Ancient Astronomy

[ecture 1
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[ecture 1

e Where, When and Who

e Almagest Books 1 and 2

o the celestial sphere

e numbers and angles (sexagesimal base-60)

e obliquity and latitude and the related instruments

e plane geometry and trigonometry, the chord tables

e spherical trigonometry, circles on the celestial sphere



the Where: Ptolemy’s World A.D. 150
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Strabo’s Geography (1st-2"? century B.C.)
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Most of what we have from antiquity was preserved and
transmitted to us by the Islamic societies of the 8" — 13"
centuries A.D.



Who and When: Ancient Astronomers

Homer/Hesiod =750 Aratus
Meton/Euctomen -430 Timocharis
Eudoxus -380 Aristarchus
Aristotle -340 Archimedes
Heraclides -330 Eratosthenes
Callippus -330 Apollonius
Autolycus/Euclid -330 Hipparchus
Aristyllus -300 Posidonius
Berosus -300 Geminus

Theon of Smyrna 120
Ptolemy Almagest 150
Theon of Alexandria 350

-270
-260
-240
-220
-210
-200
-130
-100
-50



Relevant Famous People

Plato

Alexander the Great
Strabo

Pliny

Plutarch

Marinus of Tyre

-375 philosopher
-330 conquered Babylon
10  Geography
70  Natural History
100  Concerning Nature
The Face in the Moon
120 geography (Ptolemy’s source)



Later Famous Astronomers
(and Ptolemy influenced every one of them)

Hipparchus -130
Ptolemy Almagest 150

Aryabhata (India) 500

al-Sufi  (Islam) 950
al-Tus1/Urdi/Shatir 1250
Ulugh Beg 1420
Copernicus 1540
Tycho Brahe 1570
Kepler 1620

Newton 1680



Almagest, Book I begins:

The truc philosophers, Syrus,” were, I think, quite right to distinguish the
theoretical part of philnsnph-,r from the practical. For even if practical
philosophy, before i it is practical, turns out to be theoretical,® nevertheless one
can see that there 1s a great difference between the two: in the first place, it is
possible for many people to possess some of the moral virtues even without being
taught, whereas it is impossible to achieve theoretical understanding of the
universe without instruction; furthermore, one derives most benefit in the first
case [ practical philosophy] from continuous practice in actual affairs, but in the
other [Ehtureﬁ:;al philosophy] from making progress in the theory. Hence we

and a bit later:

larly applied. For Aristotle divides theoretical philosophy too, very fittingly,
into three primary categories, physics, mathematics and theology.” For
everything that exists is compoesed ol matter, form and motion; none of these
[three] can be observed in itssubstratum by itself, without the others: they can
only be imagined. Now the first cause of the first motion of the universe, if one
considers it simply, can be thought of as an invisible and motionless deity; the
division [of theoretical philosophy] concerned with investigating this [can be
called] ‘theology’, since this kind of activity, somewhere up in the highest
reaches ol the universe, can only be imagined, and is completely separated from



perceptible reality. The division [of theoretical philosophy] which investigates
material and ever-moving nature, and which concerns itself with *white’, ‘hot’,
‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’; such an order of
being is situated (for the most part) amongst corruptible bodies and below the
lunar sphere. That division [of theoretical philosophy] which determines the
nature involved in forms and motion from place to place, and which serves to
investigate shape, number, size, and place, time andsuchlike, one may define as
‘mathematics’. Its subject-matter falls as it were in the middle between the
other two, since, firstly, it can be conceived of both with and without the aid of
the senses, and, secondly, it is an attribute of sll existing things without
exception, both mortal and immortal: for those things which are perpetually
changing in their inseparable form, it changes with them, while for eternal
things which have an aethereal’ nature, it keeps their unchanging form
unchanged.

From all this we concluded:® that the first two divisions of theoretical
philosophy should rather be called guesswork than knowledge, theology
because of its completely invisible and ungraspable nature, physics because of
the unstable and unclear nature of matter; hence there is no hope that
philosophers will ever be agreed about them; and that only mathematics can
provide sure and unshakeable knowledge to its devotees, provided one
approaches it rigorously. Feor its kind of proof procceds by indisputable
methods, namely arithmetic and geometry. Hence we were drawn to the



The gencral preliminary discussion covers the following topics: the heavenis
spherical in shape, and moves as a sphere; the earth too 15 sensibly spherical in
shape, when taken as a whole; in position it lies in the middle of the heavens very
much like its centre; in size and distance it has the ratio of a point to the sphere of
the fixed stars; and it has no motion from place to place. We shall briefly discuss
each of these points for the sake of reminder.

similarly (see the excerpts on the supplementary reading page):
Theon of Smyrna (about A.D. 120)

Strabo Geography (about A.D. 5)

Geminus (about 50 B.C.)

Hipparchus (about 130 B.C.)

Autolycus (about 300 B.C.), and Euclid’s Phenomena is similar
Eudoxus (about 320 B.C.)

Aristotle (about 350 B.C.)

Hesiod (about 750 B.C.)

Homer (about 780 B.C.)

It 1s fair to say that Ptolemy makes the best effort to give fairly cogent
arguments, usually astronomical, to support all of these assumptions.



For example:

7. {That ihe earth does not have any motion from place to place, either}™’

One can show by the same arguments as the preceding that the earth cannat
have any motion in the aforementioned directions, or indeed ever move at all
from its position at the centre. For the same phenomena would result as would if
it had any position other than the central one. Hence I think it is idle to seek for
causes for the motion of objects towards the centre, ance it has been so clearly
established from the actual phenomena that the earth occupies the middle
place in the universe, and that all heavy objects are carried towards the earth.
The following fact alone would most readily lead one to this notion [that all
objects fall towards the centre]. In absolutely all parts of the earth, which, as we
said, has been shown to be spherical and in the middle of the universe, the
direction® and path of the motion (I mean the proper, [natural] motion) of all
bodies possessing weight is always and everywhere at right angles to the rigid
plane drawn tangent to the poin‘:f’ impact. It is clear from this fact that, if

But certain people," [propounding] what they consider a more I.:‘.'E:I"Sl:lﬂsi‘lr'ﬁ
view, agree with the above, since they have no argument to bring against it, but
think that there could be no evidence to oppose their view if, for instance, they
supposed the heavens to remain motionless, and the earth to !"-EVGIV‘E from west
to east about the same axis [as the hed¥ens], making approximately one
revolution each day;* or if they made both heaven and earth move by any
amount whatever, provided, as we said, it is about the same axis, and insucha



I 7. Earil’s rotation denied 45

- way as to preserve the overtaking of one by the other. However, they do not
realise that, although there is perhaps nothing in the celestial phenomena
which would count against that hypothesis, at least from simpler considerations,
nevertheless from what would occur here on earth and in the air, one can see
that such a notion is quite ridiculous. Let us concede to them [for the sake of
argument] that such an unnatural thing could happen as that the most rare and
light of matter should either not move at all or should move in a way no different
from that of matter with the opposite nature (although things in the air, which
are less rare [than the heavens] so obviously move with a more rapid motion
than any earthy object); [let us concede that] the densest and heaviest objects
have a proper motion of the quick and uniform kind which they suppose
(although, again, as all agree, earthy objects are sometimes not readily moved
even by an external force). Nevertheless, they would have to admit that the
revolving motion of the earth must be the most violent of all motions associated
with it, seeing that it makes one revolution in such a short time; the result would
be that all objects not actually standing on the earth would appear to have the
same motion, opposite to that of the earth: neither clouds nor other flying or
thrown objects would ever be scen moving towards the east, since the earth's
motion towards the east would always outrun and overtake them, so that all
other objects would seem to move in the direction of the west and the rear. But if
they said that the air is carried around in the same direction and with the same
speed as the earth, the compound objects in the air would none the less always
seem 10 be left behind by the motion of both [earth and air]; or if those objects
too were carried around, fused, as it were, to the air, then they would never
appear to have any motion either in advance or rearwards: they would always
appear still, neither wandering about nor changing poesition, whether they were
flying or thrown ebjects. Yet we quite plainly see that they do undergo all thesc
kinds of motion, insuch a way that they are not even slowed down or speeded up
at all by any motion of the earth.



Ptolemy 1s probably summarizing the winning arguments in an old debate, going
back as far as Aristarchus in about 240 B.C.:

ARCHIMEDES, Psammites (Sand-reckoner), c. 1, 1-10.

But Aristarchus of Samos brought out a book consisting
of certain hypotheses, in which the premisses lead to the
conclusion that the universe is many times greater than
that now so called, His hypotheses are that the fixed
stars and the sun remain motionless, that the earth
revolves about the sun in the circumference of a circle,
the sun lying in the middle of the orbit, and that the
sphere of the fixed stars, situated about the same centre
as the sun, is so great that the circle in which he supposes
the earth to revolve bears such a proportion to the
distance of the fixed stars as the centre of the sphere
bears to 1ts surface,



PLUTARCH
On the face in the moon

De facie in orbe lunae, cc. 5-10, 16, 21-22.

6. While I was still speaking, Pharnaces broke in:
“Here, again, we have employed against us the stock
device borrowed from the Academy, that of taking care,
every time that they discuss things with others, not to
allow their own opinions to be criticized, but always to
put the others, whenever they meet them, in the position
of defendants, not accusers. But you will not to-day
draw me into defending the views you impute to the
Stoics before you have rendered an account of your own
action in turning the universe upside down.” Lucius
smiled and said: “*Very well; only do not bring against
me a charge of impiety such as Cleanthes used to say
that it behoved Greeks to bring against Aristarchus of
Samos for moving the Hearth of the Universe, because he
tried to save the phenomena by the assumption that the
heaven is at rest, but that the earth revolves in an oblique
orbit, while also rotating about its own axis. Now we



Celestial Sphere




8. {That there are lwo differen! primary motions in the heavens)®

It was necessary to treat the above hypotheses first as an introduction to the
discussion of particular topics and what follows after. The above summary
outline of them will suffice, since they will be completely confirmed and lurther
proven by the agreement with the phenomena of the theories which we shall
demonstrate in the following sections. In addition to these hypotheses, it is
proper, as a further preliminary, to introduce the following general notion, that
there are two different primary mations in the heavens. One of them is that
which carries everything rom east to west: it rotates them with an unchanging
and uniform motion along circles parallel to each other, described, as is
obvious, about the poles of this sphere which rotates everything uniformly. The
greatest of these circles is called the ‘equator’,* because it is the only [such

parallel cirele] which is always bisected by the horizon (which isa great circle),
and because the revolution which the sun makes when located on it produces
equinox everywhere, to the senses. The other motion is that by which the

spheres of the stars perform movements in the opposite sense to the first motion,
about another pair of poles, which are different from those of the first rotation.

The second, multiple-part motion is encompassed by the first and encom-
passes the spheres of all the planets. As we said, it is carried around by the
alorementioned [{irst motion], but itself goes in the opposite direction about the
poles of the ecliptic, which are also fixed on the circle which produces the first
motion, namely the circle through both poles [of ecliptic and equator].
Naturally they [the poles of the ccliptic] are carried around with it [the circle
threugh both poles], and, throughout the period of the second motion in the
opposite direction, they always keep the great rircle of the ecliptic, which is
described by that [second] motion, in the same position with respect to the
Equamr-'ﬁ'



The oblique circle (the ecliptic, the path of the Sun, Moon and
planets)
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Using a gnomon

|
Altitude by the Gnomon T T T
sommer  Aquinoktium Wirter
sonnenwende sonmenwende

Lange des Mittagschattens

o = geographical latitude
B = twice the obliquity of the ecliptic



Gnomon’s are also the basis of sundials:




How were these angles measured other than using a gnomon?
Ptolemy describes two instruments:




Expressing Numbers

Even today we measure angles in degrees,
minutes, seconds, and we also measure time
in hours, minutes, seconds.

In both cases there are 60 minutes per
degree or hour, and 60 seconds per minute.

Apparently this began in Babylon, no later
than early first millenium B.C. and probably
a lot earlier, since we have many 1000’s of
surviving clay tablets covered with such
numbers.




Ptolemy also used this base-60 sexagesimal number format, at least for the

fractional part of the number. Thus he expressed the number 365+1 -1 as

4 300

15_ 12 _3ps5, 14,
365+ 6073600 >0 " (3600 3600)
165,14, 48
=365+ 6073600

=365;14,48



The integer part of the number was given in decimal.

1=« 10=1 100= p
:[‘5 0=k 200= o
g = Y 30= A J00= <
4= 40 = n 400= v
= E 0= 500 = ¢
f=uehery BR=iE 600 = ¥
7=C  70=o0  700=y
8= L 80=m 800 = w
9=0 00 =9 900 = =

Mo

With a good set of multiplication and division tables, which
everyone had, manual arithmetic was no harder for them than it 1s
for us.



Ptolemy used mostly plane geometry and trigonometry, with a
little spherical trig when he needed it, which was not often.

For plane trig he had only one construct — the chord — rather than
our sine, cosine, tangent, etc, and this was enough.

Crd(a) = 2Rsin(a/2)




He also had good tables of the chord function, and was quite
capable of interpolation, just as we (used to) do it.

TABLE OF CHORDS

Sixtieths Arcs Chords Sixtieths

Arcs Chards

! 031 25 1 250 | 23 23 55 27 1 133
] I 250 1 250 234 24 26 13 1 130
1 13415 I 250 94 24 56 58 1.1 26
2 2 5 40 1250 24 25 27 41 1122
24 2 37 4 1 2 48 25 25 58 22 1 119
3 3 828 2 48 25 | 26 29 1 1 115
34 3 39 52 1 248 9% 2659 38 1 111
4 4 11 16 1 2 47 264 27 30 14 1 1 8
4! ' 4 42 40 1 2 47 27 98 0 48 1 1 4
5 - 514 4 1 2 46 271 2831 20 1 1 0
3 5 45 27 1 245 o8 29150 1 056
6 B 16 49 1 2 44 28+ 29 32 18 1 052
6l 6 48 11 1 243 29 30 2 44 PO 48
7 719 33 9 49 993 30 33 A8 I 0 44
74 7 50 54 1 24 30 31 3 30 L 040
8 R 22 15 1 2 40 304 31 33 50 ! 035
8! 8 53 35 1 239 31 32 4 B 1 031
9 9 24 54 1 2 38 313 32 34 22 1 0 27




48 [ 10. Caleulation of chord lable
10. {On the size of chords}®®

For the user’s convenience, then, we shall subsequently set out a table of their
amounts, dividing the circumference into 360 parts, and tabulating the chords
subtended by the arcs at intervals of half a degree, expressing each as a number
of parts in a system where the diameter is divided into 120 parts. [We adopt this
norm] because of its arithmetical convenience,”! which will become apparent
from the actual calculations. But first we shall show how one can undertake the
calculation of their amounts by a simple and rapid method, using as few
theorems as possible, the same set for all. We do this so that we may not merely
have the amounts of the chords tabulated unchecked, but may also readily
undertake to verify them by computing them by a strict geometrical method. In
general we shall use the sexagesimal system for our arithmetical computations,
because ol the awkwardness of the [conventional] fractional system. Since we
always aim at a good approximation, we will carry out multiplications and
divisions only as far as to achieve a result which differs from the precision
achievable by the senses by a negligible amount.

Ptolemy says that he will present a ‘simple and efficient” way to compute the chords, but he doesn’t
actually say the table was computed that way, or even that he computed it. In fact, there is good
reason to think that it was not computed using his methods, or that he was the person who computed
it. Unfortunately, however, we have no evidence about who did compute it.



As we will see in Lectures 2 and 3, it is likely that Hipparchus also had a good command of
trigonometry, both plane and spherical, but he also probably had a simpler trig table. Most people
assume he also used the chord construct, but there is no evidence for this, and there 1s some reason to
think he used instead the sine.

3600 60’/0 21 600 Angle(degrees) Chord
. 0 0
R = = ~ 3438 7% 450
2 2T 15 897
22% 1341
30 1780
21600 37 % 2210
D=—=6875 45 2631
T 527 3041
60 3438
67 % 3820
75 4186
82% 4533
90 4862
97 % 5169
105 5455
112 % 5717
120 5954
127 % 6166
135 6352
142 % 6511
150 6641
157 % 6743
165 6817
172 % 6861
: 180 6875
Crd(a) = 2Rsin(a/2)




There is also no reason to think that Hipparchus invented trignonometry and tables, either chord or
sine. In fact, a work of Archimedes shows the explicit computation of about 2/3’s of the entries in
Hipparchus’ (supposed) table, and computing the other entries would be straightforward.

C
D
E
.
A
H[ o B
Archimedes gets 66 <sinlZ’ <£ (equivalent to 0.03272<sinlZ’ <0.03274)
2017} 8 46731 8

which leads to

10 1
3ﬂ<”<37



circumscribed inscribed circumscribedinscribed

Base

Angle a C a C Base 3438 3438
36/8 153 23393/8 780 11926 225 225
74/8 153 11721/8 780  59757/8 449 449
112/8 169 8662/8 70 358 7/8 671 670
15 153 5911/8 780  30136/8 890 890
186/8 571 17762/8 2911 9056 1/8 1105 1105
22 4/8 169 4415/8 70 182 7/8 1315 1316
26 2/8 744 1682 3/83793 6/8 8577 3/8 1520 1520
30 153 306 780 1560 1719 1719
336/8 408 7343/8 169 304 2/8 1910 1909
374/8 571 9377/8 2911 47817/8 2093 2093
41 2/81162 1/81762 3/85924 6/8 8985 6/8 2267 2267
45 169 239 70 99 2431 2431

columns 2—5 come from Archimedes, while columns 6—7 are just

4%3,438
c

notice that Archimedes is working entirely in sine and cosine, never chord
there 1s no doubt that Hipparchus was familiar with Archimedes’ work on this

about all we can conclude is that Archimedes, Hipparchus, or someone in between
might have computed the first trig table this way



We can, in fact, go even farther back into the very early history of trigonometry by considering
Aristarchus’ On Sizes and Distances, and we shall see that a plausible case can be made that his
paper could easily have been the inspiration for Archimedes’ paper. The problem Aristarchus posed
was to find the ratio of the distance of the Earth to the Moon to the distance of the Earth to the Sun
[as we will see in Lecture 4]. He solved this problem by assuming that when that the Moon is at
quadrature, meaning it appears half-illuminated from Earth and so the angle Sun-Moon-Earth is 90°,
the Sun-Moon elongation is 87°, and so the Earth-Moon elongation as seen from the Sun would be
3°. Thus his problem is solved if he can estimate the ratio of opposite side to hypotenuse for a right
triangle with an angle of 3°, or simply what we call sin 3°.

Aristarchus proceeded to solve this problem is a way that is very similar to, but not as systematic as,
the method used by Archimedes. By considering circumscribed (Fig. 2 below) and inscribed
triangles (Fig 3 below) and assuming a bound on 2 Aristarchus effectively establishes bounds on
sin 3° as

1 «sin3°<.1

55 <SIN3° <o

and, although he does not mention it, this also establishes bounds on 7 as
3<m<3i

clearly not as good as Aristarchus got just a few years later.



Figure 2. BE 15 a diameter of the circle, angle EBF 1s 45°, angle EBG 15 22%%°, and angle
EBH 15 3° (not to scale). Since EBG/EBH = 15/2 then GE'EH = 15/2. Since FG/GE =
J2 = 7/5 then FE/EG = 12/5 = 36/15 and so FE/EH = (36/15)(15/2) = 18/1.



Figure 3. BD 15 a diameter of the circle, angle BDL = 30°, and angle BDK = 3° (not to
scale). Since arc BL = 60° and arc BK = 6° then BL/BK < 10/1. Since BD = 2 BL then
BD/BK = 20/1.



Actually, the sine (not chord!) table that we suppose was used by Hipparchus
shows up clearly in Indian astronomical texts of the 5™ and 6™ centuries A.D.
For example, Aryabhata writes in The Aryabhatiya (ca. A.D. 500) verse 1.10:

10. The sines reckoned in minutes of arc are 2235, 224,
222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154,
143, 131, 119, 106, 93, 79, 65, 51, 37, 22,7.

and later he explains how to compute these in verse 11.12:

12. By what number the second sine is less than the first
sine, and by the quotient obtained by dividing the sum of
the preceding sines by the first sine, by the sum of these
quantities the following sines are less than the first sine.

These are clearly not sines but rather the differences of adjacent terms in the
table of sines. The base 1s 3,438, just as Hipparchus used.



Many similar examples (to be seen in coming weeks) lead to what I call the
Neugebauer — Pingree — van der Waerden Hypothesis:

The texts of ancient Indian astronomy give us a sort of wormhole through
space-time back into an otherwise inaccessible era of Greco-Roman
developments in astronomy.

500-600 AD India

‘ Indian texts



Thus the essentially universally accepted view that the astronomy we find in
the Indian texts is pre-Ptolemaic. Summarizing the prevailing opinion,
Neugebauer wrote in 1956:

“Ptolemy’s modification of the lunar theory is of importance for the problem
of transmission of Greek astronomy to India. The essentially Greek origin of
the Surya-Siddhanta and related works cannot be doubted — terminology, use
of units and computational methods, epicyclic models as well as local
tradition — all indicate Greek origin. But it was realized at an early date in the
investigation of Hindu astronomy that the Indian theories show no influence
of the Ptolemaic refinements of the lunar theory. This is confirmed by the
planetary theory, which also lacks a characteristic Ptolemaic
construction, namely, the “punctum aequans,” to use a medieval
terminology”.

This fundamental idea will be explored much further in coming lectures.



Ptolemy’s obliquity and latitude of Alexandria

From observations of this kind, and especially from comparing observations
near the actual solstices, which revealed that, over a number of returns [of the
sun], the distance from the zenith was in general the same number of degrees of
the meridian circle at the [same] solstice, whether summer or winter, we found
that the arc between the northernmost and southernmost points, which isthe arc
between the solstitial points, is always greater than 47?fand less than 473°.
From this we derive very much the same ratio as Eratosthenes, which
Hipparchus also used. For {according to this] the arc between the solstices 1Is
approximately 11 parts where the meridian is 83.7

LA S B

Ptolemy uses 2&£=47°;42',30"but in reality he should have gotten about 47°;21".

Now 21" is a fairly large error for this kind of measurement, about 2/3™ the size
of the Moon. What is not surprising 1s that Ptolemy made such an error, but that
he got exactly the same values used by Eratosthenes and Hipparchus, who
should have gotten about 47°;27".

This kind of thing occurs frequently throughout the Almagest.



For the geographical latitude, Ptolemy writes:

rlr;rnm the pireccciing kind of observation it is easy to derive immediately the
latitude of the region in which the observation is made, wherever itis: one takes
the point halfway between the two extrema; this point lieson the equator; then
one takes the distance between this point and the zenith, which is the same,
obviously, as the distance of the poles from the horizon.

and later in Almagest 5.12:

L% L L LN = (.41---,.-.-,-_- B Fos e - —

latitude either side of the ecliptic is shown to be 5°. For the zenith distance of the
equator at Alexandria has been shown to be 30;58°; if we subtract from this the

~ LI B BN

Actually, the latitude of Alexandria is between 31°;13"and 31°;19°,depending on
exactly where Ptolemy worked (probably closer to the more northern limit).

Ptolemy’s value 30°;58 follows exactly from an equinoctial shadow ratio of 5/3,
and was probably also a value he inherited from some old tradition.



Spherical trigonometry solves problems related to circles on a sphere.

June solstice

Morth
Celestial
Pole

Ecliptic

Celestial

Equator Autumnal

Equinox

_______________

Vernal
Equinox

\December
solstice

The Sun moves among the stars along the ecliptic, completing
one 360° path in one year. The ecliptic is tited by 23,3 with
respect to the celestial equator. The Sun’s position on the celestial
sphere in April (full circle) and in October (dashed circle) is shown.

A particular problem is to compute the angles between the ecliptic, the equator,
and the horizon. Another is to compute the time required for a given segment of
the ecliptic to rise or set above or below the horizon. Another is to compute the
length of the longest (or shortest) day at any given geographic latitude.



from Almagest Book 2.6, for the parallel of the Tropic of Cancer:

7. The seventh is the paraliel with a longest day of 133 equinoctial hours. This is
23:51° from the equator®® and goes through Soene.*® This is the first of the so-
called ‘one-way-shadow’”® parallels. For in this region the noon shadows of the
gnomon never point towards the south. Only at the actual summer solstice does
the sun come into the zenith lor those beneath this parallel, so that the gnomons
appear shadowless. For they are exactly the same distance from the equator as
the summer solstice is. At every other time the shadows of the gnomons point
towards the north. In this region, for a gnomon of 60°, the equinoctial shadow 1s
264", the winter [solsticial] shadow is 65°, and the summer [solsticial] shadow is
zero.’” Furthermore, all parallels north of this up to the northern boundary of
our part ol the inhabited world have the shadows going one way. For in those
regions the gnomons at noon neither become shadowless nor point theirshadows
towards the south: they always point them towards the north, since the sun
never comes into the zenith for them, either.



and some parallels further north:

86 11 6. Characleristics of parallels M = 14% to 15%

10. The tenth is the parallel with a longest of 141 equinoctial hours. This s
33;18° from the equator, and goes through the middle of Phoenicia. In this
region, for a gnomon of 60°, the summer {solsticial] shadow is 10°, the
equinoctial shadow 39°, and the winter {solsticial] shadow 937,40

11. The eleventh is the parallel with a longest day of 14} equinoctial hours. This
is 36° from the equator, and goes through Rhodes. In this region, for a gnomon
of 607, the summer {solsticial] shadow is 121, the equinoctial shadow 43%".*
and the winter {solsticial] shadow 103"

12. The twelfth is the parallel with a longest day of 141 equinoctial hours. This
is 38;35° from the equator, and goes through Smyrna. In this region, for a
gnomon of 60°, the summer [solsticial]shadow is 155", 1he equinoctial shadow is
474°, and the winter {solsticial] shadow is 11417".

13. The thirteenth is the parallel with a longest day of 15 equinoctial hours.
This is 40;56° from the equator, and goesthrough the Hellespont. In this region,
for a gnomon of 60°, the summer [solsticiai] shadow is 184°, the equinoctial
shadow 524", and the winter [solsticial] shadow 1273 42



so Ptolemy i1s systematically computing what the shadow lengths will be at a
sequence of geographical longitudes from the equator to the arctic circle.
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Alexandria

//- yene

This had been going
on for centuries. In
about 200 B.C.
Eratosthenes had
managed to determine

the circumference of
the Earth.

Strabo, writing about
A.D. 5, gives and
interesting account of
the work of both
Eratosthenes and
Hipparchus in this
area (see the
supplementary
reading).



Eratosthenes is said to have measured the angle as 7 1/5 degrees, and took the
distance from Syene to Alexandria as 5,000 stades, giving

o =37ilo><5,000=50x5,000=250,000 stades
5

which he rounded to 252,000 stades to make it divisible by 60 (and also 360).

North Pole
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[ecture 2

o Almagest Book 3

e the length of the year

e the length of the seasons

e the geometric models

e the length of the day

e the background

e lost episodes in solar history



