#! /usr/bin/env python3 # def disk01_positive_monte_carlo_test ( ): #*****************************************************************************80 # ## disk01_positive_monte_carlo_test() tests disk01_positive_monte_carlo(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 03 January 2024 # # Author: # # John Burkardt # from numpy.random import default_rng import numpy as np import platform print ( '' ) print ( 'disk01_positive_monte_carlo_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test disk01_positive_monte_carlo().' ) rng = default_rng ( ) disk01_positive_area_test ( ) disk01_positive_monomial_integral_test ( rng ) disk01_positive_sample_test ( rng ) # # Terminate. # print ( '' ) print ( 'disk01_positive_monte_carlo_test():' ) print ( ' Normal end of execution.' ) return def disk01_positive_area ( ): #*****************************************************************************80 # ## disk01_positive_area() returns the area of the unit positive_disk. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 May 2016 # # Author: # # John Burkardt # # Output: # # real AREA, the area. # import numpy as np value = np.pi / 4.0 return value def disk01_positive_area_test ( ) : #*****************************************************************************80 # ## disk01_positive_area_test() tests disk01_positive_area(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 May 2016 # # Author: # # John Burkardt # print ( '' ) print ( 'disk01_positive_area_test():' ) print ( ' disk01_positive_area returns the area of the unit positive disk.' ) value = disk01_positive_area ( ) print ( '' ) print ( ' disk01_positive_area() = %g' % ( value ) ) return def disk01_positive_monomial_integral ( e ): #*****************************************************************************80 # ## disk01_positive_monomial_integral(): monomial integrals in unit positive disk. # # Discussion: # # The integration region is # # X^2 + Y^2 <= 1. # 0 <= X, 0 <= Y. # # The monomial is F(X,Y) = X^E(1) * Y^E(2). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 May 2016 # # Author: # # John Burkardt # # Input: # # integer E(2), the exponents of X and Y in the # monomial. Each exponent must be nonnegative. # # Output: # # real INTEGRAL, the integral. # from scipy.special import gamma f1 = gamma ( ( e[0] + 3 ) / 2.0 ) f2 = gamma ( ( e[1] + 1 ) / 2.0 ) f3 = gamma ( ( e[0] + e[1] + 4 ) / 2.0 ) integral = f1 * f2 / f3 / 2.0 / ( 1.0 + e[0] ) return integral def disk01_positive_monomial_integral_test ( rng ): #*****************************************************************************80 # ## disk01_positive_monomial_integral_test() tests disk01_positive_monomial_integral(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 May 2016 # # Author: # # John Burkardt # # Input: # # rng(): the current random number generator. # import numpy as np m = 2 n = 4192 test_num = 20 print ( '' ) print ( 'disk01_positive_monomial_integral_test():' ) print ( ' disk01_positive_monomial_integral computes monomial integrals' ) print ( ' over the interior of the unit disk in 2D.' ) print ( ' Compare with a Monte Carlo value.' ) # # Get sample points. # x = disk01_positive_sample ( n, rng ) print ( '' ) print ( ' Number of sample points used is %d' % ( n ) ) # # Randomly choose X,Y exponents. # print ( '' ) print ( ' We will restrict this test to randomly chosen even exponents.' ) print ( '' ) print ( ' Ex Ey MC-Estimate Exact Error' ) print ( '' ) for test in range ( 0, test_num ): e = rng.integers ( low = 0, high = 4, size = m, endpoint = True ) value = monomial_value ( e, x ) result = disk01_positive_area ( ) * np.sum ( value ) / float ( n ) exact = disk01_positive_monomial_integral ( e ) error = abs ( result - exact ) print ( ' %2d %2d %14.6g %14.6g %10.2g' \ % ( e[0], e[1], result, exact, error ) ) return def disk01_positive_sample ( n, rng ): #*****************************************************************************80 # ## disk01_positive_sample() uniformly samples the unit positive disk. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 August 2023 # # Author: # # John Burkardt # # Input: # # integer N, the number of points. # # rng(): the current random number generator. # # Output: # # real x(n,2): the points. # import numpy as np x = np.zeros ( [ n, 2 ] ) for i in range ( 0, n ): # # Fill a vector with normally distributed values. # v = rng.standard_normal ( size = 2 ) # # Compute the length of the vector. # norm = np.sqrt ( v[0] ** 2 + v[1] ** 2 ) # # Normalize the vector. # v[0] = v[0] / norm v[1] = v[1] / norm # # Now compute a value to map the point ON the disk INTO the disk. # r = rng.random ( ) x[i,0] = np.sqrt ( r ) * np.abs ( v[0] ) x[i,1] = np.sqrt ( r ) * np.abs ( v[1] ) return x def disk01_positive_sample_test ( rng ): #*****************************************************************************80 # ## disk01_positive_sample_test() tests disk01_positive_sample(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 August 2023 # # Author: # # John Burkardt # # Input: # # rng(): the current random number generator. # import platform print ( '' ) print ( 'disk01_positive_sample_test():' ) print ( ' disk01_positive_sample() samples the unit positive disk.' ) n = 10 x = disk01_positive_sample ( n, rng ) print ( '' ) print ( ' Sample points in the unit positive disk.' ) print ( x ) return def monomial_value ( e, x ): #*****************************************************************************80 # ## monomial_value() evaluates a monomial. # # Discussion: # # This routine evaluates a monomial of the form # # product ( 1 <= i <= m ) x(i)^e(i) # # The combination 0.0^0, if encountered, is treated as 1.0. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 August 2023 # # Author: # # John Burkardt # # Input: # # integer E(D), the exponents. # # real X(N,D), the point coordinates. # # Output: # # real V(N), the monomial values. # import numpy as np n, d = x.shape v = np.ones ( n ) for j in range ( 0, d ): if ( 0 != e[j] ): for i in range ( 0, n ): v[i] = v[i] * x[i,j] ** e[j] return v def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) disk01_positive_monte_carlo_test ( ) timestamp ( )