF + HM - HD = CF + ZN - HD
Fchd2& + (ZT/120)chd(180° - 283) — (DZ/l'ZO)chdllfS.

Given three greatest western elongations, if we knew the

H

three angles « and the three angles‘@, we would have three
equations between CV, ZT, and DT, which can be solved, giving

the radius of the epicycle, the distance TD, and the longitude of
D.

We know eacﬁlﬁ: it is the observed longitude of Venus.
We do not know &, but because TD is small compared witn DC,
it is close to the angle between EC and EF.and we can calculate
this from the longitude of the sun and the time of the obser-
vation. So we use successive approximation.
Step 1. Take the angle. betweenFC and EF as a first approximation
toX and calculate a first approxiwmation to the geometric
parameters, ’
Step 2. From this approximation, calculate the angles ¢f ; this
will be a second approximation.
Step 3. From this second approximation, calculate a second
approximation to the geometrical parameters.
And so on.
This suggestion is an effective rejoinder to apologists for

Ptolemy who maintain that he was forced to use the (fraudulent)
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method that he described (for example Owen Gingerich, isis, volume
93, number 1 (2002) page 71: Ptolemy demonstrated his ingenuity
when orbital constraints made it impossible to observe the preferred

configurationsl

Pliny (Natural history 2.6.38) attributed. to Timaeus a value

of 46° for the greatest elongation of Venus. If Ptolemy knew this
and took it to be the value when the epicycle is at its average
distance, 60, from the earth, this would make the radius of the
epicycle 43%, the value that Ptolemy cited. Similarly, Pliny
attributed to Sosigenes the value 27° for Mercury, which would
again yield Ptolemy's result.

There are other ways to find the parameters for an outer
planet. From the sidereal period and any one timed opposition
we can calculate thé position of C at any given time. We find the
greatest and least longitudes of the planet for a fixed position of
C; their difference gives the apparent size .of the epicycle.

The position of C when this is least gi#es the longitude of W.
(James Evans suggested ﬁsing the lengths of the arcs covered
during retrogression for this purpose.)

Once we have found the longitude of E a timed opposition
gives us the direction of C from E and the observed longitude
givés the_direction of C from T, so we know all the angles of
the trianéle CET. If we assume that D bisects ET and DC = 60,

an easy calculation gives us DT.





