#! /usr/bin/env python3 # def rk1_implicit_test ( ): #*****************************************************************************80 # ## rk1_implicit_test() tests rk1_implicit(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 13 November 2024 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'rk1_implicit_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test rk1_implicit.' ) tspan = np.array ( [ 0.0, 2.0 ] ) y0 = 5.1765 n = 100 humps_rk1_implicit ( tspan, y0, n ) tspan = np.array ( [ 0.0, 5.0 ] ) y0 = np.array ( [ 5000, 100 ] ) n = 200 predator_prey_rk1_implicit ( tspan, y0, n ) # # Terminate. # print ( '' ) print ( 'rk1_implicit_test():' ) print ( ' Normal end of execution.' ) return def rk1_implicit ( f, tspan, y0, n ): #*****************************************************************************80 # ## rk1_implicit() uses Runge-Kutta order 1 implicit method to solve an ODE. # # Discussion: # # Thanks to Mark Asch, 25 January 2022, for noticing that # t[0] = 0.0 # should be # t[0] = tspan[0] # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 25 January 2022 # # Author: # # John Burkardt # # Input: # # function f: evaluates the right hand side of the ODE. # # real tspan[2]: the starting and ending times. # # real y0[m]: the initial conditions. # # integer n: the number of steps. # # Output: # # real t[n+1], y[n+1,m]: the solution estimates. # from scipy.optimize import fsolve import numpy as np if ( np.ndim ( y0 ) == 0 ): m = 1 else: m = len ( y0 ) t = np.zeros ( n + 1 ) y = np.zeros ( [ n + 1, m ] ) dt = ( tspan[1] - tspan[0] ) / float ( n ) t[0] = tspan[0]; y[0,:] = y0 for i in range ( 0, n ): to = t[i] yo = y[i,:] tp = t[i] + dt yp = yo + dt * f ( to, yo ) yp = fsolve ( rk1_implicit_residual, yp, args = ( f, to, yo, tp ) ) t[i+1] = tp y[i+1,:] = yp[:] return t, y def rk1_implicit_residual ( yp, f, to, yo, tp ): #*****************************************************************************80 # ## rk1_implicit_residual() evaluates the rk1 implicit residual. # # Discussion: # # We are seeking a value YP defined by the implicit equation: # # YP = YO + ( TP - TO ) * F ( TP, YP ) # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 20 October 2020 # # Author: # # John Burkardt # # Input: # # real yp: the estimated solution value at the new time. # # function f: evaluates the right hand side of the ODE. # # real to, yo: the old time and solution value. # # real tp: the new time. # # Output: # # real value: the residual. # value = yp - yo - ( tp - to ) * f ( tp, yp ) return value def humps_rk1_implicit ( tspan, y0, n ): #*****************************************************************************80 # ## humps_rk1_implicit(): humps ODE using rk1_implicit(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 20 October 2020 # # Author: # # John Burkardt # # Input: # # real tspan[2]: the time span # # real y0[2]: the initial condition. # # integer n: the number of steps to take. # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'humps_rk1_implicit():' ) print ( ' Solve the humps ODE system using rk1_implicit().' ) t, y = rk1_implicit ( humps_deriv, tspan, y0, n ) plt.clf ( ) plt.plot ( t, y, 'r-', linewidth = 2 ) a = tspan[0] b = tspan[1] if ( a <= 0.0 and 0.0 <= b ): plt.plot ( [a,b], [0,0], 'k-', linewidth = 2 ) ymin = min ( y ) ymax = max ( y ) if ( ymin <= 0.0 and 0.0 <= ymax ): plt.plot ( [0, 0], [ymin,ymax], 'k-', linewidth = 2 ) plt.grid ( True ) plt.xlabel ( '<--- T --->' ) plt.ylabel ( '<--- Y(T) --->' ) plt.title ( 'humps_ode() solved by rk1_implicit()' ) filename = 'humps_rk1_implicit.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( block = False ) plt.close ( ) return def humps_deriv ( x, y ): #*****************************************************************************80 # ## humps_deriv() evaluates the derivative of the humps function. # # Discussion: # # y = 1.0 / ( ( x - 0.3 )^2 + 0.01 ) \ # + 1.0 / ( ( x - 0.9 )^2 + 0.04 ) \ # - 6.0 # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Input: # # real x[:], y[:]: the arguments. # # Output: # # real yp[:]: the value of the derivative at x. # yp = - 2.0 * ( x - 0.3 ) / ( ( x - 0.3 )**2 + 0.01 )**2 \ - 2.0 * ( x - 0.9 ) / ( ( x - 0.9 )**2 + 0.04 )**2 return yp def predator_prey_rk1_implicit ( tspan, y0, n ): #*****************************************************************************80 # ## predator_prey_rk1_implicit(): predator ODE using rk1_implicit(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 20 October 2020 # # Author: # # John Burkardt # # Input: # # real tspan[2]: the time span # # real y0[2]: the initial condition. # # integer n: the number of steps to take. # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'predator_prey_rk1_implicit():' ) print ( ' Solve the predator prey ODE system using rk1_implicit().' ) t, y = rk1_implicit ( predator_prey_deriv, tspan, y0, n ) plt.clf ( ) plt.plot ( y[:,0], y[:,1], 'r-', linewidth = 2 ) plt.grid ( True ) plt.xlabel ( '<--- Prey --->' ) plt.ylabel ( '<--- Predators --->' ) plt.title ( 'predator prey ODE solved by rk1_implicit()' ) filename = 'predator_prey_rk1_implicit.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( block = False ) plt.close ( ) return def predator_prey_deriv ( t, y ): #*****************************************************************************80 # ## predator_prey_deriv() evaluates the right hand side of the system. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 April 2020 # # Author: # # John Burkardt # # Reference: # # George Lindfield, John Penny, # Numerical Methods Using MATLAB, # Second Edition, # Prentice Hall, 1999, # ISBN: 0-13-012641-1, # LC: QA297.P45. # # Input: # # real T, the current time. # # real Y[2], the current solution variables, rabbits and foxes. # # Output: # # real DYDT[2], the right hand side of the 2 ODE's. # import numpy as np r = y[0] f = y[1] drdt = 2.0 * r - 0.001 * r * f dfdt = - 10.0 * f + 0.002 * r * f dydt = np.array ( [ drdt, dfdt ] ) return dydt def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) rk1_implicit_test ( ) timestamp ( )