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Introduction
Many physical systems are characterized by the presence of multiple spatial scales. Numerically
simulating such types of systems poses a significant challenge. One of the most widely-adopted ap-
proaches to address this issue involves the use of a non-uniformly spaced grid with a hierarchy of grid
resolutions. Such approaches can be broadly classified as adaptive mesh refinement (AMR) methods.

Figure 1: A density contour snap-
shot of an advecting vortex, with
three active levels of AMR. AMR
blocks with 8×8 cells each are out-
lined in white. Large regions with
essentially no density gradient sur-
rounding the vortex are refined at
the finest level.

Rather than refine one computational cell individually,
AMR methods typically create a hierarchy of grid levels
by refining large collections of cells (blocks) around non-
smooth features. Block-based refinement is typically preferred
over cell-based refinement for reasons of computational effi-
ciency.

One major drawback of block-structured AMR is the
‘over-resolution’ of many cells in the mesh which
may be in a smooth region, but are grouped to-
gether with a non-smooth feature for refinement.
While the cost is generally justified over existing alter-
natives, it remains an unwanted side-effect (see Figure
(1)).

A method for dealing with multi-scale problems on uniform
grids was introduced by Harten [2], which used a multires-

olution (MR) representation of the data in order to decrease excessive computations in smooth re-
gions. The idea was to reduce the number of costly flux evaluations while maintaining a prescribed level
of accuracy. In the present work, this scheme is generalized to block-structured AMR discretizations.

Numerical Methods

Finite Volume Framework
In the present work we are interested in numerically solving conservation laws of the form{

ut + f (u)x = s(u)

u(x, 0) = u0(x),
(1)

where u represents a conserved quantity, f (u) is the flux function, and s(u) is a source term. In the finite
volume formulation, the solution u(x, t) is approximated by a volume average defined over a target cell
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u(ξ, t)dξ, where h is the cell width. The governing equations
are cast into the following semi-discrete conservative scheme
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where f̂i±1
2

are numerical fluxes.

Multiresolution Scheme
The role of the multiresolution representation is to obtain regularity information about the under-
lying function. This is done by decomposing data into successively more coarse levels of resolution,
then at each level measuring the difference made between the fine grid data and its approximation based
on data on the adjacent coarse grid. We define on each active AMR block a new hierarchy of nested grids
Gl, 0 ≤ l ≤ L,

Gl =
{
xli

}Nl

i=0
, xli = i · hl, hl = 2l · h0, Nl = N0/2

l. (3)

Here l = 0 represents the (finest) level of resolution defined on the AMR block, and l = L represents the
most coarse.
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ũl−12i+1 ≈ uli −
∑s

p=1 γp
(
uli−p − uli+p

)
dli = ul−12i+1− ũl−12i+1
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Figure 2: Left: fine-scale cell averages are coarsened. Right: quadratic average-interpolating polynomial prediction from
coarse-scale l to fine-scale l − 1, given cell averages {uj}i+1

j=i−1.

The forward transform proceeds by predicting data between each adjacent level of resolution based on
average-interpolating polynomials of degree 2s, given by

ũl−12i+1 ≈ uli −
s∑
p=1

γp
(
uli−p − uli+p

)
. (4)

The detail coefficients are then computed as

dli = ul−12i+1 − ũl−12i+1. (5)

These steps are illustrated in Figure (2). Once the detail coefficients have been obtained, the MR
scheme proceeds by setting a threshold ε and truncating coefficients which have an absolute value

below the threshold. Lastly, the inverse transform then starts from grid l = L and at each interface
either computes fluxes using the fine-grid scheme, or interpolates them using the MR basis. The fluxes
are interpolated by

f̃ l−12i+1 ≈
s+1∑
p=1

βp
(
f̂ li−p+1 + f̂ li+p

)
, (6)

where the interpolants are of degree 2s + 1. The process repeats until all fluxes are either computed or
interpolated on the fine grid l = 0.

Results

Convergence Study
We solve the one-dimensional Euler equations on the periodic domain [0, 2π] with

w = (ρ, ρu,E) , f (w) =
(
ρu, ρu2 + p, u(E + p)

)
, (7)

where ρ is the mass density, u is the velocity, E is the total energy, and p is the pressure.

Figure 3: Errors in the L1 and L2 norm for the sine wave problem using a
first-order Godunov method and first-order multiresolution interpolation.

The initial conditions are
ρ(x, 0) = 1 + 0.2 sin (x),
u(x, 0) = 1, p(x, 0) = 1,
and the ratio of specific heats
is γ = 1.4. The solution
is carried forward for several
timesteps only on a uniform
grid. It is found that the MR
scheme does not significantly
alter the rate of convergence
of the fine-grid scheme.

Two Blast Waves
We illustrate the efficiency of
the scheme on the problem of
two blast waves [3]. The mul-
tiresolution scheme is applied
to the mass and momentum
fluxes, with just one MR level,
L = 1. The threshold param-
eter ε is set to be of the same order as the local truncation error of the fine-grid scheme on each AMR
block. We find that throughout the simulation, approximately 13.4 percent of flux calculations are
replaced by an approximation from the MR basis. After the waves collide, we find only small regions
where the MR scheme is active. This is expected, as the entire domain has been affected by the shocks at
these times.

Figure 4: Results are shown from the problem of two interacting blast waves after t = 0.004 seconds. Top: two density
waves moving towards each other. Middle: velocity curve at the same time. Bottom: AMR levels corresponding to
each cell interface in the domain are plotted, showing interfaces where the flux is computed using the fine-grid scheme
(Piecewise Parabolic Method) in black, and interfaces approximated by the MR basis in red.

Conclusions
The multiresolution scheme is used to reduce the number of flux calculations on block-structured AMR
grids. It is found that the scheme significantly reduces computational effort without adversely affecting
the numerical solution. In future work we plan to expand the test suite to include multidimensional
problems, include source terms in the MR scheme for handling reactive flows [1], and conduct
parallel scaling and detailed benchmark studies.
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