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Introduction 
The planetary models of ancient Indian mathematical astronomy are described in several 
texts.1 These texts invariably give algorithms for computing mean and true longitudes of 
the planets, but are completely devoid of any material that would inform us of the origin 
of the models. One way to approach the problem is to compare the predictions of the 
Indian models with the predictions from other models that do have, at least in part, a 
known historical background. Since the Indian models compute true longitudes by adding 
corrections to mean longitudes, the obvious choices for these latter models are those from 
the Greco-Roman world. In order to investigate if there is any connection between Greek 
and Indian models, we should therefore focus on the oldest Indian texts that contain fully 
described, and therefore securely computable, models. We shall see that the mathematical 
basis of the Indian models is the equant model found in the Almagest, and furthermore, 
that analysis of the level of development of Indian astronomy contemporary to their 
planetary schemes strongly suggests, but does not rigorously prove, that the planetary 
bisected equant model is pre-Ptolemaic. 
 
 
The Indian models 
 The earliest fully described Indian planetary models are two sets from the writer 
Aryabhata, both of which probably date from the early 6th century A.D. One model, 
called the sunrise system after its epoch date of sunrise on 18 February –3101, is 
conventionally attributed to a line of development called the Aryapaksa, and first appears 
in Aryabhata’s Aryabhatiya, although our complete understanding of the model is not 
established until the commentaries of Bhaskara, which date from about 628.2 The second, 
called the midnight system after its epoch date of midnight on 17/18 February –3101, is 
conventionally attributed to a line of development called the Ardharatrikapaksa, and first 
appears for us in Latadeva’s Suryasiddhanta included in Varahamahira’s 
Pancasiddhantika, which appeared in the second half of the 6th century, and then later in 
more detail in Brahmagupta’s commentary of 665.3 Both systems set their local meridian 
to Lanka, longitude about 76° east, latitude 0°. 
 
For the five planets, the models recognize both the zodiacal and solar anomalies. The 
zodiacal, or manda, correction is computed using 
 
 1( ) sin ( 2 sin )q eα α−= − . 
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Here P Aα λ λ= − , Pλ is the mean longitude of the planet, λA is the longitude of the 
apogee, and the anomaly scale is given as 2e in anticipation of the equant. The solar, or 
sighra, correction is computed from 
 

 1 sin( ) tan
1 cos

rp
r

γγ
γ

− ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

, 

 
where r gives the scale of the correction, and γ is the argument of the sighra anomaly. For 
the outer planets, the Indian models specify directly the mean motions in sidereal 
longitude of the planet, and like the Greek models, the longitude of the epicycle radius 
with respect to Aries 0° is the mean longitude of the Sun. Thus if Pλ  is the mean 
longitude of the planet and Sλ  is the mean longitude of the sun, then for an outer planet 
the sighra argument is 
 
 S Pγ λ λ= − . 
 
For the inner planets, the sighra argument uses not the mean longitude of the planet, 
which would be just the mean longitude of the Sun, but instead the absolute longitude 

Pλ′ of the sighra epicycle radius,4 so we have  
 
 P Sγ λ λ′= − , 
 
while the manda argument is given by 
 
 S Aα λ λ= − . 
 
The sunrise system has an additional feature, pulsating correction scales 2e and r, but for 
the purposes of this paper these pulsations are irrelevant. 
 
The algorithm for combining the manda and sighra corrections to compute the true 
longitude is a bit intricate, and slightly different in the two systems. In the following, for 
an outer planet let M λ= and SS λ= , while for an inner planet SM λ= and PS λ′= . In 
the midnight system, the steps in the algorithm are: 

(1) with sighra argument S Mγ = −  and longitude of apogee λA compute 

1
1 ( )
2A pν λ γ= − . 

(2) with manda argument 1Mα ν= −  compute 2 1
1 ( )
2

qν ν α= − . 

(3) with manda argument 2Mα ν= −  compute 3 ( )M qν α= + . 
(4) with sighra argument  3Sγ ν= −  compute the true longitude 3 ( )pλ ν γ= + . 

Notice that in the first two steps the corrections are scaled by a factor ½ and are applied 
with opposite their usual signs. 
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In the sunrise system, for an outer planet: 

(1) with manda argument AMα λ= −  compute 1
1 ( )
2

M qν α= + . 

(2) with sighra argument 1Sγ ν= −  compute 2 1
1 ( )
2

pν ν γ= + . 

(3) with manda argument 2 Aα ν λ= −  compute 3 ( )M qν α= + . 
(4) with sighra argument  3Sγ ν= −  compute the true longitude 3 ( )pλ ν γ= + . 
 

For an inner planet one omits the initial manda correction, and the algorithm is: 

(1) with sighra argument S Mγ = − compute ( )γ−λ=ν pA 2
1

1 . 

(2) with manda argument A1 λ−ν=α  compute 2 ( )M qν α= + . 
(3) with sighra argument  2Sγ ν= −  compute the true longitude 2 ( )pλ ν γ= + . 

 
It is clear that while the sunrise and moonrise models are not mathematically equivalent, 
they are nevertheless closely related. Indeed, Aryabhata appears to have drawn heavily on 
sources from an even earlier school, the Brahmapaksa, first documented for us in the very 
imperfectly preserved Paitamahasiddhanta,5 believed to originate no earlier than the 5th 
century A. D., and later, although likely with significant changes to the models, in 
Brahmagupta’s Brahmasphutasiddanta, which was written in 628. 
 
The numerical values of the parameters assigned to the scales of the manda and sighra 
corrections make it clear that they are analogous to the eccentric and epicycle corrections 
found in Greek models. For example, for Jupiter the Almagest gives 2e = 5;30 and 
r = 11;30, while the midnight system gives 2e =  5;20 and r = 12 (in conventional units 
with R = 60). Indeed, since the very earliest investigation of the Indian models by 
Western scholars it has been presumed that the models are somehow related to a double 
epicycle system, with one epicycle accounting for the zodiacal anomaly, and the other 
accounting for the solar anomaly (retrograde motion).6 This perception was no doubt 
reinforced by the tendency of some Indian texts to associate the manda and sighra 
corrections with an even older Indian tradition of some sort of forceful cords of air 
tugging at the planet and causing it to move along a concentric deferent.  
 
Since our goal in this paper is to investigate the nature of any connection with ancient 
Greek planetary models, it is only important to accept that the models appear in Indian 
texts that clearly pre-date any possible Islamic influences, which could, at least in 
principle, have introduced astronomical elements that Islamic astronomers might have 
derived from Greek sources. 
 
Comparison of Indian and Greek Planetary Models 
In 1956 Neugebauer presented schematic arguments supporting the idea that the multi-
step Indian algorithms were approximating an underlying Greek geometrical model, 
which he thought was an eccentre plus epicycle model.7 In 1961 van der Waerden 
showed, on the basis of the first few terms in power series expansions in e/R and r/R, that 
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the equant model and a model very similar to the sunrise model (the difference being that 
the order of the first two steps is interchanged) are closely related, and in particular that 
the factor of ½ used in the initial steps of the Indian models is directly related to the 
bisection of the equant.8 However, van der Waerden published no numerical comparisons 
of the Indian models and the bisected equant, and so it was perhaps not entirely clear 
whether or not his conclusion was solid. Regardless of the reasons, van der Waerden’s 
result appears to have been systematically ignored in the principal Indian9 and western 
literature.10 Indeed, apart from a few references in van der Waerden’s own later papers, 
the only references to his paper that I can find are two papers which primarily mention 
the paper’s existence,11,12 and a paper that usefully discusses van der Waerden’s power 
series argument and points out, correctly, that it is not very accurate for Venus.13

 
As mentioned earlier, the parameters for the Almagest and Indian models are closely 
related but not identical, and if one compares the predictions of the Almagest model for, 
say, Jupiter, with the predictions of the sunrise model, using the given parameters for 
both, then as shown in Figure 1 the Almagest model is a superior predictor of Jupiter’s 
positions.14

[Figure 1 goes here] 
Indeed, since the models are mathematically different, there is no reason to expect that 
the optimum parameter values should be the same. However, if the apparent 
mathematical difference is only masking a deeper relationship, then the relevant question 
to ask is how the models compare when using the same parameter values. 
 
Figure 2 shows the differences between the longitude of Jupiter computed using modern 
theory and the predictions of (a) the sunrise theory, (b) a Greek eccentre plus epicycle 
theory, and (c) the Almagest equant, this time using the Almagest parameters for each 
ancient theory.15  
                                                          [Figure 2 goes here] 
Figure 2 shows that the sunrise theory and the Almagest equant are, for the Almagest 
parameters of Jupiter, effectively the same, and indeed, as shown in Figure 3, the 
maximum difference of the two theories never exceeds 0.042° (the midnight theory is 
virtually identical with both and so is not shown).  

[Figure 3 goes here] 
For Saturn the agreement is even closer (see Figure 4),  

[Figure 4 goes here] 
but for Mars the agreement is not as good, as shown in Figure 5. 
                                                        [Figure 5 goes here] 
The close numerical agreement between the Almagest equant and the Indian models, 
when evaluated using the exactly the same parameters, is quite striking,16 and obviously 
requires an explanation. 
 
The History of the Equant 
The first question is to ask is why do the Almagest equant and the Indian models agree so 
well? Since both models clearly attempt to explain both the zodiacal and solar anomalies 
in planetary motion, it seems extremely likely that both models were originally intending 
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to solve the same astronomical problem. We can then usefully distinguish two 
possibilities: 

(1) the equant and the Indian models are versions of the same solution to the same 
astronomical problem, or 

(2) the equant and the Indian models are independent efforts to solve the same 
astronomical problem. 

 
The principal evidence suggesting that option (1) is the most plausible option is that, as 
shown above, for small to moderate values of the parameters e/R and r/R the equant and 
Indian models are numerically indistinguishable. Furthermore, it is shown in the 
appendix that one can, by means of a sequence of well-defined approximations, in fact 
analytically derive the sunrise theory from the equant. While the derivation presented 
there is likely to differ from the method used originally, what is important is that it is 
possible to establish a precise mathematical relationship between the two theories, and 
that relationship allows us to understand exactly why the approximation is very close for 
Jupiter and Saturn and not nearly so close for Mars. Also, it is clear from Figures 2, 4, 
and 5 that the sunrise system is much closer to the equant than to the eccentre plus 
epicycle model, thus establishing beyond any doubt that the Indian schemes are not 
approximations to the eccentre plus epicycle model. 
 
In addition, the derivation very strongly suggests that the sunrise model is derived from 
the equant, and not, for example, invented by some sort of iterative tinkering, starting 
from, say, an eccentre plus epicycle model and trying to create a tinkered version that (a) 
decouples the anomalies for computational convenience, and (b) corrects its deficiencies. 
The reason is that a theory arrived at by such tinkering need not be analytically derivable 
starting from the equant, a property that is demonstrably true for the sunrise theory. 
 
Option (2) basically requires that some inventor first found a theory other than, and 
independent of, the equant that explains the data, and then for computational convenience 
derived what we now know as the Indian models as an approximation to this alternate 
theory. It is easy for us to imagine candidate theories: perhaps some variant of Kepler 
motion, or one of the approximations to the equant that respect uniform motion invented 
by Islamic astronomers. What is difficult to establish is that any such theory is 
historically plausible. 
 
So compared to the consequences of option (2), it seems far more plausible to simply 
assume option (1), that the equant and Indian models are versions of a single solution to 
the same astronomical problem, and that it is furthermore very likely that of the two 
models, the equant came first and the Indian models are an approximation to it. The 
discussion in the Appendix shows how the Indian models might have been derived, 
starting from the equant, and while we can only admire the ingenuity of whoever did it 
first, we can be sure of the motivation – trading numerical accuracy for ease of 
computation by decoupling the zodiacal and solar anomalies. The same tradeoff is made 
in the Almagest, and the tabular interpolation scheme described by Ptolemy manages to 
maintain more accuracy at the cost of significantly more bother in computation. 
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The crucial question now becomes, which came first – the Almagest, or some other 
unknown Greek text that was the ultimate source of the Paitamahasiddhanta and hence 
Aryabhata’s models? Unfortunately, our documented knowledge of Greek planetary 
theory prior to Ptolemy is quite limited. We have Ptolemy’s remarks in Almagest 9.2 that 
Hipparchus had shown that the planetary observations available to him were not 
consistent with the models of the astronomers at that time, and Ptolemy’s further 
comment that the planetary models developed in the post-Hipparchan years “…by means 
of eccentric circles or by circles concentric with the ecliptic, and carrying epicycles, or 
even by combining both….for these representations have been employed by almost all 
those who tried to exhibit the uniform circular motion by means of the so-called ‘Aeon–
tables’, but their attempts were faulty and at the same time lacked proofs; some of them 
did not achieve their object at all, the others only to a limited extent”.17 Essentially the 
only other primary source materials for planetary models are the remarks by Pliny and 
those in PMich. 149, both of which indicate that models were developed that attempted to 
explain both the zodiacal and solar anomalies, but do not make any recognizable 
reference to the equant.18

 
This leaves trying to date the equant in astronomical history in terms of the other 
elements of mathematical astronomy present in India at the time as the equant. The fact 
that no Indian text gives the slightest hint regarding the origin of their models or the 
empirical basis of their model parameters is not helpful, but except for the Almagest, the 
same is largely true of ancient western astronomical texts.19 Thus we must take a more 
circumstantial approach, reasoning under the conventional Western sight that while the 
astronomy of the Indian texts is thought to be based largely on material imported from 
Greco-Roman sources in the 2nd through 5th centuries,20 it is impossible not to notice that 
all the sophisticated elements of mathematical astronomy included in Ptolemy’s Almagest 
are completely missing in any known Indian astronomy until late in the first millennium. 
Examples include 

• The equation of time. Throughout the first millennium the Indians used an 
abbreviated version which includes only the effect of the zodiacal anomaly of the 
Sun, and neglects the effect of the obliquity of the ecliptic. 

• Obliquity of the ecliptic. When used in spherical trigonometry, the Indians use 
either 24° or 23;40°, both associated with Hipparchus, but never the 
Eratosthenes/Almagest value 23;51,20°. 

• The second lunar anomaly. The Indians did not discuss evection until the 
beginning of the second millennium, and then in a form different from that used 
by Ptolemy. 

• Accurate discussions of parallax. The Indians were aware of parallax and used it 
for computing eclipses, but always used various approximations. 

• Decoupling the anomalies. The scheme used by the Indians works well for 
moderate eccentricities and epicycle sizes, such as those appropriate to Jupiter, 
but as we have noticed it breaks down for larger values, such as those appropriate 
to Mars. Presumably they would have used Ptolemy’s more accurate tabular 
interpolation scheme if they had known about it. 
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• Trigonometry scales. The Indians used a variety of values for the radius of the 
reference circle, and mostly the value R = 3438 in the earliest texts. This is a value 
used by Hipparchus but apparently abandoned by the time of Ptolemy. 

• Retrograde motion. When mentioned at all in connection with the multi-step 
models we are discussing, the Indians quoted specific values of the sighra 
anomaly that correspond to first and second station. There is no mention of the 
variation in the size of retrograde arcs with zodiacal position. 

• Model of Mercury. Unlike Ptolemy, who used a complicated crank mechanism to 
generate a pair of perigees for Mercury, the Indians used the same model for 
Mercury and Venus, which is also often the same or closely related to the model 
used for the outer planets. The basis of all of these models is the equant. 

• Determination of orbit elements. While the bulk of the Almagest is devoted to 
explaining how to determine orbit elements from empirical data, it is not at all 
obvious that any comparable derivation is even possible in the context of the 
Indian approximation schemes. 

• Values of orbit elements. The values used in the Indian schemes for e, r, and A are 
generally different from the values found in the Almagest. Except for Mercury, 
the resulting Indian model predictions for true longitudes are generally inferior to 
those in the Almagest. 

• Star catalog. The Indian coordinates for star positions are generally inaccurate, 
and bear no relation to those found in the Almagest star catalog. 

• Zodiacal signs. The Indian texts routinely divide circles such as epicycles into 30° 
segments and refer to them in terms of the zodiacal signs. The only other known 
use of this practice is in Hipparchus’ similar description of circles of constant 
latitude in the Commentary to Aratus. 

 
The list above is no doubt incomplete, but is already long enough to illustrate the point 
that the astronomy surrounding the equant in India is generally far less developed than 
that found in the Almagest. This has led to an essentially universally accepted (except 
among some Indian scholars, see ref. 20) view that the astronomy we find in the Indian 
texts is pre-Ptolemaic.  
 
How do we reconcile the appearance of planetary theories in India clearly derived from 
the equant with this mass of circumstantial evidence? Once again we have two principal 
options. Either 

(1) the Greek source that introduced the approximation of the equant into India was 
influenced  by Ptolemy and the Almagest, or 

(2) the Greek source pre-dates the Almagest, so there was no such influence, and 
hence Ptolemy did not invent the equant. 

 
The circumstantial evidence listed above strongly supports the long prevailing view that 
the Greek sources that are the basis of the Indian texts are definitely pre-Ptolemaic, and 
there is no compelling reason to overturn that conclusion based only upon the fact that 
the equant must pre-date the Almagest. In this case, we have only to conclude that 
Ptolemy did not invent the equant. 
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The simplest alternative would be that while all or most of Indian astronomy is based on 
Greek sources that pre-date Ptolemy, somehow the planetary theory that got to India was 
based on an approximation to Ptolemy’s equant that was developed after the publication 
of the Almagest. The more radical alternative is that the bulk of the Greek material that 
reached India is post-Ptolemy.  
 
In either case, however, there must be a significantly different relationship between the 
Indian models and ancient Greek astronomy than the one universally accepted until now. 
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Appendix 
It is interesting to consider how the Indian schemes might have been derived from the 
bisected equant. The discussion below generally follows van der Waerden, but adds a 
number of clarifying steps.21 Along the way we will need to quantify the degree of 
agreement between the models at various stages of approximation. To this end imagine a 
table of 46 rows and 46 columns. To each row corresponds a value of Aα λ λ= −  (in 
degrees) from the sequence 0,6,12,…,84,90,93,96,…,180, and to each column 
corresponds a value of Sγ λ λ= −  from the same sequence. Then to compare two models 
A and B we compute  
 
 ( ) ( )A Bλ λ λ λ− − −  
 
for each cell in the table and as a figure of merit quote the ‘cpair’ (MAE,XAE), where 
MAE and XAE are the mean and maximum of the absolute values of the table entries (in 
degrees). For example, using 2e = 6/60 and r = 12/60 and comparing the equant and the 
sunrise schemes, one finds the cpair (0.015, 0.042), while comparing an eccentric model 
with the sunrise scheme gives (0.189, 0.745). 

[Figure 6 goes here] 
 
The task facing the ancient analyst was to efficiently compute the longitude of a planet 
using the equant model. In Figure 6, ED = ET = e, DC = 1, and CP = r. Given the angles 
α and γ , one strategy begins as follows: 

(1) compute 1 1 sinq eα α α= + = − α  
(2) compute 12 sinq e α−  

 
The value of q computed in step (2) is indeed an approximation, but comparing the 
correctly computed equant with one using this strategy gives the cpair (0.003, 0.006), 
thus no larger than the errors caused by the trig tables of the time. 
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The problem for the analyst occurs in the next step: 

(3) compute 1 sintan
( , ) cos

rp
e r r

γ
ρ γ

− ⎛ ⎞
= ⎜ ⎟+⎝ ⎠

 

(4) compute q pλ λ− = +  
 
In step (3), ρ(e,r) = TC is a function of both variables e and r, and that is the obstacle to 
efficient computation of the equant. 
 
One way to overcome that obstacle is to consider a point Z on the line CT (or its 
extension) that is unit distance from point C. Then to first order in e we have 
 
 11 cosCT CZ ZT e α= + = +  (A.1) 
 
and we can now compute the angle p CZP′ =  as a function only of r: 
 

 1 sintan
1 cos

rp
r

γ
γ

− ⎛ ⎞′ = ⎜ ⎟+⎝ ⎠
. 

 
It remains to compute the angle ZPTδ =  and use that to compute p p δ′= − . It is clear 
that δ will under all circumstances be a small angle, and we will incur no noticeable error 
by approximating sinδ δ . Then using the law of sines on triangle PZT we get 
 

 1 1sin cos sin cos
1 cos

e p e p
PT r

α αδ
γ

′ ′
=

+
. 

 
Comparing the correctly computed equant with the approximation  
 
 12 sine pλ λ α δ′= − + −  (A.2) 
 
gives the cpair (0.008, 0.041), so this is indeed a very good approximation to the equant 
that effectively decouples the two anomalies and enables efficient computation. 
 
The sunrise scheme is, however, even easier to compute, and almost as good an 
approximation, since its cpair is (0.015, 0.042). We can see the analytic connection by 
evaluating the scheme as follows: 

(1) compute 1 1
2 sin

2
e qαα α α−

= + = +  

(2) compute 1
2 1 1

( ) 1
2 2

p q p1
γµ α α−

= + = +  

(3) compute 
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3 1 1

1 1
1 1

1 1 1

12 sin( )
2

2 sin cos 2 cos sin
2 2

2 sin cos sin

e p

p pe e

e e p
q

µ α α

α α α

α α α
α δ

= − +

= − −

− −
′= + −

 

(4) compute 1 1 1( 2 sin cos sin )q p e e pλ λ γ α α δ ′= + + + + − .   (A.3) 

In steps (2) and (4) we have, of course, the usual sighra convention, 
1 sin( ) tan

1 cos
rp

r
γγ
γ

− ⎛ ⎞
= ⎜ +⎝ ⎠

⎟ , and in step (3) we have 1(1 cos( ))r qδ δ γ′ = + − . To complete 

the comparison, at least from our modern perspective, it is straightforward, if tedious, to 
show that p δ′ − p δ ′− in equation (A.2) is a very good approximation to  in equation 
(A.3): their cpair is (0.010, 0.025).  

If indeed an ancient analyst followed this path from the equant to the sunrise scheme, 
then the important steps seem to be 

(1) the idea to divide the line CT into a unit line and a remainder of approximate 
length e 1cosα , 

(2) realization and use of the fact that the angle p pδ ′= − is always small, 

(3) realization that the term 1cos sine 1pα  can be combined with the term 12 sine α  to 

give 1
12 sin( )

2
e α +

p , which is constructed in step (2) of the sunrise scheme. 

The original derivation by the ancient analyst would no doubt have included a large 
amount of trial and error, numerical checks of the approximations at the intermediate 
steps, the geometric reasoning would probably have proceeded by decomposing all the 
triangles into sums of right triangles, and our sines and cosines would be specific sides of 
right triangles, but it seems plausible that an expert analyst – certainly one at the level of 
Archimedes or Apollonius – could have constructed the sunrise scheme along the lines 
suggested above. 
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Figure Captions 

Figure 1. The difference between the longitudes of Jupiter predicted by modern theory 
and those predicted by the equant model (solid line) using the Almagest parameters and 
the sunrise model (dotted line) using Aryabhata’s parameters. 

Figure 2. The difference between the longitudes of Jupiter predicted by modern theory 
and those predicted by the equant model (open circles), the eccentre plus epicycle model 
(solid circles), and the sunrise model (solid line), using the Almagest parameters for all 
three ancient models. The equant and sunrise models are very nearly coincident in the 
figure, while the eccentre model differs significantly from both. 

Figure 3. The difference between the equant and sunrise models using identical Almagest 
parameters for Jupiter. 

Figure 4. As in Figure 2 except for Saturn. 

Figure 5. As in Figure 2 except for Mars. Note that for Mars the sunrise model now 
differs noticeably from the equant, but is an even poorer match to the eccentre. 

Figure 6. The geometry of the sequence of approximations used to derive the sunrise 
model from the equant.
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