subroutine angle_cdf ( x, n, cdf ) !*****************************************************************************80 ! !! angle_cdf() evaluates the Angle CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Reuven Rubinstein, ! Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks, ! Krieger, 1992, ! ISBN: 0894647644, ! LC: QA298.R79 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, integer N, the spatial dimension. ! N must be at least 2. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer n real ( kind = rk ) n_real real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) sin_power_int real ( kind = rk ) x real ( kind = rk ), parameter :: zero = 0.0D+00 if ( n < 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ANGLE_CDF - Fatal error!' write ( *, '(a)' ) ' N must be at least 2.' write ( *, '(a,i8)' ) ' The input value of N = ', n stop 1 end if if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else if ( r8_pi <= x ) then cdf = 1.0D+00 else if ( n == 2 ) then cdf = x / r8_pi else n_real = real ( n, kind = rk ) cdf = sin_power_int ( zero, x, n - 2 ) * gamma ( n_real / 2.0D+00 ) & / ( sqrt ( r8_pi ) * gamma ( ( n_real - 1.0D+00 ) / 2.0D+00 ) ) end if return end subroutine angle_mean ( n, mean ) !*****************************************************************************80 ! !! ANGLE_MEAN returns the mean of the Angle PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the spatial dimension. ! N must be at least 2. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean integer n real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 mean = r8_pi / 2.0D+00 return end subroutine angle_pdf ( x, n, pdf ) !*****************************************************************************80 ! !! ANGLE_PDF evaluates the Angle PDF. ! ! Discussion: ! ! X is an angle between 0 and PI, corresponding to the angle ! made in an N-dimensional space, between a fixed line passing ! through the origin, and an arbitrary line that also passes ! through the origin, which is specified by a choosing any point ! on the N-dimensional sphere with uniform probability. ! ! The formula is ! ! PDF(X) = ( sin ( X ) )^(N-2) * Gamma ( N / 2 ) ! / ( sqrt ( PI ) * Gamma ( ( N - 1 ) / 2 ) ) ! ! PDF(X) = 1 / PI if N = 2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Reuven Rubinstein, ! Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks, ! Krieger, 1992, ! ISBN: 0894647644, ! LC: QA298.R79 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, integer N, the spatial dimension. ! N must be at least 2. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( n < 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ANGLE_PDF - Fatal error!' write ( *, '(a)' ) ' N must be at least 2.' write ( *, '(a,i8)' ) ' The input value of N = ', n stop 1 end if if ( x < 0.0D+00 .or. r8_pi < x ) then pdf = 0.0D+00 else if ( n == 2 ) then pdf = 1.0D+00 / r8_pi else pdf = & ( sin ( x ) ) ** ( n - 2 ) * gamma ( real ( n, kind = rk ) / 2.0D+00 ) & / ( sqrt ( r8_pi ) * gamma ( real ( n - 1, kind = rk ) / 2.0D+00 ) ) end if return end subroutine anglit_cdf ( x, cdf ) !*****************************************************************************80 ! !! ANGLIT_CDF evaluates the Anglit CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < - 0.25D+00 * r8_pi ) then cdf = 0.0D+00 else if ( x < 0.25D+00 * r8_pi ) then cdf = 0.5D+00 - 0.5D+00 * cos ( 2.0D+00 * x + r8_pi / 2.0D+00 ) else cdf = 1.0D+00 end if return end subroutine anglit_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! ANGLIT_CDF_INV inverts the Anglit CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ANGLIT_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = 0.5D+00 * ( acos ( 1.0D+00 - 2.0D+00 * cdf ) - r8_pi / 2.0D+00 ) return end subroutine anglit_mean ( mean ) !*****************************************************************************80 ! !! ANGLIT_MEAN returns the mean of the Anglit PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.0D+00 return end subroutine anglit_pdf ( x, pdf ) !*****************************************************************************80 ! !! ANGLIT_PDF evaluates the Anglit PDF. ! ! Discussion: ! ! PDF(X) = sin ( 2 * X + PI / 2 ) for -PI/4 <= X <= PI/4 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= - 0.25D+00 * r8_pi .or. 0.25D+00 * r8_pi <= x ) then pdf = 0.0D+00 else pdf = sin ( 2.0D+00 * x + 0.25D+00 * r8_pi ) end if return end subroutine anglit_sample ( x ) !*****************************************************************************80 ! !! ANGLIT_SAMPLE samples the Anglit PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call anglit_cdf_inv ( cdf, x ) return end subroutine anglit_variance ( variance ) !*****************************************************************************80 ! !! ANGLIT_VARIANCE returns the variance of the Anglit PDF. ! ! Discussion: ! ! Variance = ! Integral ( -PI/4 <= X <= PI/4 ) X^2 * sin ( 2 * X + PI / 2 ) ! ! Antiderivative = ! 0.5D+00 * X * sin ( 2 * X + PI / 2 ) ! + ( 0.25 - 0.5D+00 * X^2 ) * cos ( 2 * X + PI / 2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = 0.0625D+00 * r8_pi * r8_pi - 0.5D+00 return end subroutine arcsin_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! ARCSIN_CDF evaluates the Arcsin CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= - a ) then cdf = 0.0D+00 else if ( x < a ) then cdf = 0.5D+00 + asin ( x / a ) / r8_pi else cdf = 1.0D+00 end if return end subroutine arcsin_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! ARCSIN_CDF_INV inverts the Arcsin CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ARCSIN_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a * sin ( r8_pi * ( cdf - 0.5D+00 ) ) return end function arcsin_check ( a ) !*****************************************************************************80 ! !! ARCSIN_CHECK checks the parameter of the Arcsin CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, logical ARCSIN_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical arcsin_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ARCSIN_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' arcsin_check = .false. return end if arcsin_check = .true. return end subroutine arcsin_mean ( a, mean ) !*****************************************************************************80 ! !! ARCSIN_MEAN returns the mean of the Arcsin PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = 0.0D+00 return end subroutine arcsin_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! ARCSIN_PDF evaluates the Arcsin PDF. ! ! Discussion: ! ! The LOGISTIC EQUATION has the form: ! ! X(N+1) = 4 * LAMBDA * ( 1 - X(N) ). ! ! where 0 < LAMBDA <= 1. This nonlinear difference equation maps ! the unit interval into itself, and is a simple example of a system ! exhibiting chaotic behavior. Ulam and von Neumann studied the ! logistic equation with LAMBDA = 1, and showed that iterates of the ! function generated a sequence of pseudorandom numbers with ! the Arcsin probability density function. ! ! The derived sequence ! ! Y(N) = ( 2 / PI ) * Arcsin ( SQRT ( X(N) ) ) ! ! is a pseudorandom sequence with the uniform probability density ! function on [0,1]. For certain starting values, such as X(0) = 0, 0.75, ! or 1.0D+00, the sequence degenerates into a constant sequence, and for ! values very near these, the sequence takes a while before becoming ! chaotic. ! ! The formula is: ! ! PDF(X) = 1 / ( pi * sqrt ( A^2 - X^2 ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Daniel Zwillinger, Stephen Kokoska, ! CRC Standard Probability and Statistics Tables and Formulae, ! Chapman and Hall/CRC, 2000, pages 114-115. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! -A < X < A. ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ARCSIN_PDF - Fatal error!' write ( *, '(a)' ) ' Parameter A must be positive.' stop 1 end if if ( x <= -a .or. a <= x ) then pdf = 0.0D+00 else pdf = 1.0D+00 / ( r8_pi * sqrt ( a * a - x * x ) ) end if return end subroutine arcsin_sample ( a, x ) !*****************************************************************************80 ! !! ARCSIN_SAMPLE samples the Arcsin PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call arcsin_cdf_inv ( cdf, a, x ) return end subroutine arcsin_variance ( a, variance ) !*****************************************************************************80 ! !! ARCSIN_VARIANCE returns the variance of the Arcsin PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the CDF. ! A must be positive. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = a * a / 2.0D+00 return end subroutine benford_cdf ( x, cdf ) !*****************************************************************************80 ! !! benford_cdf() returns the Benford CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 March 2016 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer X, the string of significant digits to be ! checked. If X is 1, then we are asking for the Benford probability that ! a value will have first digit 1. If X is 123, we are asking for ! the probability that the first three digits will be 123, and so on. ! ! Output: ! ! real ( kind = rk ) CDF, the Benford probability that an item taken ! from a real world distribution will have the initial digit X or less. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf logical i4_is_power_of_10 integer x if ( x <= 0 ) then cdf = 0.0D+00 else if ( i4_is_power_of_10 ( x + 1 ) ) then cdf = 1.0D+00 else cdf = log10 ( real ( x + 1, kind = rk ) ) cdf = mod ( cdf, 1.0D+00 ) end if return end subroutine benford_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! benford_cdf_inv() inverts the Benford CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 November 2022 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Benford, ! The Law of Anomalous Numbers, ! Proceedings of the American Philosophical Society, ! Volume 78, pages 551-572, 1938. ! ! Ted Hill, ! The First Digit Phenomenon, ! American Scientist, ! Volume 86, July/August 1998, pages 358 - 363. ! ! Ralph Raimi, ! The Peculiar Distribution of First Digits, ! Scientific American, ! December 1969, pages 109-119. ! ! Input: ! ! real CDF: the Benford probability that an item taken ! from a real world distribution will have the initial ! digit X or less. ! ! Output: ! ! integer X: a value between 1 and 9 for which the cumulative ! Benford distribution is CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer x if ( cdf < 0.0 .or. 1.0 < cdf ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'benford_cdf_inv(): Fatal error!' write ( *, '(a)' ) ' 0.0 <= cdf <= 1.0 required.' write ( *, '(a,g14.6)' ) ' input value is cdf = ', cdf stop ( 1 ) end if x = floor ( 10 ** cdf - 0.0001 ) return end subroutine benford_mean ( mu ) !*****************************************************************************80 ! !! benford_mean() returns the mean of the Benford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 November 2022 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Benford, ! The Law of Anomalous Numbers, ! Proceedings of the American Philosophical Society, ! Volume 78, pages 551-572, 1938. ! ! Ted Hill, ! The First Digit Phenomenon, ! American Scientist, ! Volume 86, July/August 1998, pages 358 - 363. ! ! Ralph Raimi, ! The Peculiar Distribution of First Digits, ! Scientific American, ! December 1969, pages 109-119. ! ! Output: ! ! real MU: the mean of the Benford PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) arg integer i real ( kind = rk ) mu mu = 0.0D+00 do i = 1, 9 arg = real ( i + 1, kind = rk ) / real ( i, kind = rk ) mu = mu + i * log10 ( arg ) end do return end subroutine benford_pdf ( x, pdf ) !*****************************************************************************80 ! !! benford_pdf() returns the Benford PDF. ! ! Discussion: ! ! Benford's law is an empirical formula explaining the observed ! distribution of initial digits in lists culled from newspapers, ! tax forms, stock market prices, and so on. It predicts the observed ! high frequency of the initial digit 1, for instance. ! ! Note that the probabilities of digits 1 through 9 are guaranteed ! to add up to 1, since ! LOG10 ( 2/1 ) + LOG10 ( 3/2) + LOG10 ( 4/3 ) + ... + LOG10 ( 10/9 ) ! = LOG10 ( 2/1 * 3/2 * 4/3 * ... * 10/9 ) = LOG10 ( 10 ) = 1. ! ! The formula is: ! ! PDF(X) = LOG10 ( ( X + 1 ) / X ). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 August 1998 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Benford, ! The Law of Anomalous Numbers, ! Proceedings of the American Philosophical Society, ! Volume 78, pages 551-572, 1938. ! ! Ted Hill, ! The First Digit Phenomenon, ! American Scientist, ! Volume 86, July/August 1998, pages 358 - 363. ! ! Ralph Raimi, ! The Peculiar Distribution of First Digits, ! Scientific American, ! December 1969, pages 109-119. ! ! Input: ! ! integer X, the string of significant digits to be ! checked. If X is 1, then we are asking for the Benford probability that ! a value will have first digit 1. If X is 123, we are asking for ! the probability that the first three digits will be 123, and so on. ! ! Output: ! ! real ( kind = rk ) PDF, the Benford probability that an item taken ! from a real world distribution will have the initial digits X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf integer x if ( x <= 0 ) then pdf = 0.0D+00 else pdf = log10 ( real ( x + 1, kind = rk ) / real ( x, kind = rk ) ) end if return end subroutine benford_sample ( x ) !*****************************************************************************80 ! !! benford_sample() samples the Benford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 November 2022 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Benford, ! The Law of Anomalous Numbers, ! Proceedings of the American Philosophical Society, ! Volume 78, pages 551-572, 1938. ! ! Ted Hill, ! The First Digit Phenomenon, ! American Scientist, ! Volume 86, July/August 1998, pages 358 - 363. ! ! Ralph Raimi, ! The Peculiar Distribution of First Digits, ! Scientific American, ! December 1969, pages 109-119. ! ! Output: ! ! real X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call benford_cdf_inv ( cdf, x ) return end subroutine benford_variance ( variance ) !*****************************************************************************80 ! !! benford_variance() returns the variance of the Benford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 November 2022 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Frank Benford, ! The Law of Anomalous Numbers, ! Proceedings of the American Philosophical Society, ! Volume 78, pages 551-572, 1938. ! ! Ted Hill, ! The First Digit Phenomenon, ! American Scientist, ! Volume 86, July/August 1998, pages 358 - 363. ! ! Ralph Raimi, ! The Peculiar Distribution of First Digits, ! Scientific American, ! December 1969, pages 109-119. ! ! Output: ! ! real VARIANCE: the variance of the Benford PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) arg integer i real ( kind = rk ) mu real ( kind = rk ) variance mu = 0.0D+00 do i = 1, 9 arg = real ( i + 1, kind = rk ) / real ( i, kind = rk ) mu = mu + i * log10 ( arg ) end do variance = 0.0D+00 do i = 1, 9 arg = real ( i + 1, kind = rk ) / real ( i, kind = rk ) variance = variance + log10 ( arg ) * ( i - mu )**2 end do return end subroutine bessel_ix_values ( n_data, nu, x, fx ) !*****************************************************************************80 ! !! bessel_ix_values() returns some values of the Ix Bessel function. ! ! Discussion: ! ! This set of data considers the less common case in which the ! index of the Bessel function In is actually not an integer. ! We may suggest this case by occasionally replacing the symbol ! "In" by "Ix". ! ! The modified Bessel functions In(Z) and Kn(Z) are solutions of ! the differential equation ! ! Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. ! ! In Mathematica, the function can be evaluated by: ! ! BesselI[n,x] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 March 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! ISBN: 0-486-61272-4, ! LC: QA47.A34. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Cambridge University Press, 1999, ! ISBN: 0-521-64314-7, ! LC: QA76.95.W65. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) NU, the order of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 28 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.3592084175833614D+00, & 0.9376748882454876D+00, & 2.046236863089055D+00, & 3.053093538196718D+00, & 4.614822903407601D+00, & 26.47754749755907D+00, & 2778.784603874571D+00, & 4.327974627242893D+07, & 0.2935253263474798D+00, & 1.099473188633110D+00, & 21.18444226479414D+00, & 2500.906154942118D+00, & 2.866653715931464D+20, & 0.05709890920304825D+00, & 0.3970270801393905D+00, & 13.76688213868258D+00, & 2028.512757391936D+00, & 2.753157630035402D+20, & 0.4139416015642352D+00, & 1.340196758982897D+00, & 22.85715510364670D+00, & 2593.006763432002D+00, & 2.886630075077766D+20, & 0.03590910483251082D+00, & 0.2931108636266483D+00, & 11.99397010023068D+00, & 1894.575731562383D+00, & 2.716911375760483D+20 /) integer n_data real ( kind = rk ) nu real ( kind = rk ), save, dimension ( n_max ) :: nu_vec = (/ & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 1.50D+00, & 1.50D+00, & 1.50D+00, & 1.50D+00, & 1.50D+00, & 2.50D+00, & 2.50D+00, & 2.50D+00, & 2.50D+00, & 2.50D+00, & 1.25D+00, & 1.25D+00, & 1.25D+00, & 1.25D+00, & 1.25D+00, & 2.75D+00, & 2.75D+00, & 2.75D+00, & 2.75D+00, & 2.75D+00 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.2D+00, & 1.0D+00, & 2.0D+00, & 2.5D+00, & 3.0D+00, & 5.0D+00, & 10.0D+00, & 20.0D+00, & 1.0D+00, & 2.0D+00, & 5.0D+00, & 10.0D+00, & 50.0D+00, & 1.0D+00, & 2.0D+00, & 5.0D+00, & 10.0D+00, & 50.0D+00, & 1.0D+00, & 2.0D+00, & 5.0D+00, & 10.0D+00, & 50.0D+00, & 1.0D+00, & 2.0D+00, & 5.0D+00, & 10.0D+00, & 50.0D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 nu = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else nu = nu_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine birthday_cdf ( n, cdf ) !*****************************************************************************80 ! !! BIRTHDAY_CDF returns the Birthday Concurrence CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of people whose birthdays have ! been disclosed. ! ! Output, real ( kind = rk ) CDF, the probability that at least ! two of the N people have matching birthays. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer i integer n if ( n < 1 ) then cdf = 0.0D+00 return else if ( 365 < n ) then cdf = 1.0D+00 return end if ! ! Compute the probability that N people have distinct birthdays. ! cdf = 1.0D+00 do i = 1, n cdf = cdf * real ( 365 + 1 - i, kind = rk ) / 365.0D+00 end do ! ! Compute the probability that it is NOT the case that N people ! have distinct birthdays. This is the cumulative probability ! that person 2 matches person 1, or person 3 matches 1 or 2, ! etc. ! cdf = 1.0D+00 - cdf return end subroutine birthday_cdf_inv ( cdf, n ) !*****************************************************************************80 ! !! birthday_cdf_inv() inverts the Birthday Concurrence CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the probability that at least ! two of the N people have matching birthays. ! ! Output, integer N, the corresponding number of people whose ! birthdays need to be disclosed. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) cdf_not integer i integer n if ( cdf <= 0.0D+00 ) then n = 1 return else if ( 1.0D+00 <= cdf ) then n = 365 return end if ! ! Compute the probability that N people have distinct birthdays. ! cdf_not = 1.0D+00 do i = 1, 365 cdf_not = cdf_not * real ( 365 + 1 - i, kind = rk ) / 365.0D+00 if ( cdf <= 1.0D+00 - cdf_not ) then n = i return end if end do n = 365 return end subroutine birthday_pdf ( n, pdf ) !*****************************************************************************80 ! !! BIRTHDAY_PDF returns the Birthday Concurrence PDF. ! ! Discussion: ! ! The probability is the probability that the N-th person is the ! first one to match a birthday with someone earlier. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of people whose birthdays have ! been disclosed. ! ! Output, real ( kind = rk ) PDF, the probability that the N-th person ! is the first to match a birthday with someone earlier. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer n real ( kind = rk ) pdf if ( n < 1 .or. 365 < n ) then pdf = 0.0D+00 return end if pdf = 1.0D+00 ! ! Compute the probability that N-1 people have distinct birthdays. ! do i = 1, n-1 pdf = pdf * real ( 365 + 1 - i, kind = rk ) / 365.0D+00 end do ! ! Compute the probability that person N has one of those N-1 birthdays. ! pdf = pdf * real ( n - 1, kind = rk ) / 365.0D+00 return end subroutine birthday_sample ( n, value ) !*****************************************************************************80 ! !! birthday_sample() samples the Birthday Concurrence PDF. ! ! Discussion: ! ! The probability is the probability that the N-th person is the ! first one to match a birthday with someone earlier. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of people whose birthdays have been ! disclosed. ! ! Output, integer VALUE, ! * 1 if the first N-1 people had distinct ! birthdays, but person N had a birthday in common with a previous person, ! * 0 otherwise. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, allocatable :: b(:) integer n integer u1 integer u2 integer value if ( n < 1 ) then value = 0 return end if ! ! Choose N birthdays at random. ! allocate ( b(1:n) ) call i4vec_uniform_ab ( n, 1, 365, b ) ! ! Are the first N-1 birthdays unique? ! call i4vec_unique_count ( n - 1, b(1:n-1), u1 ) if ( u1 < n - 1 ) then value = 0 return end if ! ! Does the N-th birthday match an earlier one? ! call i4vec_unique_count ( n, b(1:n), u2 ) if ( u2 == n - 1 ) then value = 1 else value = 0 end if deallocate ( b ) return end subroutine bernoulli_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! BERNOULLI_CDF evaluates the Bernoulli CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the number of successes on a single trial. ! X = 0 or 1. ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x if ( x < 0 ) then cdf = 0.0D+00 else if ( x == 0 ) then cdf = 1.0D+00 - a else cdf = 1.0D+00 end if return end subroutine bernoulli_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! BERNOULLI_CDF_INV inverts the Bernoulli CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 <= A <= 1.0. ! ! Output, integer X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BERNOULLI_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf <= 1.0D+00 - a ) then x = 0 else x = 1 end if return end function bernoulli_check ( a ) !*****************************************************************************80 ! !! BERNOULLI_CHECK checks the parameter of the Bernoulli CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 <= A <= 1.0. ! ! Output, logical BERNOULLI_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical bernoulli_check if ( a < 0.0D+00 .or. 1.0D+00 < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BERNOULLI_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 0 or 1 < A.' bernoulli_check = .false. return end if bernoulli_check = .true. return end subroutine bernoulli_mean ( a, mean ) !*****************************************************************************80 ! !! BERNOULLI_MEAN returns the mean of the Bernoulli PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = a return end subroutine bernoulli_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! BERNOULLI_PDF evaluates the Bernoulli PDF. ! ! Discussion: ! ! PDF(A;X) = A^X * ( 1 - A )^( X - 1 ) ! ! X = 0 or 1. ! ! The Bernoulli PDF describes the simple case in which a single trial ! is carried out, with two possible outcomes, called "success" and ! "failure"; the probability of success is A. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the number of successes on a single trial. ! X = 0 or 1. ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf integer x if ( x < 0 ) then pdf = 0.0D+00 else if ( x == 0 ) then pdf = 1.0D+00 - a else if ( x == 1 ) then pdf = a else pdf = 0.0D+00 end if return end subroutine bernoulli_sample ( a, x ) !*****************************************************************************80 ! !! bernoulli_sample() samples the Bernoulli PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call bernoulli_cdf_inv ( cdf, a, x ) return end subroutine bernoulli_variance ( a, variance ) !*****************************************************************************80 ! !! BERNOULLI_VARIANCE returns the variance of the Bernoulli PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = a * ( 1.0D+00 - a ) return end function bessel_i0 ( arg ) !*****************************************************************************80 ! !! BESSEL_I0 evaluates the modified Bessel function I0(X). ! ! Discussion: ! ! The main computation evaluates slightly modified forms of ! minimax approximations generated by Blair and Edwards, Chalk ! River (Atomic Energy of Canada Limited) Report AECL-4928, ! October, 1974. This transportable program is patterned after ! the machine dependent FUNPACK packet NATSI0, but cannot match ! that version for efficiency or accuracy. This version uses ! rational functions that theoretically approximate I-SUB-0(X) ! to at least 18 significant decimal digits. ! ! Machine dependent constants: ! ! beta = Radix for the floating-point system ! maxexp = Smallest power of beta that overflows ! XMAX = Largest argument acceptable to BESI0; Solution to ! equation: ! W(X) * (1+1/(8*X)+9/(128*X^2) = beta^maxexp ! where W(X) = EXP(X)/sqrt(2*PI*X) ! ! Approximate values for some important machines are: ! ! beta maxexp XMAX ! ! CRAY-1 (S.P.) 2 8191 5682.810 ! Cyber 180/855 ! under NOS (S.P.) 2 1070 745.893 ! IEEE (IBM/XT, ! SUN, etc.) (S.P.) 2 128 91.900 ! IEEE (IBM/XT, ! SUN, etc.) (D.P.) 2 1024 713.986 ! IBM 3033 (D.P.) 16 63 178.182 ! VAX (S.P.) 2 127 91.203 ! VAX D-Format (D.P.) 2 127 91.203 ! VAX G-Format (D.P.) 2 1023 713.293 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 October 2008 ! ! Author: ! ! Original FORTRAN77 version by William Cody, Laura Stoltz. ! FORTRAN90 version by John Burkardt. ! ! Parameters: ! ! Input, real ( kind = rk ) ARG, the argument. ! ! Output, real ( kind = rk ) BESSEL_I0, the value of the modified ! Bessel function of the first kind. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) arg real ( kind = rk ) b real ( kind = rk ) bessel_i0 real ( kind = rk ), parameter :: exp40 = 2.353852668370199854D+17 integer i real ( kind = rk ), parameter, dimension ( 15 ) :: p = (/ & -5.2487866627945699800D-18, & -1.5982226675653184646D-14, & -2.6843448573468483278D-11, & -3.0517226450451067446D-08, & -2.5172644670688975051D-05, & -1.5453977791786851041D-02, & -7.0935347449210549190D+00, & -2.4125195876041896775D+03, & -5.9545626019847898221D+05, & -1.0313066708737980747D+08, & -1.1912746104985237192D+10, & -8.4925101247114157499D+11, & -3.2940087627407749166D+13, & -5.5050369673018427753D+14, & -2.2335582639474375249D+15 /) real ( kind = rk ), parameter, dimension ( 8 ) :: pp = (/ & -3.9843750000000000000D-01, & 2.9205384596336793945D+00, & -2.4708469169133954315D+00, & 4.7914889422856814203D-01, & -3.7384991926068969150D-03, & -2.6801520353328635310D-03, & 9.9168777670983678974D-05, & -2.1877128189032726730D-06 /) real ( kind = rk ), parameter, dimension ( 5 ) :: q = (/ & -3.7277560179962773046D+03, & 6.5158506418655165707D+06, & -6.5626560740833869295D+09, & 3.7604188704092954661D+12, & -9.7087946179594019126D+14 /) real ( kind = rk ), parameter, dimension ( 7 ) :: qq = (/ & -3.1446690275135491500D+01, & 8.5539563258012929600D+01, & -6.0228002066743340583D+01, & 1.3982595353892851542D+01, & -1.1151759188741312645D+00, & 3.2547697594819615062D-02, & -5.5194330231005480228D-04 /) real ( kind = rk ), parameter :: rec15 = 6.6666666666666666666D-02 real ( kind = rk ) sump real ( kind = rk ) sumq real ( kind = rk ) value real ( kind = rk ) x real ( kind = rk ), parameter :: xmax = 91.9D+00 real ( kind = rk ) xx x = abs ( arg ) if ( x < epsilon ( arg ) ) then value = 1.0D+00 else if ( x < 15.0D+00 ) then ! ! EPSILON ( ARG ) <= ABS(ARG) < 15.0D+00 ! xx = x * x sump = p(1) do i = 2, 15 sump = sump * xx + p(i) end do xx = xx - 225.0D+00 sumq = (((( & xx + q(1) ) & * xx + q(2) ) & * xx + q(3) ) & * xx + q(4) ) & * xx + q(5) value = sump / sumq else if ( 15.0D+00 <= x ) then if ( xmax < x ) then value = huge ( value ) else ! ! 15.0D+00 <= ABS(ARG) ! xx = 1.0D+00 / x - rec15 sump = (((((( & pp(1) & * xx + pp(2) ) & * xx + pp(3) ) & * xx + pp(4) ) & * xx + pp(5) ) & * xx + pp(6) ) & * xx + pp(7) ) & * xx + pp(8) sumq = (((((( & xx + qq(1) ) & * xx + qq(2) ) & * xx + qq(3) ) & * xx + qq(4) ) & * xx + qq(5) ) & * xx + qq(6) ) & * xx + qq(7) value = sump / sumq ! ! Calculation reformulated to avoid premature overflow. ! if ( x <= xmax - 15.0D+00 ) then a = exp ( x ) b = 1.0D+00 else a = exp ( x - 40.0D+00 ) b = exp40 end if value = ( ( value * a - pp(1) * a ) / sqrt ( x ) ) * b end if end if bessel_i0 = value return end subroutine bessel_i0_values ( n_data, x, fx ) !*****************************************************************************80 ! !! BESSEL_I0_VALUES returns some values of the I0 Bessel function. ! ! Discussion: ! ! The modified Bessel functions In(Z) and Kn(Z) are solutions of ! the differential equation ! ! Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. ! ! The modified Bessel function I0(Z) corresponds to N = 0. ! ! In Mathematica, the function can be evaluated by: ! ! BesselI[0,x] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 20 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.1000000000000000D+01, & 0.1010025027795146D+01, & 0.1040401782229341D+01, & 0.1092045364317340D+01, & 0.1166514922869803D+01, & 0.1266065877752008D+01, & 0.1393725584134064D+01, & 0.1553395099731217D+01, & 0.1749980639738909D+01, & 0.1989559356618051D+01, & 0.2279585302336067D+01, & 0.3289839144050123D+01, & 0.4880792585865024D+01, & 0.7378203432225480D+01, & 0.1130192195213633D+02, & 0.1748117185560928D+02, & 0.2723987182360445D+02, & 0.6723440697647798D+02, & 0.4275641157218048D+03, & 0.2815716628466254D+04 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.00D+00, & 0.20D+00, & 0.40D+00, & 0.60D+00, & 0.80D+00, & 0.10D+01, & 0.12D+01, & 0.14D+01, & 0.16D+01, & 0.18D+01, & 0.20D+01, & 0.25D+01, & 0.30D+01, & 0.35D+01, & 0.40D+01, & 0.45D+01, & 0.50D+01, & 0.60D+01, & 0.80D+01, & 0.10D+02 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 fx = 0.0D+00 else x = x_vec(n_data) fx = fx_vec(n_data) end if return end function bessel_i1 ( arg ) !*****************************************************************************80 ! !! BESSEL_I1 evaluates the Bessel I function of order I. ! ! Discussion: ! ! The main computation evaluates slightly modified forms of ! minimax approximations generated by Blair and Edwards. ! This transportable program is patterned after the machine-dependent ! FUNPACK packet NATSI1, but cannot match that version for efficiency ! or accuracy. This version uses rational functions that theoretically ! approximate I-SUB-1(X) to at least 18 significant decimal digits. ! The accuracy achieved depends on the arithmetic system, the compiler, ! the intrinsic functions, and proper selection of the machine-dependent ! constants. ! ! Machine-dependent constants: ! ! beta = Radix for the floating-point system. ! maxexp = Smallest power of beta that overflows. ! XMAX = Largest argument acceptable to BESI1; Solution to ! equation: ! EXP(X) * (1-3/(8*X)) / SQRT(2*PI*X) = beta**maxexp ! ! ! Approximate values for some important machines are: ! ! beta maxexp XMAX ! ! CRAY-1 (S.P.) 2 8191 5682.810 ! Cyber 180/855 ! under NOS (S.P.) 2 1070 745.894 ! IEEE (IBM/XT, ! SUN, etc.) (S.P.) 2 128 91.906 ! IEEE (IBM/XT, ! SUN, etc.) (D.P.) 2 1024 713.987 ! IBM 3033 (D.P.) 16 63 178.185 ! VAX (S.P.) 2 127 91.209 ! VAX D-Format (D.P.) 2 127 91.209 ! VAX G-Format (D.P.) 2 1023 713.293 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 October 2004 ! ! Author: ! ! Original FORTRAN77 version by William Cody, Laura Stoltz. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Blair, Edwards, ! Chalk River Report AECL-4928, ! Atomic Energy of Canada, Limited, ! October, 1974. ! ! Parameters: ! ! Input, real ( kind = rk ) ARG, the argument. ! ! Output, real ( kind = rk ) BESSEL_I1, the value of the Bessel ! I1 function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) arg real ( kind = rk ) b real ( kind = rk ) bessel_i1 real ( kind = rk ), parameter :: exp40 = 2.353852668370199854D+17 real ( kind = rk ), parameter :: forty = 40.0D+00 real ( kind = rk ), parameter :: half = 0.5D+00 integer j real ( kind = rk ), parameter :: one = 1.0D+00 real ( kind = rk ), parameter :: one5 = 15.0D+00 real ( kind = rk ), dimension(15) :: p = (/ & -1.9705291802535139930D-19, & -6.5245515583151902910D-16, & -1.1928788903603238754D-12, & -1.4831904935994647675D-09, & -1.3466829827635152875D-06, & -9.1746443287817501309D-04, & -4.7207090827310162436D-01, & -1.8225946631657315931D+02, & -5.1894091982308017540D+04, & -1.0588550724769347106D+07, & -1.4828267606612366099D+09, & -1.3357437682275493024D+11, & -6.9876779648010090070D+12, & -1.7732037840791591320D+14, & -1.4577180278143463643D+15 /) real ( kind = rk ) :: pbar = 3.98437500D-01 real ( kind = rk ), dimension(8) :: pp = (/ & -6.0437159056137600000D-02, & 4.5748122901933459000D-01, & -4.2843766903304806403D-01, & 9.7356000150886612134D-02, & -3.2457723974465568321D-03, & -3.6395264712121795296D-04, & 1.6258661867440836395D-05, & -3.6347578404608223492D-07 /) real ( kind = rk ), dimension(5) :: q = (/ & -4.0076864679904189921D+03, & 7.4810580356655069138D+06, & -8.0059518998619764991D+09, & 4.8544714258273622913D+12, & -1.3218168307321442305D+15 /) real ( kind = rk ), dimension(6) :: qq = (/ & -3.8806586721556593450D+00, & 3.2593714889036996297D+00, & -8.5017476463217924408D-01, & 7.4212010813186530069D-02, & -2.2835624489492512649D-03, & 3.7510433111922824643D-05 /) real ( kind = rk ), parameter :: rec15 = 6.6666666666666666666D-02 real ( kind = rk ) sump real ( kind = rk ) sumq real ( kind = rk ), parameter :: two25 = 225.0D+00 real ( kind = rk ) value real ( kind = rk ) x real ( kind = rk ), parameter :: xmax = 713.987D+00 real ( kind = rk ) xx real ( kind = rk ), parameter :: zero = 0.0D+00 x = abs ( arg ) ! ! ABS(ARG) < EPSILON ( ARG ) ! if ( x < epsilon ( x ) ) then value = half * x ! ! EPSILON ( ARG ) <= ABS(ARG) < 15.0 ! else if ( x < one5 ) then xx = x * x sump = p(1) do j = 2, 15 sump = sump * xx + p(j) end do xx = xx - two25 sumq = (((( & xx + q(1) & ) * xx + q(2) & ) * xx + q(3) & ) * xx + q(4) & ) * xx + q(5) value = ( sump / sumq ) * x else if ( xmax < x ) then value = huge ( x ) ! ! 15.0 <= ABS(ARG) ! else xx = one / x - rec15 sump = (((((( & pp(1) & * xx + pp(2) & ) * xx + pp(3) & ) * xx + pp(4) & ) * xx + pp(5) & ) * xx + pp(6) & ) * xx + pp(7) & ) * xx + pp(8) sumq = ((((( & xx + qq(1) & ) * xx + qq(2) & ) * xx + qq(3) & ) * xx + qq(4) & ) * xx + qq(5) & ) * xx + qq(6) value = sump / sumq if ( xmax - one5 < x ) then a = exp ( x - forty ) b = exp40 else a = exp ( x ) b = one end if value = ( ( value * a + pbar * a ) / sqrt ( x ) ) * b end if if ( arg < zero ) then value = -value end if bessel_i1 = value return end subroutine bessel_i1_values ( n_data, x, fx ) !*****************************************************************************80 ! !! BESSEL_I1_VALUES returns some values of the I1 Bessel function. ! ! Discussion: ! ! The modified Bessel functions In(Z) and Kn(Z) are solutions of ! the differential equation ! ! Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. ! ! In Mathematica, the function can be evaluated by: ! ! BesselI[1,x] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 20 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.0000000000000000D+00, & 0.1005008340281251D+00, & 0.2040267557335706D+00, & 0.3137040256049221D+00, & 0.4328648026206398D+00, & 0.5651591039924850D+00, & 0.7146779415526431D+00, & 0.8860919814143274D+00, & 0.1084810635129880D+01, & 0.1317167230391899D+01, & 0.1590636854637329D+01, & 0.2516716245288698D+01, & 0.3953370217402609D+01, & 0.6205834922258365D+01, & 0.9759465153704450D+01, & 0.1538922275373592D+02, & 0.2433564214245053D+02, & 0.6134193677764024D+02, & 0.3998731367825601D+03, & 0.2670988303701255D+04 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.00D+00, & 0.20D+00, & 0.40D+00, & 0.60D+00, & 0.80D+00, & 0.10D+01, & 0.12D+01, & 0.14D+01, & 0.16D+01, & 0.18D+01, & 0.20D+01, & 0.25D+01, & 0.30D+01, & 0.35D+01, & 0.40D+01, & 0.45D+01, & 0.50D+01, & 0.60D+01, & 0.80D+01, & 0.10D+02 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 fx = 0.0D+00 else x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine beta_binomial_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! BETA_BINOMIAL_CDF evaluates the Beta Binomial CDF. ! ! Discussion: ! ! A simple summing approach is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) cdf real ( kind = rk ) pdf real ( kind = rk ) r8_beta integer x integer y if ( x < 0 ) then cdf = 0.0D+00 else if ( x < c ) then cdf = 0.0D+00 do y = 0, x pdf = r8_beta ( a + real ( y, kind = rk ), & b + real ( c - y, kind = rk ) ) / ( real ( c + 1, kind = rk ) & * r8_beta ( real ( y + 1, kind = rk ), & real ( c - y + 1, kind = rk ) ) * r8_beta ( a, b ) ) cdf = cdf + pdf end do else if ( c <= x ) then cdf = 1.0D+00 end if return end subroutine beta_binomial_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! BETA_BINOMIAL_CDF_INV inverts the Beta Binomial CDF. ! ! Discussion: ! ! A simple discrete approach is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, integer X, the smallest X whose cumulative density ! function is greater than or equal to CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) cdf real ( kind = rk ) cum real ( kind = rk ) pdf real ( kind = rk ) r8_beta integer x integer y if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_BINOMIAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cum = 0.0D+00 do y = 0, c pdf = r8_beta ( a + real ( y, kind = rk ), & b + real ( c - y, kind = rk ) ) / ( real ( c + 1, kind = rk ) & * r8_beta ( real ( y + 1, kind = rk ), & real ( c - y + 1, kind = rk ) ) * r8_beta ( a, b ) ) cum = cum + pdf if ( cdf <= cum ) then x = y return end if end do x = c return end function beta_binomial_check ( a, b, c ) !*****************************************************************************80 ! !! BETA_BINOMIAL_CHECK checks the parameters of the Beta Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, logical BETA_BINOMIAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical beta_binomial_check integer c if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' beta_binomial_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' beta_binomial_check = .false. return end if if ( c < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' C < 0.' beta_binomial_check = .false. return end if beta_binomial_check = .true. return end subroutine beta_binomial_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! BETA_BINOMIAL_MEAN returns the mean of the Beta Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= N. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) mean mean = real ( c, kind = rk ) * a / ( a + b ) return end subroutine beta_binomial_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! BETA_BINOMIAL_PDF evaluates the Beta Binomial PDF. ! ! Discussion: ! ! The PDF is defined as: ! ! PDF(A,B,C;X) = Beta(A+X,B+C-X) ! / ( (C+1) * Beta(X+1,C-X+1) * Beta(A,B) ) for 0 <= X <= C. ! ! This PDF can be reformulated as: ! ! The beta binomial probability density function for X successes ! out of N trials is ! ! PDF2(X)( N, MU, THETA ) = ! C(N,X) * Product ( 0 <= R <= X - 1 ) ( MU + R * THETA ) ! * Product ( 0 <= R <= N - X - 1 ) ( 1 - MU + R * THETA ) ! / Product ( 0 <= R <= N - 1 ) ( 1 + R * THETA ) ! ! where ! ! C(N,X) is the combinatorial coefficient; ! MU is the expectation of the underlying Beta distribution; ! THETA is a shape parameter. ! ! A THETA value of 0 ( or A+B --> +oo ) results in the binomial ! distribution: ! ! PDF2(X) ( N, MU, 0 ) = C(N,X) * MU^X * ( 1 - MU )^(N-X) ! ! Given A, B, C for PDF, then the equivalent PDF2 has: ! ! N = C ! MU = A / ( A + B ) ! THETA = 1 / ( A + B ) ! ! Given N, MU, THETA for PDF2, the equivalent PDF has: ! ! A = MU / THETA ! B = ( 1 - MU ) / THETA ! C = N ! ! BETA_BINOMIAL_PDF(1,1,C;X) = UNIFORM_DISCRETE_PDF(0,C-1;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) pdf real ( kind = rk ) r8_beta integer x if ( x < 0 ) then pdf = 0.0D+00 else if ( x <= c ) then pdf = r8_beta ( a + real ( x, kind = rk ), b + real ( c - x, kind = rk ) ) & / ( real ( c + 1, kind = rk ) & * r8_beta ( real ( x + 1, kind = rk ), & real ( c - x + 1, kind = rk ) ) * r8_beta ( a, b ) ) else if ( c < x ) then pdf = 0.0D+00 end if return end subroutine beta_binomial_sample ( a, b, c, x ) !*****************************************************************************80 ! !! BETA_BINOMIAL_SAMPLE samples the Beta Binomial CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call beta_binomial_cdf_inv ( cdf, a, b, c, x ) return end subroutine beta_binomial_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! BETA_BINOMIAL_VARIANCE returns the variance of the Beta Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Input, integer C, a parameter of the PDF. ! 0 <= C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) variance variance = ( real ( c, kind = rk ) * a * b ) & * ( a + b + real ( c, kind = rk ) ) & / ( ( a + b ) ** 2 * ( a + b + 1.0D+00 ) ) return end subroutine beta_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! BETA_CDF evaluates the Beta CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) beta_inc real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else if ( x <= 1.0D+00 ) then cdf = beta_inc ( a, b, x ) else cdf = 1.0D+00 end if return end subroutine beta_cdf_inv ( cdf, p, q, x ) !*****************************************************************************80 ! !! BETA_CDF_INV computes the inverse of the incomplete Beta function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 2013 ! ! Author: ! ! Original FORTRAN77 version by GW Cran, KJ Martin, GE Thomas. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! GW Cran, KJ Martin, GE Thomas, ! Remark AS R19 and Algorithm AS 109: ! A Remark on Algorithms AS 63: The Incomplete Beta Integral ! and AS 64: Inverse of the Incomplete Beta Integeral, ! Applied Statistics, ! Volume 26, Number 1, 1977, pages 111-114. ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the Beta CDF. ! 0 <= CDF <= 1. ! ! Input, real ( kind = rk ) P, Q, the parameters of the incomplete ! Beta function. ! ! Output, real ( kind = rk ) X, the argument of the incomplete ! Beta function which produces the value CDF. ! ! Local Parameters: ! ! Local, real ( kind = rk ) SAE, the most negative decimal exponent ! which does not cause an underflow. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) acu real ( kind = rk ) adj real ( kind = rk ) beta_inc real ( kind = rk ) beta_log real ( kind = rk ) cdf real ( kind = rk ) fpu real ( kind = rk ) g real ( kind = rk ) h integer iex logical indx real ( kind = rk ) p real ( kind = rk ) pp real ( kind = rk ) prev real ( kind = rk ) q real ( kind = rk ) qq real ( kind = rk ) r real ( kind = rk ) s real ( kind = rk ), parameter :: sae = -37.0D+00 real ( kind = rk ) sq real ( kind = rk ) t real ( kind = rk ) tx real ( kind = rk ) w real ( kind = rk ) x real ( kind = rk ) xin real ( kind = rk ) y real ( kind = rk ) yprev fpu = 10.0D+00 ** sae beta_log = lgamma ( p ) + lgamma ( q ) - lgamma ( p + q ) ! ! Test for admissibility of parameters. ! if ( p <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CDF_INV - Fatal error!' write ( *, '(a)' ) ' P <= 0.0' return end if if ( q <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Q <= 0.0' return end if if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0.0 or 1.0 < CDF.' return end if ! ! Return immediately if the answer is easy to determine. ! if ( cdf == 0.0D+00 ) then x = 0.0D+00 return else if ( cdf == 1.0D+00 ) then x = 1.0D+00 return end if ! ! Change tail if necessary. ! if ( 0.5D+00 < cdf ) then a = 1.0D+00 - cdf pp = q qq = p indx = .true. else a = cdf pp = p qq = q indx = .false. end if ! ! Calculate the initial approximation. ! r = sqrt ( - log ( a * a ) ) y = r - ( 2.30753D+00 + 0.27061D+00 * r ) & / ( 1.0D+00 + ( 0.99229D+00 + 0.04481D+00 * r ) * r ) if ( 1.0D+00 < pp .and. 1.0D+00 < qq ) then r = ( y * y - 3.0D+00 ) / 6.0D+00 s = 1.0D+00 / ( pp + pp - 1.0D+00 ) t = 1.0D+00 / ( qq + qq - 1.0D+00 ) h = 2.0D+00 / ( s + t ) w = y * sqrt ( h + r ) / h - ( t - s ) & * ( r + 5.0D+00 / 6.0D+00 - 2.0D+00 / ( 3.0D+00 * h ) ) x = pp / ( pp + qq * exp ( w + w ) ) else r = qq + qq t = 1.0D+00 / ( 9.0D+00 * qq ) t = r * ( 1.0D+00 - t + y * sqrt ( t ) ) ** 3 if ( t <= 0.0D+00 ) then x = 1.0D+00 - exp ( ( log ( ( 1.0D+00 - a ) * qq ) & + beta_log ) / qq ) else t = ( 4.0D+00 * pp + r - 2.0D+00 ) / t if ( t <= 1.0D+00 ) then x = exp ( ( log ( a * pp ) + beta_log ) / pp ) else x = 1.0D+00 - 2.0D+00 / ( t + 1.0D+00 ) end if end if end if ! ! Solve for X by a modified Newton-Raphson method. ! r = 1.0D+00 - pp t = 1.0D+00 - qq yprev = 0.0D+00 sq = 1.0D+00 prev = 1.0D+00 if ( x < 0.0001D+00 ) then x = 0.0001D+00 end if if ( 0.9999D+00 < x ) then x = 0.9999D+00 end if iex = int ( max ( - 5.0D+00 / pp ** 2 - 1.0D+00 / a ** 0.2D+00 - 13.0D+00, sae ) ) acu = 10.0D+00 ** iex do y = beta_inc ( pp, qq, x ) xin = x y = ( y - a ) * exp ( beta_log + r * log ( xin ) & + t * log ( 1.0D+00 - xin ) ) if ( y * yprev <= 0.0D+00 ) then prev = max ( sq, fpu ) end if g = 1.0D+00 do do adj = g * y sq = adj * adj if ( sq < prev ) then tx = x - adj if ( 0.0D+00 <= tx .and. tx <= 1.0D+00 ) then exit end if end if g = g / 3.0D+00 end do if ( prev <= acu ) then if ( indx ) then x = 1.0D+00 - x end if return end if if ( y * y <= acu ) then if ( indx ) then x = 1.0D+00 - x end if return end if if ( tx /= 0.0D+00 .and. tx /= 1.0D+00 ) then exit end if g = g / 3.0D+00 end do if ( tx == x ) then exit end if x = tx yprev = y end do if ( indx ) then x = 1.0D+00 - x end if return end subroutine beta_cdf_inv_old ( cdf, a, b, x ) !*****************************************************************************80 ! !! BETA_CDF_INV_OLD inverts the Beta CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 April 2001 ! ! Author: ! ! Original FORTRAN77 version by Roger Abernathy, Robert Smith. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Roger Abernathy, Robert Smith, ! Algorithm 724, ! Program to Calculate F Percentiles, ! ACM Transactions on Mathematical Software, ! Volume 19, Number 4, December 1993, pages 481-483. ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: maxk = 20 real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) bcoeff real ( kind = rk ) cdf real ( kind = rk ) cdf_x real ( kind = rk ) d(2:maxk,0:maxk-2) real ( kind = rk ), parameter :: error = 0.0001D+00 real ( kind = rk ), parameter :: errapp = 0.01D+00 integer i integer j integer k integer loopct real ( kind = rk ) pdf_x real ( kind = rk ) q real ( kind = rk ) s1 real ( kind = rk ) s2 real ( kind = rk ) sum2 real ( kind = rk ) t real ( kind = rk ) tail real ( kind = rk ) x real ( kind = rk ) xold if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if ! ! Estimate the solution. ! x = a / ( a + b ) xold = 0.0D+00 loopct = 2 do while ( errapp <= abs ( ( x - xold ) / x ) .and. loopct /= 0 ) xold = x loopct = loopct - 1 ! ! CDF_X = PROB { BETA(A,B) <= X }. ! Q = ( CDF - CDF_X ) / PDF_X. ! call beta_cdf ( x, a, b, cdf_x ) call beta_pdf ( x, a, b, pdf_x ) q = ( cdf - cdf_x ) / pdf_x ! ! D(N,K) = C(N,K) * Q^(N+K-1) / (N-1)! ! t = 1.0D+00 - x s1 = q * ( b - 1.0D+00 ) / t s2 = q * ( 1.0D+00 - a ) / x d(2,0) = s1 + s2 tail = d(2,0) * q / 2.0D+00 x = x + q + tail k = 3 do while ( error < abs ( tail / x ) .and. k <= maxk ) ! ! Find D(2,K-2). ! s1 = q * ( real ( k, kind = rk ) - 2.0D+00 ) * s1 / t s2 = q * ( 2.0D+00 - real ( k, kind = rk ) ) * s2 / x d(2,k-2) = s1 + s2 ! ! Find D(3,K-3), D(4,K-4), D(5,K-5), ... , D(K-1,1). ! do i = 3, k-1 sum2 = d(2,0) * d(i-1,k-i) bcoeff = 1.0D+00 do j = 1, k-i bcoeff = ( bcoeff * real ( k - i - j + 1, kind = rk ) ) & / real ( j, kind = rk ) sum2 = sum2 + bcoeff * d(2,j) * d(i-1,k-i-j) end do d(i,k-i) = sum2 + d(i-1,k-i+1) / real ( i - 1, kind = rk ) end do ! ! Compute D(K,0) and use it to expand the series. ! d(k,0) = d(2,0) * d(k-1,0) + d(k-1,1) / real ( k - 1, kind = rk ) tail = d(k,0) * q / real ( k, kind = rk ) x = x + tail ! ! Check for divergence. ! if ( x <= 0.0D+00 .or. 1.0D+00 <= x ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CDF_INV - Fatal error!' write ( *, '(a)' ) ' The series has diverged.' write ( *, '(a,g14.6)' ) ' X = ', x x = - 1.0D+00 return end if k = k + 1 end do end do return end subroutine beta_cdf_values ( n_data, a, b, x, fx ) !*****************************************************************************80 ! !! BETA_CDF_VALUES returns some values of the Beta CDF. ! ! Discussion: ! ! The incomplete Beta function may be written ! ! BETA_INC(A,B,X) = integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT ! / integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT ! ! Thus, ! ! BETA_INC(A,B,0.0) = 0.0 ! BETA_INC(A,B,1.0) = 1.0 ! ! The incomplete Beta function is also sometimes called the ! "modified" Beta function, or the "normalized" Beta function ! or the Beta CDF (cumulative density function). ! ! In Mathematica, the function can be evaluated by: ! ! BETA[X,A,B] / BETA[A,B] ! ! The function can also be evaluated by using the Statistics package: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = BetaDistribution [ a, b ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 2013 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! ISBN: 0-486-61272-4, ! LC: QA47.A34. ! ! Karl Pearson, ! Tables of the Incomplete Beta Function, ! Cambridge University Press, 1968, ! LC: QA351.P38. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Cambridge University Press, 1999, ! ISBN: 0-521-64314-7, ! LC: QA76.95.W65. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, B, the parameters of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 45 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 5.5D+00, & 10.0D+00, & 10.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 30.0D+00, & 30.0D+00, & 40.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 1.30625D+00, & 1.30625D+00, & 1.30625D+00 /) real ( kind = rk ) b real ( kind = rk ), save, dimension ( n_max ) :: b_vec = (/ & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 5.0D+00, & 0.5D+00, & 5.0D+00, & 5.0D+00, & 10.0D+00, & 5.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 20.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 11.7562D+00, & 11.7562D+00, & 11.7562D+00 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.6376856085851985D-01, & 0.2048327646991335D+00, & 0.1000000000000000D+01, & 0.0000000000000000D+00, & 0.5012562893380045D-02, & 0.5131670194948620D-01, & 0.2928932188134525D+00, & 0.5000000000000000D+00, & 0.2800000000000000D-01, & 0.1040000000000000D+00, & 0.2160000000000000D+00, & 0.3520000000000000D+00, & 0.5000000000000000D+00, & 0.6480000000000000D+00, & 0.7840000000000000D+00, & 0.8960000000000000D+00, & 0.9720000000000000D+00, & 0.4361908850559777D+00, & 0.1516409096347099D+00, & 0.8978271484375000D-01, & 0.1000000000000000D+01, & 0.5000000000000000D+00, & 0.4598773297575791D+00, & 0.2146816102371739D+00, & 0.9507364826957875D+00, & 0.5000000000000000D+00, & 0.8979413687105918D+00, & 0.2241297491808366D+00, & 0.7586405487192086D+00, & 0.7001783247477069D+00, & 0.5131670194948620D-01, & 0.1055728090000841D+00, & 0.1633399734659245D+00, & 0.2254033307585166D+00, & 0.3600000000000000D+00, & 0.4880000000000000D+00, & 0.5904000000000000D+00, & 0.6723200000000000D+00, & 0.2160000000000000D+00, & 0.8370000000000000D-01, & 0.3078000000000000D-01, & 0.1093500000000000D-01, & 0.918884684620518D+00, & 0.21052977489419D+00, & 0.1824130512500673D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.01D+00, & 0.10D+00, & 1.00D+00, & 0.00D+00, & 0.01D+00, & 0.10D+00, & 0.50D+00, & 0.50D+00, & 0.10D+00, & 0.20D+00, & 0.30D+00, & 0.40D+00, & 0.50D+00, & 0.60D+00, & 0.70D+00, & 0.80D+00, & 0.90D+00, & 0.50D+00, & 0.90D+00, & 0.50D+00, & 1.00D+00, & 0.50D+00, & 0.80D+00, & 0.60D+00, & 0.80D+00, & 0.50D+00, & 0.60D+00, & 0.70D+00, & 0.80D+00, & 0.70D+00, & 0.10D+00, & 0.20D+00, & 0.30D+00, & 0.40D+00, & 0.20D+00, & 0.20D+00, & 0.20D+00, & 0.20D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.225609D+00, & 0.0335568D+00, & 0.0295222D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 b = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) b = b_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function beta_check ( a, b ) !*****************************************************************************80 ! !! BETA_CHECK checks the parameters of the Beta PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, logical BETA_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical beta_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' beta_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' beta_check = .false. return end if beta_check = .true. return end function beta_inc ( a, b, x ) !*****************************************************************************80 ! !! BETA_INC returns the value of the incomplete Beta function. ! ! Discussion: ! ! This calculation requires an iteration. In some cases, the iteration ! may not converge rapidly, or may become inaccurate. ! ! The formula is: ! ! BETA_INC(A,B,X) ! ! = Integral ( 0 <= T <= X ) T^(A-1) (1-T)^(B-1) dT ! / Integral ( 0 <= T <= 1 ) T^(A-1) (1-T)^(B-1) dT ! ! = Integral ( 0 <= T <= X ) T^(A-1) (1-T)^(B-1) dT ! / BETA(A,B) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 2004 ! ! Author: ! ! Original FORTRAN77 version by KL Majumder, GP Bhattacharjee. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! KL Majumder, GP Bhattacharjee, ! Algorithm AS63, ! Applied Statistics, ! 1973, volume 22, number 3. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the function. ! 0.0 < A, ! 0.0 < B. ! ! Input, real ( kind = rk ) X, the argument of the function. ! Normally, 0.0D+00 <= X <= 1.0. ! ! Output, real ( kind = rk ) BETA_INC, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) beta_inc real ( kind = rk ) cx integer i integer it integer, parameter :: it_max = 1000 logical indx integer ns real ( kind = rk ) pp real ( kind = rk ) psq real ( kind = rk ) qq real ( kind = rk ) r8_beta real ( kind = rk ) rx real ( kind = rk ) temp real ( kind = rk ) term real ( kind = rk ), parameter :: tol = 1.0D-07 real ( kind = rk ) x real ( kind = rk ) xx if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_INC - Fatal error!' write ( *, '(a)' ) ' A <= 0.' stop 1 end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_INC - Fatal error!' write ( *, '(a)' ) ' B <= 0.' stop 1 end if if ( x <= 0.0D+00 ) then beta_inc = 0.0D+00 return else if ( 1.0D+00 <= x ) then beta_inc = 1.0D+00 return end if ! ! Change tail if necessary and determine S. ! psq = a + b if ( a < ( a + b ) * x ) then xx = 1.0D+00 - x cx = x pp = b qq = a indx = .true. else xx = x cx = 1.0D+00 - x pp = a qq = b indx = .false. end if term = 1.0D+00 i = 1 beta_inc = 1.0D+00 ns = int ( qq + cx * ( a + b ) ) ! ! Use Soper's reduction formulas. ! rx = xx / cx temp = qq - real ( i, kind = rk ) if ( ns == 0 ) then rx = xx end if it = 0 do it = it + 1 if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BETA_INC - Fatal error!' write ( *, '(a)' ) ' Maximum number of iterations exceeded!' write ( *, '(a,i8)' ) ' IT_MAX = ', it_max stop 1 end if term = term * temp * rx / ( pp + real ( i, kind = rk ) ) beta_inc = beta_inc + term temp = abs ( term ) if ( temp <= tol .and. temp <= tol * beta_inc ) then exit end if i = i + 1 ns = ns - 1 if ( 0 <= ns ) then temp = qq - real ( i, kind = rk ) if ( ns == 0 ) then rx = xx end if else temp = psq psq = psq + 1.0D+00 end if end do ! ! Finish calculation. ! beta_inc = beta_inc * exp ( pp * log ( xx ) & + ( qq - 1.0D+00 ) * log ( cx ) ) / ( r8_beta ( a, b ) * pp ) if ( indx ) then beta_inc = 1.0D+00 - beta_inc end if return end subroutine beta_inc_values ( n_data, a, b, x, fx ) !*****************************************************************************80 ! !! BETA_INC_VALUES returns some values of the incomplete Beta function. ! ! Discussion: ! ! The incomplete Beta function may be written ! ! BETA_INC(A,B,X) = integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT ! / integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT ! ! Thus, ! ! BETA_INC(A,B,0.0) = 0.0 ! BETA_INC(A,B,1.0) = 1.0 ! ! The incomplete Beta function is also sometimes called the ! "modified" Beta function, or the "normalized" Beta function ! or the Beta CDF (cumulative density function). ! ! In Mathematica, the function can be evaluated by: ! ! BETA[X,A,B] / BETA[A,B] ! ! The function can also be evaluated by using the Statistics package: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = BetaDistribution [ a, b ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 2013 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! ISBN: 0-486-61272-4, ! LC: QA47.A34. ! ! Karl Pearson, ! Tables of the Incomplete Beta Function, ! Cambridge University Press, 1968, ! LC: QA351.P38. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Cambridge University Press, 1999, ! ISBN: 0-521-64314-7, ! LC: QA76.95.W65. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, B, the parameters of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 45 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 5.5D+00, & 10.0D+00, & 10.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 30.0D+00, & 30.0D+00, & 40.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 1.30625D+00, & 1.30625D+00, & 1.30625D+00 /) real ( kind = rk ) b real ( kind = rk ), save, dimension ( n_max ) :: b_vec = (/ & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 5.0D+00, & 0.5D+00, & 5.0D+00, & 5.0D+00, & 10.0D+00, & 5.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 20.0D+00, & 10.0D+00, & 10.0D+00, & 20.0D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 11.7562D+00, & 11.7562D+00, & 11.7562D+00 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.6376856085851985D-01, & 0.2048327646991335D+00, & 0.1000000000000000D+01, & 0.0000000000000000D+00, & 0.5012562893380045D-02, & 0.5131670194948620D-01, & 0.2928932188134525D+00, & 0.5000000000000000D+00, & 0.2800000000000000D-01, & 0.1040000000000000D+00, & 0.2160000000000000D+00, & 0.3520000000000000D+00, & 0.5000000000000000D+00, & 0.6480000000000000D+00, & 0.7840000000000000D+00, & 0.8960000000000000D+00, & 0.9720000000000000D+00, & 0.4361908850559777D+00, & 0.1516409096347099D+00, & 0.8978271484375000D-01, & 0.1000000000000000D+01, & 0.5000000000000000D+00, & 0.4598773297575791D+00, & 0.2146816102371739D+00, & 0.9507364826957875D+00, & 0.5000000000000000D+00, & 0.8979413687105918D+00, & 0.2241297491808366D+00, & 0.7586405487192086D+00, & 0.7001783247477069D+00, & 0.5131670194948620D-01, & 0.1055728090000841D+00, & 0.1633399734659245D+00, & 0.2254033307585166D+00, & 0.3600000000000000D+00, & 0.4880000000000000D+00, & 0.5904000000000000D+00, & 0.6723200000000000D+00, & 0.2160000000000000D+00, & 0.8370000000000000D-01, & 0.3078000000000000D-01, & 0.1093500000000000D-01, & 0.918884684620518D+00, & 0.21052977489419D+00, & 0.1824130512500673D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.01D+00, & 0.10D+00, & 1.00D+00, & 0.00D+00, & 0.01D+00, & 0.10D+00, & 0.50D+00, & 0.50D+00, & 0.10D+00, & 0.20D+00, & 0.30D+00, & 0.40D+00, & 0.50D+00, & 0.60D+00, & 0.70D+00, & 0.80D+00, & 0.90D+00, & 0.50D+00, & 0.90D+00, & 0.50D+00, & 1.00D+00, & 0.50D+00, & 0.80D+00, & 0.60D+00, & 0.80D+00, & 0.50D+00, & 0.60D+00, & 0.70D+00, & 0.80D+00, & 0.70D+00, & 0.10D+00, & 0.20D+00, & 0.30D+00, & 0.40D+00, & 0.20D+00, & 0.20D+00, & 0.20D+00, & 0.20D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.225609D+00, & 0.0335568D+00, & 0.0295222D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 b = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) b = b_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine beta_mean ( a, b, mean ) !*****************************************************************************80 ! !! BETA_MEAN returns the mean of the Beta PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a / ( a + b ) return end subroutine beta_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! BETA_PDF evaluates the Beta PDF. ! ! Discussion: ! ! The formula for the PDF is: ! ! PDF(A,B;X) = X^(A-1) * (1-X)^(B-1) / BETA(A,B). ! ! A = B = 1 yields the Uniform distribution on [0,1]. ! A = B = 1/2 yields the Arcsin distribution. ! B = 1 yields the power function distribution. ! A = B -> Infinity tends to the Normal distribution. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) r8_beta real ( kind = rk ) x if ( x < 0.0D+00 .or. 1.0D+00 < x ) then pdf = 0.0D+00 else pdf = x ** ( a - 1.0D+00 ) * ( 1.0D+00 - x ) ** ( b - 1.0D+00 ) & / r8_beta ( a, b ) end if return end subroutine beta_sample ( a, b, x ) !*****************************************************************************80 ! !! BETA_SAMPLE samples the Beta PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Kennedy, James Gentle, ! Algorithm BN, ! Statistical Computing, ! Dekker, 1980. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mu real ( kind = rk ) stdev real ( kind = rk ) test real ( kind = rk ) u real ( kind = rk ) x real ( kind = rk ) y mu = ( a - 1.0D+00 ) / ( a + b - 2.0D+00 ) stdev = 0.5D+00 / sqrt ( a + b - 2.0D+00 ) do call normal_01_sample ( y ) x = mu + stdev * y if ( x < 0.0D+00 .or. 1.0D+00 < x ) then cycle end if call random_number ( harvest = u ) test = ( a - 1.0D+00 ) * log ( x / ( a - 1.0D+00 ) ) & + ( b - 1.0D+00 ) * log ( ( 1.0D+00 - x ) / ( b - 1.0D+00 ) ) & + ( a + b - 2.0D+00 ) * log ( a + b - 2.0D+00 ) + 0.5D+00 * y * y if ( log ( u ) <= test ) then exit end if end do return end subroutine beta_values ( n_data, x, y, fxy ) !*****************************************************************************80 ! !! BETA_VALUES returns some values of the Beta function. ! ! Discussion: ! ! Beta(X,Y) = ( Gamma(X) * Gamma(Y) ) / Gamma(X+Y) ! ! Both X and Y must be greater than 0. ! ! In Mathematica, the function can be evaluated by: ! ! Beta[X,Y] ! ! Properties: ! ! Beta(X,Y) = Beta(Y,X). ! Beta(X,Y) = integral ( 0 <= T <= 1 ) T^(X-1) (1-T)^(Y-1) dT. ! Beta(X,Y) = Gamma(X) * Gamma(Y) / Gamma(X+Y) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! ISBN: 0-486-61272-4, ! LC: QA47.A34. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Cambridge University Press, 1999, ! ISBN: 0-521-64314-7, ! LC: QA76.95.W65. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) X, Y, the arguments of the function. ! ! Output, real ( kind = rk ) FXY, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 17 real ( kind = rk ), save, dimension ( n_max ) :: b_vec = (/ & 0.5000000000000000D+01, & 0.2500000000000000D+01, & 0.1666666666666667D+01, & 0.1250000000000000D+01, & 0.5000000000000000D+01, & 0.2500000000000000D+01, & 0.1000000000000000D+01, & 0.1666666666666667D+00, & 0.3333333333333333D-01, & 0.7142857142857143D-02, & 0.1587301587301587D-02, & 0.2380952380952381D-01, & 0.5952380952380952D-02, & 0.1984126984126984D-02, & 0.7936507936507937D-03, & 0.3607503607503608D-03, & 0.8325008325008325D-04 /) real ( kind = rk ) fxy integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.2D+00, & 0.4D+00, & 0.6D+00, & 0.8D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 6.0D+00, & 6.0D+00, & 6.0D+00, & 6.0D+00, & 6.0D+00, & 7.0D+00 /) real ( kind = rk ) y real ( kind = rk ), save, dimension ( n_max ) :: y_vec = (/ & 1.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 0.2D+00, & 0.4D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 5.0D+00, & 6.0D+00, & 7.0D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 y = 0.0D+00 fxy = 0.0D+00 else x = x_vec(n_data) y = y_vec(n_data) fxy = b_vec(n_data) end if return end subroutine beta_variance ( a, b, variance ) !*****************************************************************************80 ! !! BETA_VARIANCE returns the variance of the Beta PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = ( a * b ) / ( ( a + b ) ** 2 * ( 1.0D+00 + a + b ) ) return end subroutine binomial_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! BINOMIAL_CDF evaluates the Binomial CDF. ! ! Discussion: ! ! CDF(X)(A,B) is the probability of at most X successes in A trials, ! given that the probability of success on a single trial is B. ! ! A sequence of trials with fixed probability of success on ! any trial is known as a sequence of Bernoulli trials. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the desired number of successes. ! 0 <= X <= A. ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b integer cnk real ( kind = rk ) cdf integer i4_choose integer j real ( kind = rk ) pr integer x if ( x < 0 ) then cdf = 0.0D+00 else if ( a <= x ) then cdf = 1.0D+00 else if ( b == 0.0D+00 ) then cdf = 1.0D+00 else if ( b == 1.0D+00 ) then cdf = 0.0D+00 else cdf = 0.0D+00 do j = 0, x cnk = i4_choose ( a, j ) pr = real ( cnk, kind = rk ) * b ** j * ( 1.0D+00 - b ) ** ( a - j ) cdf = cdf + pr end do end if return end subroutine binomial_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! BINOMIAL_CDF_INV inverts the Binomial CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, integer X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) pdf integer x integer x2 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BINOMIAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cdf2 = 0.0D+00 do x2 = 0, a call binomial_pdf ( x2, a, b, pdf ) cdf2 = cdf2 + pdf if ( cdf <= cdf2 ) then x = x2 return end if end do return end function binomial_check ( a, b ) !*****************************************************************************80 ! !! BINOMIAL_CHECK checks the parameter of the Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, logical BINOMIAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b logical binomial_check if ( a < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 1.' binomial_check = .false. return end if if ( b < 0.0D+00 .or. 1.0D+00 < b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B < 0 or 1 < B.' binomial_check = .false. return end if binomial_check = .true. return end subroutine binomial_mean ( a, b, mean ) !*****************************************************************************80 ! !! BINOMIAL_MEAN returns the mean of the Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, real ( kind = rk ) MEAN, the expected value of the number of ! successes in A trials. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) mean mean = real ( a, kind = rk ) * b return end subroutine binomial_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! BINOMIAL_PDF evaluates the Binomial PDF. ! ! Discussion: ! ! PDF(A,B;X) is the probability of exactly X successes in A trials, ! given that the probability of success on a single trial is B. ! ! The formula is: ! ! PDF(A,B;X) = C(N,X) * B^X * ( 1.0D+00 - B )^( A - X ) ! ! Binomial_PDF(1,B;X) = Bernoulli_PDF(B;X). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the desired number of successes. ! 0 <= X <= A. ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b integer cnk integer i4_choose real ( kind = rk ) pdf integer x if ( a < 1 ) then pdf = 0.0D+00 else if ( x < 0 .or. a < x ) then pdf = 0.0D+00 else if ( b == 0.0D+00 ) then if ( x == 0 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if else if ( b == 1.0D+00 ) then if ( x == a ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if else cnk = i4_choose ( a, x ) pdf = real ( cnk, kind = rk ) * b ** x * ( 1.0D+00 - b ) ** ( a - x ) end if return end subroutine binomial_sample ( a, b, x ) !*****************************************************************************80 ! !! BINOMIAL_SAMPLE samples the Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! William Kennedy, James Gentle, ! Algorithm BU, ! Statistical Computing, ! Dekker, 1980. ! ! Parameters: ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b integer i real ( kind = rk ) u integer x x = 0 do i = 1, a call random_number ( harvest = u ) if ( u <= b ) then x = x + 1 end if end do return end subroutine binomial_variance ( a, b, variance ) !*****************************************************************************80 ! !! BINOMIAL_VARIANCE returns the variance of the Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the probability of success on one trial. ! 0.0 <= B <= 1.0. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) variance variance = real ( a, kind = rk ) * b * ( 1.0D+00 - b ) return end subroutine bradford_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! BRADFORD_CDF evaluates the Bradford CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else if ( x <= b ) then cdf = log ( 1.0D+00 + c * ( x - a ) / ( b - a ) ) / log ( c + 1.0D+00 ) else if ( b < x ) then cdf = 1.0D+00 end if return end subroutine bradford_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! BRADFORD_CDF_INV inverts the Bradford CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BRADFORD_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf <= 0.0D+00 ) then x = a else if ( cdf < 1.0D+00 ) then x = a + ( b - a ) * ( ( c + 1.0D+00 ) ** cdf - 1.0D+00 ) / c else if ( 1.0D+00 <= cdf ) then x = b end if return end function bradford_check ( a, b, c ) !*****************************************************************************80 ! !! BRADFORD_CHECK checks the parameters of the Bradford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, logical BRADFORD_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical bradford_check real ( kind = rk ) c if ( b <= a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BRADFORD_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= A.' bradford_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BRADFORD_CHECK - Fatal error!' write ( *, '(a)' ) ' C <= 0.' bradford_check = .false. return end if bradford_check = .true. return end subroutine bradford_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! BRADFORD_MEAN returns the mean of the Bradford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = ( c * ( b - a ) + log ( c + 1.0D+00 ) * ( a * ( c + 1.0D+00 ) - b ) ) & / ( c * log ( c + 1.0D+00 ) ) return end subroutine bradford_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! BRADFORD_PDF evaluates the Bradford PDF. ! ! Discussion: ! ! The formula is: ! ! PDF(A,B,C;X) = ! C / ( ( C * ( X - A ) + B - A ) * log ( C + 1 ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x if ( x <= a ) then pdf = 0.0D+00 else if ( x <= b ) then pdf = c / ( ( c * ( x - a ) + b - a ) * log ( c + 1.0D+00 ) ) else if ( b < x ) then pdf = 0.0D+00 end if return end subroutine bradford_sample ( a, b, c, x ) !*****************************************************************************80 ! !! BRADFORD_SAMPLE samples the Bradford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) x = a + ( b - a ) * ( ( c + 1.0D+00 ) ** cdf - 1.0D+00 ) / c return end subroutine bradford_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! BRADFORD_VARIANCE returns the variance of the Bradford PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance variance = ( b - a ) ** 2 * & ( c * ( log ( c + 1.0D+00 ) - 2.0D+00 ) + 2.0D+00 * log ( c + 1.0D+00 ) ) & / ( 2.0D+00 * c * ( log ( c + 1.0D+00 ) ) ** 2 ) return end subroutine buffon_box_pdf ( a, b, l, pdf ) !*****************************************************************************80 ! !! BUFFON_BOX_PDF evaluates the Buffon Box PDF. ! ! Discussion: ! ! In the Buffon-Laplace needle experiment, we suppose that the plane has been ! tiled into a grid of rectangles of width A and height B, and that a ! needle of length L is dropped "at random" onto this grid. ! ! We may assume that one end, the "eye" of the needle falls at the point ! (X1,Y1), taken uniformly at random in the cell [0,A]x[0,B]. ! ! ANGLE, the angle that the needle makes is taken to be uniformly random. ! The point of the needle, (X2,Y2), therefore lies at ! ! (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) ! ! The needle will have crossed at least one grid line if any of the ! following are true: ! ! X2 <= 0, A <= X2, Y2 <= 0, B <= Y2. ! ! If L is larger than sqrt ( A*A + B*B ), then the needle will ! cross every time, and the computation is uninteresting. However, if ! L is smaller than this limit, then the probability of a crossing on ! a single trial is ! ! P(L,A,B) = ( 2 * L * ( A + B ) - L * L ) / ( PI * A * B ) ! ! and therefore, a record of the number of hits for a given number of ! trials can be used as a very roundabout way of estimating PI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Sudarshan Raghunathan, ! Making a Supercomputer Do What You Want: High Level Tools for ! Parallel Programming, ! Computing in Science and Engineering, ! Volume 8, Number 5, September/October 2006, pages 70-80. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the horizontal and vertical dimensions ! of each cell of the grid. 0 <= A, 0 <= B. ! ! Input, real ( kind = rk ) L, the length of the needle. ! 0 <= L <= min ( A, B ). ! ! Output, real ( kind = rk ) PDF, the Buffon-Laplace PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) l real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793238462643D+00 if ( a < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_BOX_PDF - Fatal error!' write ( *, '(a)' ) ' Input A < 0.' stop 1 else if ( a == 0.0D+00 ) then pdf = 1.0D+00 return end if if ( b < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_BOX_PDF - Fatal error!' write ( *, '(a)' ) ' Input B < 0.' stop 1 else if ( b == 0.0D+00 ) then pdf = 1.0D+00 return end if if ( l < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_BOX_PDF - Fatal error!' write ( *, '(a)' ) ' Input L < 0.' stop 1 else if ( l == 0.0D+00 ) then pdf = 0.0D+00 return else if ( min ( a, b ) < l ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_BOX_PDF - Fatal error!' write ( *, '(a)' ) ' min ( A, B ) < L.' stop 1 end if pdf = l * ( 2.0D+00 * ( a + b ) - l ) / ( r8_pi * a * b ) return end function buffon_box_sample ( a, b, l, trial_num ) !*****************************************************************************80 ! !! BUFFON_BOX_SAMPLE samples the Buffon Box PDF. ! ! Discussion: ! ! In the Buffon-Laplace needle experiment, we suppose that the plane has ! been tiled into a grid of rectangles of width A and height B, and that a ! needle of length L is dropped "at random" onto this grid. ! ! We may assume that one end, the "eye" of the needle falls at the point ! (X1,Y1), taken uniformly at random in the cell [0,A]x[0,B]. ! ! ANGLE, the angle that the needle makes is taken to be uniformly random. ! The point of the needle, (X2,Y2), therefore lies at ! ! (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) ! ! The needle will have crossed at least one grid line if any of the ! following are true: ! ! X2 <= 0, A <= X2, Y2 <= 0, B <= Y2. ! ! This routine simulates the tossing of the needle, and returns the number ! of times that the needle crossed at least one grid line. ! ! If L is larger than sqrt ( A*A + B*B ), then the needle will ! cross every time, and the computation is uninteresting. However, if ! L is smaller than this limit, then the probability of a crossing on ! a single trial is ! ! P(L,A,B) = ( 2 * L * ( A + B ) - L * L ) / ( PI * A * B ) ! ! and therefore, a record of the number of hits for a given number of ! trials can be used as a very roundabout way of estimating PI. ! (Particularly roundabout, since we actually will use a good value of ! PI in order to pick the random angles!) ! ! Note that this routine will try to generate 5 * TRIAL_NUM random ! double precision values at one time, using automatic arrays. ! When I tried this with TRIAL_NUM = 1,000,000, the program failed, ! because of internal system limits on such arrays. ! ! Such a problem could be avoided by using a DO loop running through ! each trial individually, but this tend to run much more slowly than ! necessary. ! ! Since this routine invokes the FORTRAN90 random number generator, ! the user should initialize the random number generator, particularly ! if it is desired to control whether the sequence is to be varied ! or repeated. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Sudarshan Raghunathan, ! Making a Supercomputer Do What You Want: High Level Tools for ! Parallel Programming, ! Computing in Science and Engineering, ! Volume 8, Number 5, September/October 2006, pages 70-80. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the horizontal and vertical dimensions ! of each cell of the grid. 0 <= A, 0 <= B. ! ! Input, real ( kind = rk ) L, the length of the needle. ! 0 <= L <= min ( A, B ). ! ! Input, integer TRIAL_NUM, the number of times the needle is ! to be dropped onto the grid. ! ! Output, integer BUFFON_BOX_SAMPLE, the number of times ! the needle crossed at least one line of the grid of cells. ! ! Local ! ! Local, integer BATCH_SIZE, specifies the number of trials to be done ! in a single batch. Setting BATCH_SIZE to 1 will be very slow. ! Replacing it by TRIAL_NUM would be fine except that your system ! may have a limit on the size of automatic arrays. We have set a default ! value of 10,000 here which should be large enough to be efficient ! but small enough not to annoy the system. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: batch_size = 10000 integer trial_num real ( kind = rk ) a real ( kind = rk ) angle(batch_size) real ( kind = rk ) b integer batch integer buffon_box_sample integer hits real ( kind = rk ) l integer n real ( kind = rk ), parameter :: r8_pi = 3.141592653589793238462643D+00 real ( kind = rk ) x1(batch_size) real ( kind = rk ) x2(batch_size) real ( kind = rk ) y1(batch_size) real ( kind = rk ) y2(batch_size) hits = 0 do batch = 1, trial_num, batch_size n = min ( batch_size, trial_num + 1 - batch ) ! ! Randomly choose the location of the eye of the needle in [0,0]x[A,B], ! and the angle the needle makes. ! call random_number ( harvest = x1(1:n) ) call random_number ( harvest = y1(1:n) ) call random_number ( harvest = angle(1:n) ) x1(1:n) = a * x1(1:n) y1(1:n) = b * y1(1:n) angle(1:n) = 2.0D+00 * r8_pi * angle(1:n) ! ! Compute the location of the point of the needle. ! x2(1:n) = x1(1:n) + l * cos ( angle(1:n) ) y2(1:n) = y1(1:n) + l * sin ( angle(1:n) ) ! ! Count the end locations that lie outside the cell. ! hits = hits + count ( x2(1:n) <= 0.0 .or. & a <= x2(1:n) .or. & y2(1:n) <= 0.0 .or. & b <= y2(1:n) ) end do buffon_box_sample = hits return end subroutine buffon_pdf ( a, l, pdf ) !*****************************************************************************80 ! !! BUFFON_PDF evaluates the Buffon PDF. ! ! Discussion: ! ! In the Buffon needle experiment, we suppose that the plane has been ! ruled by vertical lines with a spacing of A units, and that a ! needle of length L is dropped "at random" onto this grid. ! ! Because of the various symmetries, we may assume that this eye of ! this needle lands in the first infinite strip, and we may further ! assume that its Y coordinate is 0. Thus, we have ! the eye as (X1,Y1) with 0 <= X1 <= A and Y1 = 0. ! ! ANGLE, the angle that the needle makes is taken to be uniformly random. ! The point of the needle, (X2,Y2), therefore lies at ! ! (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) ! ! The needle will have crossed at least one grid line if any of the ! following are true: ! ! X2 <= 0, A <= X2. ! ! The probability of a crossing on a single trial is ! ! P(A,L) = ( 2 * L ) / ( PI * A ) ! ! and therefore, a record of the number of hits for a given number of ! trials can be used as a very roundabout way of estimating PI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 March 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the horizontal spacing between the ! vertical grid lines. 0 <= A. ! ! Input, real ( kind = rk ) L, the length of the needle. ! ! Output, real ( kind = rk ) PDF, the Buffon PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) l real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793238462643D+00 if ( a < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_PDF - Fatal error!' write ( *, '(a)' ) ' Input A < 0.' stop 1 else if ( a == 0.0D+00 ) then pdf = 1.0D+00 return end if if ( l < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BUFFON_PDF - Fatal error!' write ( *, '(a)' ) ' Input L < 0.' stop 1 else if ( l == 0.0D+00 ) then pdf = 0.0D+00 return end if pdf = ( 2.0D+00 * l ) / ( r8_pi * a ) return end function buffon_sample ( a, l, trial_num ) !*****************************************************************************80 ! !! BUFFON_SAMPLE samples the Buffon PDF. ! ! Discussion: ! ! In the Buffon needle experiment, we suppose that the plane has been ! ruled by vertical lines with a spacing of A units, and that a ! needle of length L is dropped "at random" onto this grid. ! ! Because of the various symmetries, we may assume that this eye of ! this needle lands in the first infinite strip, and we may further ! assume that its Y coordinate is 0. Thus, we have ! the eye as (X1,Y1) with 0 <= X1 <= A and Y1 = 0. ! ! ANGLE, the angle that the needle makes is taken to be uniformly random. ! The point of the needle, (X2,Y2), therefore lies at ! ! (X2,Y2) = ( X1+L*cos(ANGLE), Y1+L*sin(ANGLE) ) ! ! The needle will have crossed at least one grid line if any of the ! following are true: ! ! X2 <= 0, A <= X2. ! ! The probability of a crossing on a single trial is ! ! P(A,L) = ( 2 * L ) / ( PI * A ) ! ! and therefore, a record of the number of hits for a given number of ! trials can be used as a very roundabout way of estimating PI. ! ! Note that this routine will try to generate 4 * TRIAL_NUM random ! double precision values at one time, using automatic arrays. ! When I tried this with TRIAL_NUM = 1,000,000, the program failed, ! because of internal system limits on such arrays. ! ! Such a problem could be avoided by using a DO loop running through ! each trial individually, but this tend to run much more slowly than ! necessary. ! ! Since this routine invokes the FORTRAN90 random number generator, ! the user should initialize the random number generator, particularly ! if it is desired to control whether the sequence is to be varied ! or repeated. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 March 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the horizontal spacing between the ! vertical grid lines. 0 <= A. ! ! Input, real ( kind = rk ) L, the length of the needle. ! ! Input, integer TRIAL_NUM, the number of times the needle is ! to be dropped onto the grid. ! ! Output, integer BUFFON_SAMPLE, the number of times the ! needle crossed at least one line of the grid of cells. ! ! Local Parameters: ! ! Local, integer BATCH_SIZE, specifies the number of trials to be done ! in a single batch. Setting BATCH_SIZE to 1 will be very slow. ! Replacing it by TRIAL_NUM would be fine except that your system ! may have a limit on the size of automatic arrays. We have set a default ! value of 10,000 here which should be large enough to be efficient ! but small enough not to annoy the system. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: batch_size = 10000 integer trial_num real ( kind = rk ) a real ( kind = rk ) angle(batch_size) integer batch integer buffon_sample integer hits real ( kind = rk ) l integer n real ( kind = rk ), parameter :: r8_pi = 3.141592653589793238462643D+00 real ( kind = rk ) x1(batch_size) real ( kind = rk ) x2(batch_size) hits = 0 do batch = 1, trial_num, batch_size n = min ( batch_size, trial_num + 1 - batch ) ! ! Randomly choose the location (X1,Y1) of the eye of the needle ! in [0,0]x[A,0], and the angle the needle makes. ! call random_number ( harvest = x1(1:n) ) call random_number ( harvest = angle(1:n) ) x1(1:n) = a * x1(1:n) angle(1:n) = 2.0D+00 * r8_pi * angle(1:n) ! ! Compute the location of the point of the needle. ! We only need to know the value of X2, not Y2! ! x2(1:n) = x1(1:n) + l * cos ( angle(1:n) ) ! ! Count the end locations that lie outside the cell. ! hits = hits + count ( x2(1:n) <= 0.0 .or. & a <= x2(1:n) ) end do buffon_sample = hits return end subroutine burr_cdf ( x, a, b, c, d, cdf ) !*****************************************************************************80 ! !! BURR_CDF evaluates the Burr CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) d real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then cdf = 0.0D+00 else y = ( x - a ) / b cdf = 1.0D+00 - 1.0D+00 / ( 1.0D+00 + y ** c ) ** d end if return end subroutine burr_cdf_inv ( cdf, a, b, c, d, x ) !*****************************************************************************80 ! !! BURR_CDF_INV inverts the Burr CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) d real ( kind = rk ) x real ( kind = rk ) y if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BURR_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if y = ( ( 1.0D+00 / ( 1.0D+00 - cdf ) ) ** ( 1.0D+00 / d ) & - 1.0D+00 ) ** ( 1.0D+00 / c ) x = a + b * y return end function burr_check ( a, b, c, d ) !*****************************************************************************80 ! !! BURR_CHECK checks the parameters of the Burr CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, logical BURR_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical burr_check real ( kind = rk ) c real ( kind = rk ) d if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BURR_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' burr_check = .false. return end if if ( c <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BURR_CHECK - Fatal error!' write ( *, '(a)' ) ' C <= 0.' burr_check = .false. return end if burr_check = .true. return end subroutine burr_mean ( a, b, c, d, mean ) !*****************************************************************************80 ! !! BURR_MEAN returns the mean of the Burr PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) d real ( kind = rk ) mean real ( kind = rk ) r8_beta real ( kind = rk ) ymean ymean = d * r8_beta ( d - 1.0D+00 / c, 1.0D+00 + 1.0D+00 / c ) mean = a + b * ymean return end subroutine burr_pdf ( x, a, b, c, d, pdf ) !*****************************************************************************80 ! !! BURR_PDF evaluates the Burr PDF. ! ! Discussion: ! ! Y = ( X - A ) / B; ! ! PDF(X)(A,B,C,D) = ( C * D / B ) * Y ^ ( C - 1 ) / ( 1 + Y ^ C ) ^ ( D + 1 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 August 2016 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Mark Johnson, ! Multivariate Statistical Simulation, ! Wiley, 1987. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) d real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = ( c * d / b ) * y ** ( c - 1.0D+00 ) & / ( 1.0D+00 + y ** c ) ** ( d + 1.0D+00 ) end if return end subroutine burr_sample ( a, b, c, d, x ) !*****************************************************************************80 ! !! BURR_SAMPLE samples the Burr PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) d real ( kind = rk ) x call random_number ( harvest = cdf ) call burr_cdf_inv ( cdf, a, b, c, d, x ) return end subroutine burr_variance ( a, b, c, d, variance ) !*****************************************************************************80 ! !! BURR_VARIANCE returns the variance of the Burr PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, D, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) d real ( kind = rk ) mu1 real ( kind = rk ) mu2 real ( kind = rk ) r8_beta real ( kind = rk ) variance if ( c <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'BURR_VARIANCE - Warning!' write ( *, '(a)' ) ' Variance undefined for C <= 2.' variance = huge ( variance ) else mu1 = b * d * r8_beta ( ( c * d - 1.0D+00 ) / c, ( c + 1.0D+00 ) / c ) mu2 = b * b * d * r8_beta ( ( c * d - 2.0D+00 ) / c, ( c + 2.0D+00 ) / c ) variance = - mu1 * mu1 + mu2 end if return end subroutine c8_normal_01_sample ( x ) !*****************************************************************************80 ! !! C8_NORMAL_01_SAMPLE samples the complex Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, complex ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) v1 real ( kind = rk ) v2 complex ( kind = rk ) x real ( kind = rk ) x_c real ( kind = rk ) x_r call random_number ( harvest = v1 ) call random_number ( harvest = v2 ) x_r = sqrt ( - 2.0D+00 * log ( v1 ) ) * cos ( 2.0D+00 * r8_pi * v2 ) x_c = sqrt ( - 2.0D+00 * log ( v1 ) ) * sin ( 2.0D+00 * r8_pi * v2 ) x = cmplx ( x_r, x_c, kind = rk ) return end subroutine cardioid_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! CARDIOID_CDF evaluates the Cardioid CDF. ! ! Discussion: ! ! The angle X is assumed to lie between A - PI and A + PI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! A - PI <= X <= A + PI. ! ! Input, real ( kind = rk ) A, B, the parameters. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= a - r8_pi ) then cdf = 0.0D+00 else if ( x < a + r8_pi ) then cdf = ( r8_pi + x - a + 2.0D+00 * b * sin ( x - a ) ) / ( 2.0D+00 * r8_pi ) else cdf = 1.0D+00 end if return end subroutine cardioid_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! CARDIOID_CDF_INV inverts the Cardioid CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0 <= CDF <= 1. ! ! Input, real ( kind = rk ) A, B, the parameters. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) X, the argument with the given CDF. ! A - PI <= X <= A + PI. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) fp real ( kind = rk ) fx integer it real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ), parameter :: tol = 0.000001D+00 real ( kind = rk ) x if ( cdf <= 0.0D+00 ) then x = a - r8_pi else if ( cdf < 1.0D+00 ) then x = a it = 0 do fx = cdf - ( r8_pi + x - a + 2.0D+00 * b * sin ( x - a ) ) & / ( 2.0D+00 * r8_pi ) if ( abs ( fx ) < tol ) then exit end if if ( 10 < it ) then stop 1 end if fp = - ( 1.0D+00 + 2.0D+00 * b * cos ( x - a ) ) / ( 2.0D+00 * r8_pi ) x = x - fx / fp x = max ( x, a - r8_pi ) x = min ( x, a + r8_pi ) it = it + 1 end do else x = a + r8_pi end if return end function cardioid_check ( a, b ) !*****************************************************************************80 ! !! CARDIOID_CHECK checks the parameters of the Cardioid CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -0.5 <= B <= 0.5. ! ! Output, logical CARDIOID_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical cardioid_check if ( b < -0.5D+00 .or. 0.5D+00 < b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CARDIOID_CHECK - Fatal error!' write ( *, '(a)' ) ' B < -0.5 or 0.5 < B.' cardioid_check = .false. return end if cardioid_check = .true. return end subroutine cardioid_mean ( a, b, mean ) !*****************************************************************************80 ! !! CARDIOID_MEAN returns the mean of the Cardioid PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine cardioid_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! CARDIOID_PDF evaluates the Cardioid PDF. ! ! Discussion: ! ! The cardioid PDF can be thought of as being applied to points on ! a circle. Compare this distribution with the "Cosine PDF". ! ! PDF(A,B;X) = ( 1 / ( 2 * PI ) ) * ( 1 + 2 * B * COS ( X - A ) ) ! for A - PI <= X <= A + PI, -1/2 <= B <= 1/2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 July 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Nicholas Fisher, ! Statistical Analysis of Circular Data, ! Cambridge, 1993. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A - PI <= X <= A + PI. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x pdf = ( 1.0D+00 + 2.0D+00 * b * cos ( x - a ) ) / ( 2.0D+00 * r8_pi ) return end subroutine cardioid_sample ( a, b, x ) !*****************************************************************************80 ! !! CARDIOID_SAMPLE samples the Cardioid PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! A - PI <= X <= A + PI. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call cardioid_cdf_inv ( cdf, a, b, x ) return end subroutine cardioid_variance ( a, b, variance ) !*****************************************************************************80 ! !! CARDIOID_VARIANCE returns the variance of the Cardioid PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -0.5 <= B <= 0.5. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = 0.0D+00 return end subroutine cauchy_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! cauchy_cdf() evaluates the Cauchy CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x cdf = 0.5D+00 + atan2 ( x - a, b ) / r8_pi return end subroutine cauchy_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! cauchy_cdf_inv() inverts the Cauchy CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CAUCHY_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a + b * tan ( r8_pi * ( cdf - 0.5D+00 ) ) return end subroutine cauchy_cdf_values ( n_data, mu, sigma, x, fx ) !*****************************************************************************80 ! !! cauchy_cdf_values() returns some values of the Cauchy CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = CauchyDistribution [ mu, sigma ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) SIGMA, the variance of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.8524163823495667D+00, & 0.9220208696226307D+00, & 0.9474315432887466D+00, & 0.6475836176504333D+00, & 0.6024163823495667D+00, & 0.5779791303773693D+00, & 0.5628329581890012D+00, & 0.6475836176504333D+00, & 0.5000000000000000D+00, & 0.3524163823495667D+00, & 0.2500000000000000D+00 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) sigma real ( kind = rk ), save, dimension ( n_max ) :: sigma_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 sigma = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) sigma = sigma_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function cauchy_check ( a, b ) !*****************************************************************************80 ! !! cauchy_check() checks the parameters of the Cauchy CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical CAUCHY_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical cauchy_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CAUCHY_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' cauchy_check = .false. return end if cauchy_check = .true. return end subroutine cauchy_mode ( a, b, mode ) !*****************************************************************************80 ! !! cauchy_mode() returns the mode of the Cauchy PDF. ! ! Discussion: ! ! The mean of the Cauchy PDF is infinite. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 November 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output: ! ! real ( kind = rk ) mode: the mode of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mode mode = a return end subroutine cauchy_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! cauchy_pdf() evaluates the Cauchy PDF. ! ! Discussion: ! ! PDF(A,B;X) = 1 / ( PI * B * ( 1 + ( ( X - A ) / B )^2 ) ) ! ! The Cauchy PDF is also known as the Breit-Wigner PDF. It ! has some unusual properties. In particular, the integrals for the ! expected value and higher order moments are "singular", in the ! sense that the limiting values do not exist. A result can be ! obtained if the upper and lower limits of integration are set ! equal to +T and -T, and the limit as T => +oo is taken, but ! this is a very weak and unreliable sort of limit. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b pdf = 1.0D+00 / ( r8_pi * b * ( 1.0D+00 + y * y ) ) return end subroutine cauchy_sample ( a, b, x ) !*****************************************************************************80 ! !! cauchy_sample() samples the Cauchy PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call cauchy_cdf_inv ( cdf, a, b, x ) return end subroutine chebyshev1_cdf ( x, cdf ) !*****************************************************************************80 ! !! CHEBYSHEV1_CDF evaluates the Chebyshev1 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < -1.0D+00 ) then cdf = 0.0D+00 else if ( 1.0D+00 < x ) then cdf = 1.0D+00 else cdf = 0.5 + asin ( x ) / r8_pi end if return end subroutine chebyshev1_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! CHEBYSHEV1_CDF_INV inverts the Chebyshev1 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHEBYSHEV1_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = sin ( r8_pi * ( cdf - 0.5 ) ) return end subroutine chebyshev1_mean ( mean ) !*****************************************************************************80 ! !! CHEBYSHEV1_MEAN returns the mean of the Chebyshev1 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.0D+00 return end subroutine chebyshev1_pdf ( x, pdf ) !*****************************************************************************80 ! !! CHEBYSHEV1_PDF evaluates the Chebyshev1 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < -1.0D+00 .or. 1.0D+00 < x ) then pdf = 0.0D+00 else pdf = 1.0D+00 / r8_pi / sqrt ( 1.0D+00 - x * x ) end if return end function chebyshev1_sample ( ) !*****************************************************************************80 ! !! CHEBYSHEV1_SAMPLE samples the Chebyshev1 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) CHEBYSHEV1_SAMPLE, a random value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) chebyshev1_sample real ( kind = rk ) x call random_number ( harvest = cdf ) call chebyshev1_cdf_inv ( cdf, x ) chebyshev1_sample = x return end subroutine chebyshev1_variance ( variance ) !*****************************************************************************80 ! !! CHEBYSHEV1_VARIANCE returns the variance of the Chebyshev1 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance variance = 0.5D+00 return end subroutine chebyshev2_cdf ( x, cdf ) !*****************************************************************************80 ! !! CHEBYSHEV2_CDF evaluates the Chebyshev2 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= -1.0D+00 ) then cdf = 0.0D+00 else if ( 1.0D+00 <= x ) then cdf = 1.0D+00 else cdf = 0.5D+00 + ( x * sqrt ( 1.0D+00 - x * x ) + asin ( x ) ) / r8_pi end if return end subroutine chebyshev2_mean ( mean ) !*****************************************************************************80 ! !! CHEBYSHEV2_MEAN returns the mean of the Chebyshev2 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.0D+00 return end subroutine chebyshev2_pdf ( x, pdf ) !*****************************************************************************80 ! !! CHEBYSHEV2_PDF evaluates the Chebyshev2 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < -1.0D+00 .or. 1.0D+00 < x ) then pdf = 0.0D+00 else pdf = 2.0D+00 * sqrt ( 1.0D+00 - x * x ) / r8_pi end if return end subroutine chebyshev2_variance ( variance ) !*****************************************************************************80 ! !! CHEBYSHEV2_VARIANCE returns the variance of the Chebyshev2 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = r8_pi / 8.0D+00 return end subroutine chi_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! CHI_CDF evaluates the Chi CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) p2 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) x real ( kind = rk ) x2 real ( kind = rk ) y if ( x <= a ) then cdf = 0.0D+00 else y = ( x - a ) / b x2 = 0.5D+00 * y * y p2 = 0.5D+00 * c cdf = r8_gamma_inc ( p2, x2 ) end if return end subroutine chi_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! CHI_CDF_INV inverts the Chi CDF. ! ! Discussion: ! ! A simple bisection method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = a return else if ( 1.0D+00 == cdf ) then x = huge ( x ) return end if x1 = a cdf1 = 0.0D+00 x2 = a + 1.0D+00 do call chi_cdf ( x2, a, b, c, cdf2 ) if ( cdf < cdf2 ) then exit end if x2 = a + 2.0D+00 * ( x2 - a ) end do ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call chi_cdf ( x3, a, b, c, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 return end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' return end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function chi_check ( a, b, c ) !*****************************************************************************80 ! !! CHI_CHECK checks the parameters of the Chi CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, logical CHI_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical chi_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.0.' chi_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_CHECK - Warning!' write ( *, '(a)' ) ' C <= 0.0.' chi_check = .false. return end if chi_check = .true. return end subroutine chi_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! CHI_MEAN returns the mean of the Chi PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = a + sqrt ( 2.0D+00 ) * b * gamma ( 0.5D+00 * ( c + 1.0D+00 ) ) & / gamma ( 0.5D+00 * c ) return end subroutine chi_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! CHI_PDF evaluates the Chi PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = EXP ( - 0.5D+00 * ( ( X - A ) / B )^2 ) ! * ( ( X - A ) / B )^( C - 1 ) / ! ( 2^( 0.5D+00 * C - 1 ) * B * GAMMA ( 0.5D+00 * C ) ) ! ! CHI(A,B,1) is the Half Normal PDF; ! CHI(0,B,2) is the Rayleigh PDF; ! CHI(0,B,3) is the Maxwell PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = exp ( - 0.5D+00 * y * y ) * y ** ( c - 1.0D+00 ) / & ( 2.0D+00 ** ( 0.5D+00 * c - 1.0D+00 ) * b * gamma ( 0.5D+00 * c ) ) end if return end subroutine chi_sample ( a, b, c, x ) !*****************************************************************************80 ! !! CHI_SAMPLE samples the Chi PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) x call chi_square_sample ( c, x ) x = a + b * sqrt ( x ) return end subroutine chi_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! CHI_VARIANCE returns the variance of the Chi PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0 < B, ! 0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance variance = b * b * ( c - 2.0D+00 * & ( gamma ( 0.5D+00 * ( c + 1.0D+00 ) ) / gamma ( 0.5D+00 * c ) ) ** 2 ) return end subroutine chi_square_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! CHI_SQUARE_CDF evaluates the Chi squared CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the value of the random deviate. ! ! Input, real ( kind = rk ) A, the parameter of the distribution, usually ! the number of degrees of freedom. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b2 real ( kind = rk ) c2 real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) x2 x2 = 0.5D+00 * x a2 = 0.0D+00 b2 = 1.0D+00 c2 = 0.5D+00 * a call gamma_cdf ( x2, a2, b2, c2, cdf ) return end subroutine chi_square_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! CHI_SQUARE_CDF_INV inverts the Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 October 2004 ! ! Author: ! ! Original FORTAN77 version by Donald Best, Roberts. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Donald Best, Roberts, ! The Percentage Points of the Chi-Squared Distribution, ! Algorithm AS 91, ! Applied Statistics, ! Volume 24, Number ?, pages 385-390, 1975. ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, a value of the chi-squared cumulative ! probability density function. ! 0.000002 <= CDF <= 0.999998. ! ! Input, real ( kind = rk ) A, the parameter of the chi-squared ! probability density function. 0 < A. ! ! Output, real ( kind = rk ) X, the value of the chi-squared random deviate ! with the property that the probability that a chi-squared random ! deviate with parameter A is less than or equal to X is CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ), parameter :: aa = 0.6931471806D+00 real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ), parameter :: c1 = 0.01D+00 real ( kind = rk ), parameter :: c2 = 0.222222D+00 real ( kind = rk ), parameter :: c3 = 0.32D+00 real ( kind = rk ), parameter :: c4 = 0.4D+00 real ( kind = rk ), parameter :: c5 = 1.24D+00 real ( kind = rk ), parameter :: c6 = 2.2D+00 real ( kind = rk ), parameter :: c7 = 4.67D+00 real ( kind = rk ), parameter :: c8 = 6.66D+00 real ( kind = rk ), parameter :: c9 = 6.73D+00 real ( kind = rk ), parameter :: c10 = 13.32D+00 real ( kind = rk ), parameter :: c11 = 60.0D+00 real ( kind = rk ), parameter :: c12 = 70.0D+00 real ( kind = rk ), parameter :: c13 = 84.0D+00 real ( kind = rk ), parameter :: c14 = 105.0D+00 real ( kind = rk ), parameter :: c15 = 120.0D+00 real ( kind = rk ), parameter :: c16 = 127.0D+00 real ( kind = rk ), parameter :: c17 = 140.0D+00 real ( kind = rk ), parameter :: c18 = 175.0D+00 real ( kind = rk ), parameter :: c19 = 210.0D+00 real ( kind = rk ), parameter :: c20 = 252.0D+00 real ( kind = rk ), parameter :: c21 = 264.0D+00 real ( kind = rk ), parameter :: c22 = 294.0D+00 real ( kind = rk ), parameter :: c23 = 346.0D+00 real ( kind = rk ), parameter :: c24 = 420.0D+00 real ( kind = rk ), parameter :: c25 = 462.0D+00 real ( kind = rk ), parameter :: c26 = 606.0D+00 real ( kind = rk ), parameter :: c27 = 672.0D+00 real ( kind = rk ), parameter :: c28 = 707.0D+00 real ( kind = rk ), parameter :: c29 = 735.0D+00 real ( kind = rk ), parameter :: c30 = 889.0D+00 real ( kind = rk ), parameter :: c31 = 932.0D+00 real ( kind = rk ), parameter :: c32 = 966.0D+00 real ( kind = rk ), parameter :: c33 = 1141.0D+00 real ( kind = rk ), parameter :: c34 = 1182.0D+00 real ( kind = rk ), parameter :: c35 = 1278.0D+00 real ( kind = rk ), parameter :: c36 = 1740.0D+00 real ( kind = rk ), parameter :: c37 = 2520.0D+00 real ( kind = rk ), parameter :: c38 = 5040.0D+00 real ( kind = rk ) cdf real ( kind = rk ), parameter :: cdf_max = 0.999998D+00 real ( kind = rk ), parameter :: cdf_min = 0.000002D+00 real ( kind = rk ) ch real ( kind = rk ), parameter :: e = 0.0000005D+00 real ( kind = rk ) g integer i integer, parameter :: it_max = 20 real ( kind = rk ) p1 real ( kind = rk ) p2 real ( kind = rk ) q real ( kind = rk ) r8_gamma_inc real ( kind = rk ) s1 real ( kind = rk ) s2 real ( kind = rk ) s3 real ( kind = rk ) s4 real ( kind = rk ) s5 real ( kind = rk ) s6 real ( kind = rk ) t real ( kind = rk ) x real ( kind = rk ) x2 real ( kind = rk ) xx if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' write ( *, '(a,g14.6)' ) ' CDF = ', cdf stop 1 end if if ( cdf < cdf_min ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_CDF_INV - Warning!' write ( *, '(a)' ) ' CDF < CDF_MIN.' write ( *, '(a,g14.6)' ) ' CDF = ', cdf write ( *, '(a,g14.6)' ) ' CDF_MIN = ', cdf_min end if if ( cdf_max < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_CDF_INV - Warning!' write ( *, '(a)' ) ' CDF_MAX < CDF.' write ( *, '(a,g14.6)' ) ' CDF = ', cdf write ( *, '(a,g14.6)' ) ' CDF_MAX = ', cdf_max end if xx = 0.5D+00 * a c = xx - 1.0D+00 ! ! Compute Log ( Gamma ( A/2 ) ). ! g = lgamma ( a / 2.0D+00 ) ! ! Starting approximation for small chi-squared. ! if ( a < - c5 * log ( cdf ) ) then ch = ( cdf * xx * exp ( g + xx * aa ) ) ** ( 1.0D+00 / xx ) if ( ch < e ) then x = ch return end if ! ! Starting approximation for A less than or equal to 0.32. ! else if ( a <= c3 ) then ch = c4 a2 = log ( 1.0D+00 - cdf ) do q = ch p1 = 1.0D+00 + ch * ( c7 + ch ) p2 = ch * ( c9 + ch * ( c8 + ch ) ) t = - 0.5D+00 + ( c7 + 2.0D+00 * ch ) / p1 & - ( c9 + ch * ( c10 + 3.0D+00 * ch ) ) / p2 ch = ch - ( 1.0D+00 - exp ( a2 + g + 0.5D+00 * ch + c * aa ) & * p2 / p1 ) / t if ( abs ( q / ch - 1.0D+00 ) <= c1 ) then exit end if end do ! ! Call to algorithm AS 111. ! Note that P has been tested above. ! AS 241 could be used as an alternative. ! else call normal_01_cdf_inv ( cdf, x2 ) ! ! Starting approximation using Wilson and Hilferty estimate. ! p1 = c2 / a ch = a * ( x2 * sqrt ( p1 ) + 1.0D+00 - p1 ) ** 3 ! ! Starting approximation for P tending to 1. ! if ( c6 * a + 6.0D+00 < ch ) then ch = - 2.0D+00 * ( log ( 1.0D+00 - cdf ) - c * log ( 0.5D+00 * ch ) + g ) end if end if ! ! Call to algorithm AS 239 and calculation of seven term Taylor series. ! do i = 1, it_max q = ch p1 = 0.5D+00 * ch p2 = cdf - r8_gamma_inc ( xx, p1 ) t = p2 * exp ( xx * aa + g + p1 - c * log ( ch ) ) b = t / ch a2 = 0.5D+00 * t - b * c s1 = ( c19 + a2 & * ( c17 + a2 & * ( c14 + a2 & * ( c13 + a2 & * ( c12 + a2 & * c11 ) ) ) ) ) / c24 s2 = ( c24 + a2 & * ( c29 + a2 & * ( c32 + a2 & * ( c33 + a2 & * c35 ) ) ) ) / c37 s3 = ( c19 + a2 & * ( c25 + a2 & * ( c28 + a2 & * c31 ) ) ) / c37 s4 = ( c20 + a2 & * ( c27 + a2 & * c34 ) + c & * ( c22 + a2 & * ( c30 + a2 & * c36 ) ) ) / c38 s5 = ( c13 + c21 * a2 + c * ( c18 + c26 * a2 ) ) / c37 s6 = ( c15 + c * ( c23 + c16 * c ) ) / c38 ch = ch + t * ( 1.0D+00 + 0.5D+00 * t * s1 - b * c & * ( s1 - b & * ( s2 - b & * ( s3 - b & * ( s4 - b & * ( s5 - b & * s6 ) ) ) ) ) ) if ( e < abs ( q / ch - 1.0D+00 ) ) then x = ch return end if end do x = ch write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_CDF_INV - Warning!' write ( *, '(a)' ) ' Convergence not reached.' return end subroutine chi_square_cdf_values ( n_data, a, x, fx ) !*****************************************************************************80 ! !! CHI_SQUARE_CDF_VALUES returns some values of the Chi-Square CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = ChiSquareDistribution [ df ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer A, the parameter of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 21 integer a integer, save, dimension ( n_max ) :: a_vec = (/ & 1, 2, 1, 2, & 1, 2, 3, 4, & 1, 2, 3, 4, & 5, 3, 3, 3, & 3, 3, 10, 10, & 10 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.7965567455405796D-01, & 0.4987520807317687D-02, & 0.1124629160182849D+00, & 0.9950166250831946D-02, & 0.4729107431344619D+00, & 0.1812692469220181D+00, & 0.5975750516063926D-01, & 0.1752309630642177D-01, & 0.6826894921370859D+00, & 0.3934693402873666D+00, & 0.1987480430987992D+00, & 0.9020401043104986D-01, & 0.3743422675270363D-01, & 0.4275932955291202D+00, & 0.6083748237289110D+00, & 0.7385358700508894D+00, & 0.8282028557032669D+00, & 0.8883897749052874D+00, & 0.1721156299558408D-03, & 0.3659846827343712D-02, & 0.1857593622214067D-01 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.01D+00, & 0.01D+00, & 0.02D+00, & 0.02D+00, & 0.40D+00, & 0.40D+00, & 0.40D+00, & 0.40D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 3.00D+00, & 4.00D+00, & 5.00D+00, & 6.00D+00, & 1.00D+00, & 2.00D+00, & 3.00D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function chi_square_check ( a ) !*****************************************************************************80 ! !! CHI_SQUARE_CHECK checks the parameter of the central Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the distribution. ! 1 <= A. ! ! Output, logical CHI_SQUARE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical chi_square_check if ( a < 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_CHECK - Warning!' write ( *, '(a)' ) ' A < 1.0.' chi_square_check = .false. return end if chi_square_check = .true. return end subroutine chi_square_mean ( a, mean ) !*****************************************************************************80 ! !! CHI_SQUARE_MEAN returns the mean of the central Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the distribution. ! 1 <= A. ! ! Output, real ( kind = rk ) MEAN, the mean value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = a return end subroutine chi_square_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! CHI_SQUARE_PDF evaluates the central Chi squared PDF. ! ! Discussion: ! ! PDF(A;X) = ! EXP ( - X / 2 ) * X^((A-2)/2) / ( 2^(A/2) * GAMMA ( A/2 ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1 <= A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else b = a / 2.0D+00 pdf = exp ( - 0.5D+00 * x ) * x ** ( b - 1.0D+00 ) & / ( 2.0D+00 ** b * gamma ( b ) ) end if return end subroutine chi_square_sample ( a, x ) !*****************************************************************************80 ! !! CHI_SQUARE_SAMPLE samples the central Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1 <= A. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b2 real ( kind = rk ) c2 integer i integer, parameter :: it_max = 100 integer n real ( kind = rk ) x real ( kind = rk ) x2 n = int ( a ) if ( real ( n, kind = rk ) == a .and. n <= it_max ) then x = 0.0D+00 do i = 1, n call normal_01_sample ( x2 ) x = x + x2 * x2 end do else a2 = 0.0D+00 b2 = 1.0D+00 c2 = a / 2.0D+00 call gamma_sample ( a2, b2, c2, x ) x = 2.0D+00 * x end if return end subroutine chi_square_variance ( a, variance ) !*****************************************************************************80 ! !! CHI_SQUARE_VARIANCE returns the variance of the central Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the distribution. ! 1 <= A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = 2.0D+00 * a return end function chi_square_noncentral_check ( a, b ) !*****************************************************************************80 ! !! CHI_SQUARE_NONCENTRAL_CHECK check parameters of noncentral Chi Squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the parameter of the PDF. ! 1.0D+00 <= A. ! ! Input, real ( kind = rk ) B, the noncentrality parameter of the PDF. ! 0.0 <= B. ! ! Output, logical CHI_SQUARE_NONCENTRAL_CHECK, is true if the parameters ! are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical chi_square_noncentral_check if ( a < 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_NONCENTRAL_CHECK - Warning!' write ( *, '(a)' ) ' A < 1.' chi_square_noncentral_check = .false. return end if if ( b < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CHI_SQUARE_NONCENTRAL_CHECK - Warning!' write ( *, '(a)' ) ' B < 0.' chi_square_noncentral_check = .false. return end if chi_square_noncentral_check = .true. return end subroutine chi_square_noncentral_cdf_values ( n_data, df, lambda, x, cdf ) !*****************************************************************************80 ! !! CHI_SQUARE_NONCENTRAL_CDF_VALUES returns values of the noncentral chi CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = NoncentralChiSquareDistribution [ df, lambda ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer DF, the number of degrees of freedom. ! ! Output, real ( kind = rk ) LAMBDA, the noncentrality parameter. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) CDF, the noncentral chi CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 28 real ( kind = rk ) cdf real ( kind = rk ), save, dimension ( n_max ) :: cdf_vec = (/ & 0.8399444269398261D+00, & 0.6959060300435139D+00, & 0.5350879697078847D+00, & 0.7647841496310313D+00, & 0.6206436532195436D+00, & 0.4691667375373180D+00, & 0.3070884345937569D+00, & 0.2203818092990903D+00, & 0.1500251895581519D+00, & 0.3071163194335791D-02, & 0.1763982670131894D-02, & 0.9816792594625022D-03, & 0.1651753140866208D-01, & 0.2023419573950451D-03, & 0.4984476352854074D-06, & 0.1513252400654827D-01, & 0.2090414910614367D-02, & 0.2465021206048452D-03, & 0.2636835050342939D-01, & 0.1857983220079215D-01, & 0.1305736595486640D-01, & 0.5838039534819351D-01, & 0.4249784402463712D-01, & 0.3082137716021596D-01, & 0.1057878223400849D+00, & 0.7940842984598509D-01, & 0.5932010895599639D-01, & 0.2110395656918684D+00 /) integer df integer, save, dimension ( n_max ) :: df_vec = (/ & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 60, 80, 100, & 1, 2, 3, & 10, 10, 10, & 10, 10, 10, & 10, 10, 10, & 8 /) real ( kind = rk ) lambda real ( kind = rk ), save, dimension ( n_max ) :: lambda_vec = (/ & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 5.0D+00, & 5.0D+00, & 5.0D+00, & 20.0D+00, & 20.0D+00, & 20.0D+00, & 30.0D+00, & 30.0D+00, & 30.0D+00, & 5.0D+00, & 5.0D+00, & 5.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 0.5D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 3.000D+00, & 60.000D+00, & 60.000D+00, & 60.000D+00, & 0.050D+00, & 0.050D+00, & 0.050D+00, & 4.000D+00, & 4.000D+00, & 4.000D+00, & 5.000D+00, & 5.000D+00, & 5.000D+00, & 6.000D+00, & 6.000D+00, & 6.000D+00, & 5.000D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 lambda = 0.0D+00 df = 0 cdf = 0.0D+00 else x = x_vec(n_data) lambda = lambda_vec(n_data) df = df_vec(n_data) cdf = cdf_vec(n_data) end if return end subroutine chi_square_noncentral_mean ( a, b, mean ) !*****************************************************************************80 ! !! CHI_SQUARE_NONCENTRAL_MEAN: mean of the noncentral Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the parameter of the PDF. ! 1.0D+00 <= A. ! ! Input, real ( kind = rk ) B, the noncentrality parameter of the PDF. ! 0.0 <= B. ! ! Output, real ( kind = rk ) MEAN, the mean value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a + b return end subroutine chi_square_noncentral_sample ( a, b, x ) !*****************************************************************************80 ! !! CHI_SQUARE_NONCENTRAL_SAMPLE samples the noncentral Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the parameter of the PDF. ! 1.0D+00 <= A. ! ! Input, real ( kind = rk ) B, the noncentrality parameter of the PDF. ! 0.0 <= B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a1 real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 a1 = a - 1.0D+00 call chi_square_sample ( a1, x1 ) a2 = sqrt ( b ) b2 = 1.0D+00 call normal_sample ( a2, b2, x2 ) x = x1 + x2 * x2 return end subroutine chi_square_noncentral_variance ( a, b, variance ) !*****************************************************************************80 ! !! CHI_SQUARE_NONCENTRAL_VARIANCE: variance of the noncentral Chi squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1 <= A. ! ! Input, real ( kind = rk ) B, the noncentrality parameter of the PDF. ! 0.0 <= B. ! ! Output, real ( kind = rk ) VARIANCE, the variance value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = 2.0D+00 * ( a + 2.0D+00 * b ) return end subroutine circular_normal_01_mean ( mean ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_01_MEAN returns the mean of the Circular Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN(2), the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean(2) mean(1:2) = 0.0D+00 return end subroutine circular_normal_01_pdf ( x, pdf ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_01_PDF evaluates the Circular Normal 01 PDF. ! ! Discussion: ! ! PDF(X) = EXP ( - 0.5D+00 * ( X(1)^2 + X(2)^2 ) ) / ( 2 * PI ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X(2), the argument of the PDF. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x(2) pdf = exp ( - 0.5D+00 * ( x(1) ** 2 + x(2) ** 2 ) ) / ( 2.0D+00 * r8_pi ) return end subroutine circular_normal_01_sample ( x ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_01_SAMPLE samples the Circular Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X(2), a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) v1 real ( kind = rk ) v2 real ( kind = rk ) x(2) call random_number ( harvest = v1 ) call random_number ( harvest = v2 ) x(1) = sqrt ( - 2.0D+00 * log ( v1 ) ) * cos ( 2.0D+00 * r8_pi * v2 ) x(2) = sqrt ( - 2.0D+00 * log ( v1 ) ) * sin ( 2.0D+00 * r8_pi * v2 ) return end subroutine circular_normal_01_variance ( variance ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_01_VARIANCE: variance of the Circular Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE(2), the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance(2) variance(1) = 1.0D+00 variance(2) = 1.0D+00 return end subroutine circular_normal_mean ( a, b, mean ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_MEAN returns the mean of the Circular Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A(2), a parameter of the PDF, the mean value. ! ! Input, real ( kind = rk ) B, a parameter of the PDF, the standard deviation. ! ! Output, real ( kind = rk ) MEAN(2), the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(2) real ( kind = rk ) b real ( kind = rk ) mean(2) mean(1:2) = a(1:2) return end subroutine circular_normal_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_PDF evaluates the Circular Normal PDF. ! ! Discussion: ! ! PDF(X) = EXP ( - 0.5D+00 * ( ( (X(1)-A(1))^2 + (X(2)-A(2))^2 ) / B^2 ) ! / ( 2 * PI * B^2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X(2), the argument of the PDF. ! ! Input, real ( kind = rk ) A(2), a parameter of the PDF, the mean value. ! ! Input, real ( kind = rk ) B, a parameter of the PDF, the standard deviation. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(2) real ( kind = rk ) b real ( kind = rk ) d real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x(2) d = ( ( x(1) - a(1) ) ** 2 + ( x(2) - a(2) ) ** 2 ) / b ** 2 pdf = exp ( - 0.5D+00 * d ) / ( 2.0D+00 * b ** 2 * r8_pi ) return end subroutine circular_normal_sample ( a, b, x ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_SAMPLE samples the Circular Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A(2), a parameter of the PDF, the mean value. ! ! Input, real ( kind = rk ) B, a parameter of the PDF, the standard deviation. ! ! Output, real ( kind = rk ) X(2), a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(2) real ( kind = rk ) b real ( kind = rk ) r real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) v1 real ( kind = rk ) v2 real ( kind = rk ) x(2) call random_number ( harvest = v1 ) call random_number ( harvest = v2 ) r = sqrt ( - 2.0D+00 * log ( v1 ) ) x(1) = a(1) + b * r * cos ( 2.0D+00 * r8_pi * v2 ) x(2) = a(2) + b * r * sin ( 2.0D+00 * r8_pi * v2 ) return end subroutine circular_normal_variance ( a, b, variance ) !*****************************************************************************80 ! !! CIRCULAR_NORMAL_VARIANCE returns the variance of the Circular Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A(2), a parameter of the PDF, the mean value. ! ! Input, real ( kind = rk ) B, a parameter of the PDF, the standard deviation. ! ! Output, real ( kind = rk ) VARIANCE(2), the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a(2) real ( kind = rk ) b real ( kind = rk ) variance(2) variance(1) = b ** 2 variance(2) = b ** 2 return end subroutine cosine_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! COSINE_CDF evaluates the Cosine CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y if ( x <= a - r8_pi * b ) then cdf = 0.0D+00 else if ( x <= a + r8_pi * b ) then y = ( x - a ) / b cdf = 0.5D+00 + ( y + sin ( y ) ) / ( 2.0D+00 * r8_pi ) else if ( a + r8_pi * b < x ) then cdf = 1.0D+00 end if return end subroutine cosine_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! COSINE_CDF_INV inverts the Cosine CDF. ! ! Discussion: ! ! A simple bisection method is used on the interval ! [ A - PI * B, A + PI * B ]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COSINE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = a - r8_pi * b return else if ( 1.0D+00 == cdf ) then x = a + r8_pi * b return end if x1 = a - r8_pi * b cdf1 = 0.0D+00 x2 = a + r8_pi * b cdf2 = 1.0D+00 ! ! Now use bisection. ! it = 0 do it = 1, it_max x3 = 0.5D+00 * ( x1 + x2 ) call cosine_cdf ( x3, a, b, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 return end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COSINE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end function cosine_check ( a, b ) !*****************************************************************************80 ! !! COSINE_CHECK checks the parameters of the Cosine CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, logical COSINE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical cosine_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COSINE_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.0' cosine_check = .false. return end if cosine_check = .true. return end subroutine cosine_mean ( a, b, mean ) !*****************************************************************************80 ! !! COSINE_MEAN returns the mean of the Cosine PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine cosine_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! COSINE_PDF evaluates the Cosine PDF. ! ! Discussion: ! ! The cosine PDF can be thought of as being applied to points on ! a circle. ! ! PDF(A,B;X) = ( 1 / ( 2 * PI * B ) ) * COS ( ( X - A ) / B ) ! for A - PI * B <= X <= A + PI * B ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y if ( x < a - r8_pi * b ) then pdf = 0.0D+00 else if ( x <= a + r8_pi * b ) then y = ( x - a ) / b pdf = 1.0D+00 / ( 2.0D+00 * r8_pi * b ) * cos ( y ) else if ( a + r8_pi * b < x ) then pdf = 0.0D+00 end if return end subroutine cosine_sample ( a, b, x ) !*****************************************************************************80 ! !! COSINE_SAMPLE samples the Cosine PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call cosine_cdf_inv ( cdf, a, b, x ) return end subroutine cosine_variance ( a, b, variance ) !*****************************************************************************80 ! !! COSINE_VARIANCE returns the variance of the Cosine PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = ( r8_pi * r8_pi / 3.0D+00 - 2.0D+00 ) * b * b return end subroutine coupon_complete_pdf ( type_num, box_num, pdf ) !*****************************************************************************80 ! !! COUPON_COMPLETE_PDF evaluates the Complete Coupon Collection PDF. ! ! Discussion: ! ! PDF(TYPE_NUM;BOX_NUM) is the probability that, given an inexhaustible ! supply of boxes, inside each of which there is one of TYPE_NUM distinct ! coupons, which are uniformly distributed among the boxes, that it will ! require opening exactly BOX_NUM boxes to achieve at least one of each ! kind of coupon. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 August 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Herbert Wilf, ! Some New Aspects of the Coupon Collector's Problem, ! SIAM Review, ! Volume 48, Number 3, September 2006, pages 549-565. ! ! Parameters: ! ! Input, integer BOX_NUM, the number of boxes that had to be ! opened in order to just get at least one of each coupon. ! 0 <= BOX_NUM. If BOX_NUM < TYPE_NUM, then PDF is surely 0. ! ! Input, integer TYPE_NUM, the number of distinct coupons. ! 1 <= TYPE_NUM. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer box_num real ( kind = rk ) factor integer i real ( kind = rk ) pdf integer stirling2_number integer type_num ! ! Nonsense cases. ! if ( box_num < 0 ) then pdf = 0.0D+00 else if ( type_num < 1 ) then pdf = 0.0D+00 ! ! Degenerate but meaningful case. ! else if ( type_num == 1 ) then if ( box_num == 1 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if ! ! Easy cases. ! else if ( box_num < type_num ) then pdf = 0.0D+00 ! ! General case. ! else factor = 1.0D+00 do i = 1, type_num factor = factor * real ( i, kind = rk ) / real ( type_num, kind = rk ) end do do i = type_num + 1, box_num factor = factor / real ( type_num, kind = rk ) end do pdf = factor * real ( & stirling2_number ( box_num - 1, type_num - 1 ), kind = rk ) end if return end subroutine coupon_mean ( j, type_num, mean ) !*****************************************************************************80 ! !! coupon_mean() returns the mean of the Coupon PDF. ! ! Discussion: ! ! In this version of the coupon collector's problem, we assume ! that each box contains 1 coupon, that there are TYPE_NUM distinct types ! of coupon, uniformly distributed among an inexhaustible supply ! of boxes, and that the collector's goal is to get J distinct ! types of coupons by opening one box after another. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer J, the number of distinct coupons to be ! collected. J must be between 1 and TYPE_NUM. ! ! Input, integer TYPE_NUM, the number of distinct coupons. ! ! Output, real ( kind = rk ) MEAN, the mean number of boxes that ! must be opened in order to just get J distinct kinds. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer j real ( kind = rk ) mean integer type_num if ( type_num < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COUPON_MEAN - Fatal error!' write ( *, '(a)' ) ' Number of distinct coupons desired must be no more' write ( *, '(a)' ) ' than the total number of distinct coupons.' stop 1 end if mean = 0.0D+00 do i = 1, j mean = mean + 1.0D+00 / real ( type_num - i + 1, kind = rk ) end do mean = mean * real ( type_num, kind = rk ) return end subroutine coupon_sample ( type_num, coupon, box_num ) !*****************************************************************************80 ! !! COUPON_SAMPLE simulates the coupon collector's problem. ! ! Discussion: ! ! The coupon collector needs to collect one of each of TYPE_NUM ! coupons. The collector may draw one coupon (or, in some settings, ! open one box) on each trial, and takes as many trials as necessary ! to complete the task. On each trial, the probability of picking ! any particular type of coupon is always 1 / TYPE_NUM. ! ! Interesting questions include; ! ! * what is the expected number of drawings necessary to complete ! the collection? ! ! * How does the expected number of drawings necessary to complete ! the collection vary as TYPE_NUM increases? ! ! * What is the distribution of the numbers of each type of coupon ! in a typical collection when it is just completed? ! ! As TYPE_NUM increases, the number of coupons necessary to be ! collected in order to get a complete set in any simulation ! strongly tends to the value TYPE_NUM * LOG ( TYPE_NUM ). ! ! If TYPE_NUM is 1, the simulation ends with a single drawing. ! ! If TYPE_NUM is 2, then we may call the coupon taken on the first drawing ! a "Head", say, and the process then is similar to the question of the ! length, plus one, of a run of Heads or Tails in coin flipping. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 May 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer TYPE_NUM, the number of types of coupons. ! ! Output, integer COUPON(TYPE_NUM), the number of coupons ! of each type that were collected during the simulation. ! ! Output, integer BOX_NUM, the total number of boxes opened. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer type_num integer, parameter :: box_max = 2000 integer box_num integer coupon(type_num) integer i integer i4_uniform_ab integer straight coupon(1:type_num) = 0 straight = 0 box_num = 0 ! ! Draw another coupon. ! do while ( box_num < box_max ) i = i4_uniform_ab ( 1, type_num ) ! ! Increment the number of I coupons. ! coupon(i) = coupon(i) + 1 box_num = box_num + 1 ! ! If I is the next one we needed, increase STRAIGHT by 1. ! if ( i == straight + 1 ) then do straight = straight + 1 ! ! If STRAIGHT = TYPE_NUM, we have all of them. ! if ( type_num <= straight ) then return end if ! ! If the next coupon has not been collected, our straight is over. ! if ( coupon(straight+1) <= 0 ) then exit end if end do end if end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COUPON_SAMPLE - Fatal error!' write ( *, '(a)' ) ' Maximum number of coupons drawn without success.' stop 1 end subroutine coupon_variance ( j, type_num, variance ) !*****************************************************************************80 ! !! COUPON_VARIANCE returns the variance of the Coupon PDF. ! ! Discussion: ! ! In this version of the coupon collector's problem, we assume ! that each box contains 1 coupon, that there are TYPE_NUM distinct types ! of coupon, uniformly distributed among an inexhaustible supply ! of boxes, and that the collector's goal is to get J distinct ! types of coupons by opening one box after another. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 January 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer J, the number of distinct coupons to be ! collected. 1 <= J <= TYPE_NUM. ! ! Input, integer TYPE_NUM, the number of types of coupons. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the number of ! boxes that must be opened in order to just get J distinct kinds ! of coupons. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer j integer type_num real ( kind = rk ) variance if ( type_num < j ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COUPON_VARIANCE - Fatal error!' write ( *, '(a)' ) ' Number of distinct coupons desired must be no more' write ( *, '(a)' ) ' than the total number of distinct coupons.' stop 1 end if variance = 0.0D+00 do i = 1, j variance = variance + real ( i - 1, kind = rk ) & / real ( type_num - i + 1, kind = rk ) ** 2 end do variance = variance * real ( type_num, kind = rk ) return end subroutine deranged_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! DERANGED_CDF evaluates the Deranged CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the maximum number of items in ! their correct places. ! 0 <= X <= A. ! ! Input, integer A, the number of items. ! 1 <= A. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) cdf integer cnk integer deranged_enum integer dnmk integer i4_choose real ( kind = rk ) r8_factorial integer sum2 integer x integer x2 if ( x < 0 .or. a < x ) then cdf = 0.0D+00 else sum2 = 0 do x2 = 0, x cnk = i4_choose ( a, x2 ) dnmk = deranged_enum ( a - x2 ) sum2 = sum2 + cnk * dnmk end do cdf = real ( sum2, kind = rk ) / r8_factorial ( a ) end if return end subroutine deranged_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! DERANGED_CDF_INV inverts the Deranged CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, integer A, the number of items. ! 1 <= A. ! ! Output, integer X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) pdf integer x integer x2 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DERANGED_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cdf2 = 0.0D+00 do x2 = 0, a call deranged_pdf ( x2, a, pdf ) cdf2 = cdf2 + pdf if ( cdf <= cdf2 ) then x = x2 return end if end do x = a return end function deranged_check ( a ) !*****************************************************************************80 ! !! DERANGED_CHECK checks the parameter of the Deranged PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the total number of items. ! 1 <= A. ! ! Output, logical DERANGED_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a logical deranged_check if ( a < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DERANGED_CHECK - Warning!' write ( *, '(a)' ) ' A < 1.' deranged_check = .false. return end if deranged_check = .true. return end function deranged_enum ( n ) !*****************************************************************************80 ! !! DERANGED_ENUM returns the number of derangements of N objects. ! ! Discussion: ! ! A derangement of N objects is a permutation with no fixed ! points. If we symbolize the permutation operation by "P", ! then for a derangment, P(I) is never equal to I. ! ! D(0) = 1 ! D(1) = 0 ! D(2) = 1 ! D(N) = (N-1) * ( D(N-1) + D(N-2) ) ! ! or ! ! D(0) = 1 ! D(1) = 0 ! D(N) = N * D(N-1) + (-1)^N ! ! D(N) = N! * ( 1 - 1/1! + 1/2! - 1/3! ... 1/N! ) ! ! Based on the inclusion/exclusion law. ! ! D(N) is the number of ways of placing N non-attacking rooks on ! an N by N chessboard with one diagonal deleted. ! ! Limit ( N -> Infinity ) D(N)/N! = 1 / e. ! ! The number of permutations with exactly K items in the right ! place is COMB(N,K) * D(N-K). ! ! First values: ! ! N D(N) ! 0 1 ! 1 0 ! 2 1 ! 3 2 ! 4 9 ! 5 44 ! 6 265 ! 7 1854 ! 8 14833 ! 9 133496 ! 10 1334961 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of objects to be permuted. ! ! Output, integer DERANGED_ENUM, the number of derangements ! of N objects. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer deranged_enum integer dn integer dnm1 integer dnm2 integer i integer n if ( n < 0 ) then dn = 0 else if ( n == 0 ) then dn = 1 else if ( n == 1 ) then dn = 0 else if ( n == 2 ) then dn = 1 else dnm1 = 0 dn = 1 do i = 3, n dnm2 = dnm1 dnm1 = dn dn = ( i - 1 ) * ( dnm1 + dnm2 ) end do end if deranged_enum = dn return end subroutine deranged_mean ( a, mean ) !*****************************************************************************80 ! !! DERANGED_MEAN returns the mean of the Deranged CDF. ! ! Discussion: ! ! The mean is computed by straightforward summation. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of items. ! 1 <= A. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) mean real ( kind = rk ) pdf integer x mean = 0.0D+00 do x = 0, a call deranged_pdf ( x, a, pdf ) mean = mean + pdf * x end do return end subroutine deranged_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! DERANGED_PDF evaluates the Deranged PDF. ! ! Discussion: ! ! PDF(A;X) is the probability that exactly X items will occur in ! their proper place after a random permutation of A items. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the number of items in their ! correct places. 0 <= X <= A. ! ! Input, integer A, the total number of items. ! 1 <= A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer cnk integer deranged_enum integer dnmk integer i4_choose real ( kind = rk ) pdf integer x if ( x < 0 .or. a < x ) then pdf = 0.0D+00 else cnk = i4_choose ( a, x ) dnmk = deranged_enum ( a - x ) pdf = real ( cnk * dnmk, kind = rk ) / lgamma ( real ( a + 1, kind = rk ) ) end if return end subroutine deranged_sample ( a, x ) !*****************************************************************************80 ! !! DERANGED_SAMPLE samples the Deranged PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of items. ! 1 <= A. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call deranged_cdf_inv ( cdf, a, x ) return end subroutine deranged_variance ( a, variance ) !*****************************************************************************80 ! !! DERANGED_VARIANCE returns the variance of the Deranged CDF. ! ! Discussion: ! ! The variance is computed by straightforward summation. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of items. ! 1 <= A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) mean real ( kind = rk ) pdf integer x real ( kind = rk ) variance call deranged_mean ( a, mean ) variance = 0.0D+00 do x = 0, a call deranged_pdf ( x, a, pdf ) variance = variance + pdf * ( x - mean ) ** 2 end do return end function digamma ( x ) !*****************************************************************************80 ! !! DIGAMMA calculates the digamma or Psi function. ! ! Discussion: ! ! DiGamma ( X ) = d ( log ( Gamma ( X ) ) ) / dX ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! Original FORTRAN77 version by Jose Bernardo. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Jose Bernardo, ! Algorithm AS 103: ! Psi ( Digamma ) Function, ! Applied Statistics, ! Volume 25, Number 3, pages 315-317, 1976. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the digamma function. ! 0 < X. ! ! Output, real ( kind = rk ) DIGAMMA, the value of the digamma function at X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: c = 8.5D+00 real ( kind = rk ), parameter :: euler_mascheroni = 0.57721566490153286060D+00 real ( kind = rk ) digamma real ( kind = rk ) r real ( kind = rk ) x real ( kind = rk ) x2 ! ! Check the input. ! if ( x <= 0.0D+00 ) then digamma = 0.0D+00 return end if ! ! Approximation for small argument. ! if ( x <= 0.000001D+00 ) then digamma = - euler_mascheroni - 1.0D+00 / x + 1.6449340668482264365D+00 * x return end if ! ! Reduce to DIGAMA(X + N). ! digamma = 0.0D+00 x2 = x do while ( x2 < c ) digamma = digamma - 1.0D+00 / x2 x2 = x2 + 1.0D+00 end do ! ! Use Stirling's (actually de Moivre's) expansion. ! r = 1.0D+00 / x2 digamma = digamma + log ( x2 ) - 0.5D+00 * r r = r * r digamma = digamma & - r * ( 1.0D+00 / 12.0D+00 & - r * ( 1.0D+00 / 120.0D+00 & - r * ( 1.0D+00 / 252.0D+00 & - r * ( 1.0D+00 / 240.0D+00 & - r * ( 1.0D+00 / 132.0D+00 ) ) ) ) ) return end subroutine dipole_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! DIPOLE_CDF evaluates the Dipole CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI ! is interesting, and -1.0D+00 <= B <= 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x cdf = 0.5D+00 + ( 1.0D+00 / r8_pi ) * atan ( x ) & + b * b * ( x * cos ( 2.0D+00 * a ) & - sin ( 2.0D+00 * a ) ) / ( r8_pi * ( 1.0D+00 + x * x ) ) return end subroutine dipole_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! DIPOLE_CDF_INV inverts the Dipole CDF. ! ! Discussion: ! ! A simple bisection method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! -1.0D+00 <= B <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIPOLE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = - huge ( x ) return else if ( 1.0D+00 == cdf ) then x = huge ( x ) return end if ! ! Seek X1 < X < X2. ! x1 = - 1.0D+00 do call dipole_cdf ( x1, a, b, cdf1 ) if ( cdf1 <= cdf ) then exit end if x1 = 2.0D+00 * x1 end do x2 = 1.0D+00 do call dipole_cdf ( x2, a, b, cdf2 ) if ( cdf <= cdf2 ) then exit end if x2 = 2.0D+00 * x2 end do ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call dipole_cdf ( x3, a, b, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIPOLE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function dipole_check ( a, b ) !*****************************************************************************80 ! !! DIPOLE_CHECK checks the parameters of the Dipole CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI ! is interesting, and -1.0 <= B <= 1.0. ! ! Output, logical DIPOLE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical dipole_check if ( b < -1.0D+00 .or. 1.0D+00 < b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIPOLE_CHECK - Warning!' write ( *, '(a)' ) ' -1.0D+00 <= B <= 1.0D+00 is required.' write ( *, '(a,g14.6)' ) ' The input B = ', b dipole_check = .false. return end if dipole_check = .true. return end subroutine dipole_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! DIPOLE_PDF evaluates the Dipole PDF. ! ! Discussion: ! ! PDF(A,B;X) = ! 1 / ( PI * ( 1 + X^2 ) ) ! + B^2 * ( ( 1 - X^2 ) * cos ( 2 * A ) + 2 * X * sin ( 2 * A ) ) ! / ( PI * ( 1 + X^2 )^2 ) ! ! Densities of this kind commonly occur in the analysis of resonant ! scattering of elementary particles. ! ! DIPOLE_PDF(A,0;X) = CAUCHY_PDF(A;X) ! ! A = 0, B = 1 yields the single channel dipole distribution. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Knop, ! Algorithm 441, ! Random Deviates from the Dipole Distribution, ! ACM Transactions on Mathematical Software, ! Volume 16, Number 1, 1973, page 51. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI ! is interesting, ! and -1.0 <= B <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x pdf = 1.0D+00 / ( r8_pi * ( 1.0D+00 + x * x ) ) & + b * b * ( ( 1.0D+00 - x * x ) * cos ( 2.0D+00 * a ) & + 2.0D+00 * x * sin ( 2.0D+00 * x ) ) / ( r8_pi * ( 1.0D+00 + x * x ) ** 2 ) return end subroutine dipole_sample ( a, b, x ) !*****************************************************************************80 ! !! DIPOLE_SAMPLE samples the Dipole PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 January 2000 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Knop, ! Algorithm 441, ! Random Deviates from the Dipole Distribution, ! ACM Transactions on Mathematical Software, ! Volume 16, Number 1, 1973, page 51. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A is arbitrary, but represents an angle, so only 0 <= A <= 2 * PI ! is interesting, ! and -1.0D+00 <= B <= 1.0D+00. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) c2 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 ! ! Find (X1,X2) at random in a circle. ! a2 = b * sin ( a ) b2 = b * cos ( a ) c2 = 1.0D+00 call disk_sample ( a2, b2, c2, x1, x2 ) ! ! The dipole variate is the ratio X1 / X2. ! x = x1 / x2 return end function dirichlet_check ( n, a ) !*****************************************************************************80 ! !! DIRICHLET_CHECK checks the parameters of the Dirichlet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be positive. ! ! Output, logical DIRICHLET_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) logical dirichlet_check integer i logical positive positive = .false. do i = 1, n if ( a(i) <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_CHECK - Warning!' write ( *, '(a)' ) ' A(I) <= 0.' write ( *, '(a,i8)' ) ' For I = ', i write ( *, '(a,g14.6)' ) ' A(I) = ', a(i) dirichlet_check = .false. return else if ( 0.0D+00 < a(i) ) then positive = .true. end if end do if ( .not. positive ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_CHECK - Warning!' write ( *, '(a)' ) ' All parameters are zero!' dirichlet_check = .false. return end if dirichlet_check = .true. return end subroutine dirichlet_mean ( n, a, mean ) !*****************************************************************************80 ! !! DIRICHLET_MEAN returns the means of the Dirichlet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be positive. ! ! Output, real ( kind = rk ) MEAN(N), the means of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) mean(n) mean(1:n) = a(1:n) call r8vec_unit_sum ( n, mean ) return end function dirichlet_mix_check ( comp_num, elem_num, a, comp_weight ) !*****************************************************************************80 ! !! DIRICHLET_MIX_CHECK checks the parameters of a Dirichlet mixture PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer COMP_NUM, the number of components in the ! Dirichlet ! mixture density, that is, the number of distinct Dirichlet PDF's ! that are mixed together. ! ! Input, integer ELEM_NUM, the number of elements of an ! observation. ! ! Input, real ( kind = rk ) A(ELEM_NUM,COMP_NUM), the probabilities ! for element ELEM_NUM in component COMP_NUM. ! Each A(I,J) should be positive. ! ! Input, real ( kind = rk ) COMP_WEIGHT(COMP_NUM), the mixture weights of ! the densities. These do not need to be normalized. The weight of a ! given component is the relative probability that that component will ! be used to generate the sample. ! ! Output, logical DIRICHLET_MIX_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer comp_num integer elem_num real ( kind = rk ) a(elem_num,comp_num) integer comp_i real ( kind = rk ) comp_weight(comp_num) logical dirichlet_mix_check integer elem_i logical positive do comp_i = 1, comp_num do elem_i = 1, elem_num if ( a(elem_i,comp_i) <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_MIX_CHECK - Warning!' write ( *, '(a)' ) ' A(ELEM,COMP) <= 0.' write ( *, '(a,i8)' ) ' COMP = ', comp_i write ( *, '(a,i8)' ) ' ELEM = ', elem_i write ( *, '(a,g14.6)' ) ' A(COMP,ELEM) = ', a(elem_i,comp_i) dirichlet_mix_check = .false. return end if end do end do positive = .false. do comp_i = 1, comp_num if ( comp_weight(comp_i) < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_MIX_CHECK - Warning!' write ( *, '(a)' ) ' COMP_WEIGHT(COMP) < 0.' write ( *, '(a,i8)' ) ' COMP = ', comp_i write ( *, '(a,g14.6)' ) ' COMP_WEIGHT(COMP) = ', comp_weight(comp_i) dirichlet_mix_check = .false. return else if ( 0.0D+00 < comp_weight(comp_i) ) then positive = .true. end if end do if ( .not. positive ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_MIX_CHECK - Warning!' write ( *, '(a)' ) ' All component weights are zero.' dirichlet_mix_check = .false. return end if dirichlet_mix_check = .true. return end subroutine dirichlet_mix_mean ( comp_num, elem_num, a, comp_weight, & mean ) !*****************************************************************************80 ! !! DIRICHLET_MIX_MEAN returns the means of a Dirichlet mixture PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer COMP_NUM, the number of components in the ! Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's ! that are mixed together. ! ! Input, integer ELEM_NUM, the number of elements of an ! observation. ! ! Input, real ( kind = rk ) A(ELEM_NUM,COMP_NUM), the probabilities for ! element ELEM_NUM in component COMP_NUM. ! Each A(I,J) should be positive. ! ! Input, real ( kind = rk ) COMP_WEIGHT(COMP_NUM), the mixture weights of ! the densities. These do not need to be normalized. The weight of a ! given component is the relative probability that that component will ! be used to generate the sample. ! ! Output, real ( kind = rk ) MEAN(ELEM_NUM), the means for each element. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer comp_num integer elem_num real ( kind = rk ) a(elem_num,comp_num) integer comp_i real ( kind = rk ) comp_mean(elem_num) real ( kind = rk ) comp_weight(comp_num) real ( kind = rk ) comp_weight_sum real ( kind = rk ) mean(elem_num) comp_weight_sum = sum ( comp_weight ) mean(1:elem_num) = 0.0D+00 do comp_i = 1, comp_num call dirichlet_mean ( elem_num, a(1,comp_i), comp_mean ) mean(1:elem_num) = mean(1:elem_num) & + comp_weight(comp_i) * comp_mean(1:elem_num) end do mean(1:elem_num) = mean(1:elem_num) / comp_weight_sum return end subroutine dirichlet_mix_pdf ( x, comp_num, elem_num, a, & comp_weight, pdf ) !*****************************************************************************80 ! !! DIRICHLET_MIX_PDF evaluates a Dirichlet mixture PDF. ! ! Discussion: ! ! The PDF is a weighted sum of Dirichlet PDF's. Each PDF is a ! "component", with an associated weight. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X(ELEM_NUM), the argument of the PDF. ! ! Input, integer COMP_NUM, the number of components in the ! Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's ! that are mixed together. ! ! Input, integer ELEM_NUM, the number of elements of an ! observation. ! ! Input, real ( kind = rk ) A(ELEM_NUM,COMP_NUM), the probabilities for ! element ELEM_NUM in component COMP_NUM. ! Each A(I,J) should be positive. ! ! Input, real ( kind = rk ) COMP_WEIGHT(COMP_NUM), the mixture weights of ! the densities. These do not need to be normalized. The weight of a ! given component is the relative probability that that component will ! be used to generate the sample. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer comp_num integer elem_num real ( kind = rk ) a(elem_num,comp_num) integer comp_i real ( kind = rk ) comp_pdf real ( kind = rk ) comp_weight(comp_num) real ( kind = rk ) comp_weight_sum real ( kind = rk ) pdf real ( kind = rk ) x(elem_num) comp_weight_sum = sum ( comp_weight ) pdf = 0.0D+00 do comp_i = 1, comp_num call dirichlet_pdf ( x, elem_num, a(1,comp_i), comp_pdf ) pdf = pdf + comp_weight(comp_i) * comp_pdf / comp_weight_sum end do return end subroutine dirichlet_mix_sample ( comp_num, elem_num, a, & comp_weight, comp, x ) !*****************************************************************************80 ! !! DIRICHLET_MIX_SAMPLE samples a Dirichlet mixture PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer COMP_NUM, the number of components in the ! Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's ! that are mixed together. ! ! Input, integer ELEM_NUM, the number of elements of ! an observation. ! ! Input, real ( kind = rk ) A(ELEM_NUM,COMP_NUM), the probabilities for ! element ELEM_NUM in component COMP_NUM. ! Each A(I,J) should be positive. ! ! Input, real ( kind = rk ) COMP_WEIGHT(COMP_NUM), the mixture weights of ! the densities. These do not need to be normalized. The weight of a ! given component is the relative probability that that component will ! be used to generate the sample. ! ! Output, integer COMP, the index of the component of the ! Dirichlet mixture that was chosen to generate the sample. ! ! Output, real ( kind = rk ) X(ELEM_NUM), a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer comp_num integer elem_num real ( kind = rk ) a(elem_num,comp_num) integer comp real ( kind = rk ) comp_weight(comp_num) real ( kind = rk ) x(elem_num) ! ! Choose a particular density component COMP. ! call discrete_sample ( comp_num, comp_weight, comp ) ! ! Sample the density number COMP. ! call dirichlet_sample ( elem_num, a(1,comp), x ) return end subroutine dirichlet_moment2 ( n, a, m2 ) !*****************************************************************************80 ! !! DIRICHLET_MOMENT2 returns the second moments of the Dirichlet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be positive. ! ! Output, real ( kind = rk ) M2(N,N), the second moments of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) a_sum real ( kind = rk ) m2(n,n) integer i integer j a_sum = sum ( a(1:n) ) do i = 1, n do j = 1, n if ( i == j ) then m2(i,j) = a(i) * ( a(i) + 1.0D+00 ) / ( a_sum * ( a_sum + 1.0D+00 ) ) else m2(i,j) = a(i) * a(j) / ( a_sum * ( a_sum + 1.0D+00 ) ) end if end do end do return end subroutine dirichlet_multinomial_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! DIRICHLET_MULTINOMIAL_PDF evaluates a Dirichlet Multinomial PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = Comb(A,B,X) * ( Gamma(C_Sum) / Gamma(C_Sum+A) ) ! Product ( 1 <= I <= B ) Gamma(C(I)+X(I)) / Gamma(C(I)) ! ! where: ! ! Comb(A,B,X) is the multinomial coefficient C( A; X(1), X(2), ..., X(B) ), ! C_Sum = Sum ( 1 <= I <= B ) C(I) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 December 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Kenneth Lange, ! Mathematical and Statistical Methods for Genetic Analysis, ! Springer, 1997, page 45. ! ! Parameters: ! ! Input, integer X(B); X(I) counts the number of occurrences of ! outcome I, out of the total of A trials. ! ! Input, integer A, the total number of trials. ! ! Input, integer B, the number of different possible outcomes on ! one trial. ! ! Input, real ( kind = rk ) C(B); C(I) is the Dirichlet parameter associated ! with outcome I. ! ! Output, real ( kind = rk ) PDF, the value of the Dirichlet multinomial PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) real ( kind = rk ) c_sum integer i real ( kind = rk ) pdf real ( kind = rk ) pdf_log integer x(b) c_sum = sum ( c(1:b) ) pdf_log = & - lgamma ( c_sum + real ( a, kind = rk ) ) & + lgamma ( c_sum ) & + lgamma ( real ( a + 1, kind = rk ) ) do i = 1, b pdf_log = pdf_log & + lgamma ( c(i) + real ( x(i), kind = rk ) ) & - lgamma ( c(i) ) & - lgamma ( real ( x(i) + 1, kind = rk ) ) end do pdf = exp ( pdf_log ) return end subroutine dirichlet_pdf ( x, n, a, pdf ) !*****************************************************************************80 ! !! DIRICHLET_PDF evaluates the Dirichlet PDF. ! ! Discussion: ! ! PDF(N,A;X) = Product ( 1 <= I <= N ) X(I)^( A(I) - 1 ) ! * Gamma ( A_SUM ) / A_PROD ! ! where ! ! 0 <= A(I) for all I; ! 0 <= X(I) for all I; ! Sum ( 1 <= I <= N ) X(I) = 1; ! A_SUM = Sum ( 1 <= I <= N ) A(I). ! A_PROD = Product ( 1 <= I <= N ) Gamma ( A(I) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X(N), the argument of the PDF. Each X(I) should ! be greater than 0.0D+00, and the X(I)'s must add up to 1.0. ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be nonnegative, and at least one should be ! positive. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) a_prod real ( kind = rk ) a_sum integer i real ( kind = rk ) pdf real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x(n) real ( kind = rk ) x_sum do i = 1, n if ( x(i) <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_PDF - Fatal error!' write ( *, '(a)' ) ' X(I) <= 0.' stop 1 end if end do x_sum = sum ( x(1:n) ) if ( tol < abs ( x_sum - 1.0D+00 ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DIRICHLET_PDF - Fatal error!' write ( *, '(a)' ) ' SUM X(I) =/= 1.' stop 1 end if a_sum = sum ( a(1:n) ) a_prod = 1.0D+00 do i = 1, n a_prod = a_prod * gamma ( a(i) ) end do pdf = gamma ( a_sum ) / a_prod do i = 1, n pdf = pdf * x(i) ** ( a(i) - 1.0D+00 ) end do return end subroutine dirichlet_sample ( n, a, x ) !*****************************************************************************80 ! !! DIRICHLET_SAMPLE samples the Dirichlet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 November 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 169. ! ! Parameters: ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be nonnegative, and at least one should be ! positive. ! ! Output, real ( kind = rk ) X(N), a sample of the PDF. The entries ! of X should sum to 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) a2 real ( kind = rk ) b2 real ( kind = rk ) c2 integer i real ( kind = rk ) x(n) a2 = 0.0D+00 b2 = 1.0D+00 do i = 1, n c2 = a(i) call gamma_sample ( a2, b2, c2, x(i) ) end do ! ! Rescale the vector to have unit sum. ! call r8vec_unit_sum ( n, x ) return end subroutine dirichlet_variance ( n, a, variance ) !*****************************************************************************80 ! !! DIRICHLET_VARIANCE returns the variances of the Dirichlet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components. ! ! Input, real ( kind = rk ) A(N), the probabilities for each component. ! Each A(I) should be nonnegative, and at least one should be positive. ! ! Output, real ( kind = rk ) VARIANCE(N), the variances of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) a_sum integer i real ( kind = rk ) variance(n) a_sum = sum ( a(1:n) ) do i = 1, n variance(i) = a(i) * ( a_sum - a(i) ) / ( a_sum ** 2 * ( a_sum + 1.0D+00 ) ) end do return end subroutine discrete_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! DISCRETE_CDF evaluates the Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the item whose probability is desired. ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of outcomes ! 1 through A. Each entry must be nonnegative. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) cdf integer x if ( x < 1 ) then cdf = 0.0D+00 else if ( x < a ) then cdf = sum ( b(1:x) ) / sum ( b(1:a) ) else if ( a <= x ) then cdf = 1.0D+00 end if return end subroutine discrete_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! DISCRETE_CDF_INV inverts the Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of outcomes ! 1 through A. Each entry must be nonnegative. ! ! Output, integer X, the corresponding argument for which ! CDF(X-1) < CDF <= CDF(X) ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum real ( kind = rk ) cdf real ( kind = rk ) cum integer j integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DISCRETE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if b_sum = sum ( b(1:a) ) cum = 0.0D+00 do j = 1, a cum = cum + b(j) / b_sum if ( cdf <= cum ) then x = j return end if end do x = a return end function discrete_check ( a, b ) !*****************************************************************************80 ! !! DISCRETE_CHECK checks the parameters of the Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of ! outcomes 1 through A. Each entry must be nonnegative. ! ! Output, logical DISCRETE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum logical discrete_check integer j do j = 1, a if ( b(j) < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' Negative probabilities not allowed.' discrete_check = .false. return end if end do b_sum = sum ( b(1:a) ) if ( b_sum == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' Total probablity is zero.' discrete_check = .false. return end if discrete_check = .true. return end subroutine discrete_mean ( a, b, mean ) !*****************************************************************************80 ! !! DISCRETE_MEAN evaluates the mean of the Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of ! outcomes 1 through A. Each entry must be nonnegative. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum integer j real ( kind = rk ) mean b_sum = sum ( b(1:a) ) mean = 0.0D+00 do j = 1, a mean = mean + real ( j, kind = rk ) * b(j) end do mean = mean / b_sum return end subroutine discrete_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! DISCRETE_PDF evaluates the Discrete PDF. ! ! Discussion: ! ! PDF(A,B;X) = B(X) if 1 <= X <= A ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the item whose probability is desired. ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of ! outcomes 1 through A. Each entry must be nonnegative. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum real ( kind = rk ) pdf integer x b_sum = sum ( b(1:a) ) if ( 1 <= x .and. x <= a ) then pdf = b(x) / b_sum else pdf = 0.0D+00 end if return end subroutine discrete_sample ( a, b, x ) !*****************************************************************************80 ! !! DISCRETE_SAMPLE samples the Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of ! outcomes 1 through A. Each entry must be nonnegative. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum real ( kind = rk ) cdf integer x b_sum = sum ( b(1:a) ) call random_number ( harvest = cdf ) call discrete_cdf_inv ( cdf, a, b, x ) return end subroutine discrete_variance ( a, b, variance ) !*****************************************************************************80 ! !! DISCRETE_VARIANCE evaluates the variance of the Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of probabilities assigned. ! ! Input, real ( kind = rk ) B(A), the relative probabilities of ! outcomes 1 through A. Each entry must be nonnegative. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) b_sum integer j real ( kind = rk ) mean real ( kind = rk ) variance b_sum = sum ( b(1:a) ) mean = 0.0D+00 do j = 1, a mean = mean + real ( j, kind = rk ) * b(j) end do mean = mean / b_sum variance = 0.0D+00 do j = 1, a variance = variance + b(j) * ( j - mean ) ** 2 end do variance = variance / b_sum return end subroutine disk_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! DISK_MEAN returns the mean of points in a disk. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the disk. ! The disk is centered at (A,B) and has radius C. ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN(2), the mean value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean(2) mean(1) = a mean(2) = b return end subroutine disk_sample ( a, b, c, x1, x2 ) !*****************************************************************************80 ! !! DISK_SAMPLE samples points from a disk. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the disk. ! The disk is centered at (A,B) and has radius C. ! 0.0 < C. ! ! Output, real ( kind = rk ) X1, X2, a sampled point of the disk. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) angle real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) radius_frac real ( kind = rk ) x1 real ( kind = rk ) x2 call random_number ( harvest = radius_frac ) radius_frac = sqrt ( radius_frac ) call random_number ( harvest = angle ) angle = 2.0D+00 * r8_pi * angle x1 = a + c * radius_frac * cos ( angle ) x2 = b + c * radius_frac * sin ( angle ) return end subroutine disk_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! DISK_VARIANCE returns the variance of points in a disk. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the disk. ! The disk is centered at (A,B) and has radius C. ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance variance = 0.5D+00 * c * c return end function e_constant ( ) !*****************************************************************************80 ! !! E_CONSTANT returns the value of E. ! ! Discussion: ! ! "E" was named in honor of Euler. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) E_CONSTANT, the base of the natural ! logarithm system. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) e_constant e_constant = 2.71828182845904523536028747135266249775724709369995D+00 return end subroutine empirical_discrete_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_CDF evaluates the Empirical Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) bsum real ( kind = rk ) c(a) real ( kind = rk ) cdf integer i real ( kind = rk ) x cdf = 0.0D+00 bsum = sum ( b(1:a) ) do i = 1, a if ( x < c(i) ) then return end if cdf = cdf + b(i) / bsum end do return end subroutine empirical_discrete_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_CDF_INV inverts the Empirical Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) X, the smallest argument whose CDF is greater ! than or equal to CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) bsum real ( kind = rk ) c(a) real ( kind = rk ) cdf real ( kind = rk ) cdf2 integer i real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if bsum = sum ( b(1:a) ) x = c(1) cdf2 = b(1) / bsum do i = 2, a if ( cdf <= cdf2 ) then return end if x = c(i) cdf2 = cdf2 + b(i) / bsum end do return end function empirical_discrete_check ( a, b, c ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_CHECK checks the parameters of the Empirical Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, logical EMPIRICAL_DISCRETE_CHECK, is true if the parameters ! are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) c(a) logical empirical_discrete_check integer i integer j if ( a <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' A must be positive.' write ( *, '(a,i12)' ) ' Input A = ', a write ( *, '(a)' ) ' A is the number of weights.' empirical_discrete_check = .false. return end if if ( any ( b(1:a) < 0.0D+00 ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' Some B(*) < 0.' write ( *, '(a)' ) ' But all B values must be nonnegative.' empirical_discrete_check = .false. return end if if ( all ( b(1:a) == 0.0D+00 ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' All B(*) = 0.' write ( *, '(a)' ) ' But at least one B values must be nonzero.' empirical_discrete_check = .false. return end if do i = 1, a do j = i+1, a if ( c(i) == c(j) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' All values C must be unique.' write ( *, '(a)' ) ' But at least two values are identical.' empirical_discrete_check = .false. return end if end do end do do i = 1, a-1 if ( c(i+1) < c(i) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EMPIRICAL_DISCRETE_CHECK - Warning!' write ( *, '(a)' ) ' The values in C must be in ascending order.' empirical_discrete_check = .false. return end if end do empirical_discrete_check = .true. return end subroutine empirical_discrete_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_MEAN returns the mean of the Empirical Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) c(a) real ( kind = rk ) mean mean = dot_product ( b(1:a), c(1:a) ) / sum ( b(1:a) ) return end subroutine empirical_discrete_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_PDF evaluates the Empirical Discrete PDF. ! ! Discussion: ! ! A set of A values C(1:A) are assigned nonnegative weights B(1:A), ! with at least one B nonzero. The probability of C(I) is the ! value of B(I) divided by the sum of the weights. ! ! The C's must be distinct, and given in ascending order. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) c(a) integer i real ( kind = rk ) pdf real ( kind = rk ) x do i = 1, a if ( x == c(i) ) then pdf = b(i) / sum ( b(1:a) ) return end if end do pdf = 0.0D+00 return end subroutine empirical_discrete_sample ( a, b, c, x ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_SAMPLE samples the Empirical Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) c(a) real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call empirical_discrete_cdf_inv ( cdf, a, b, c, x ) return end subroutine empirical_discrete_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! EMPIRICAL_DISCRETE_VARIANCE: variance of the Empirical Discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of values. ! 0 < A. ! ! Input, real ( kind = rk ) B(A), the weights of each value. ! 0 <= B(1:A) and at least one value is nonzero. ! ! Input, real ( kind = rk ) C(A), the values. ! The values must be distinct and in ascending order. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b(a) real ( kind = rk ) bsum real ( kind = rk ) c(a) integer i real ( kind = rk ) mean real ( kind = rk ) variance bsum = sum ( b(1:a) ) call empirical_discrete_mean ( a, b, c, mean ) variance = 0.0D+00 do i = 1, a variance = variance + ( b(i) / bsum ) * ( c(i) - mean ) ** 2 end do return end subroutine english_letter_cdf_inv ( cdf, c ) !*****************************************************************************80 ! !! ENGLISH_LETTER_CDF_INV inverts the English Letter CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2016 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Lewand, ! Cryptological Mathematics, ! Mathematics Association of America, 2000, ! ISBN13: 978-0883857199 ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, a cumulative probability between 0 and 1. ! ! Input, character C, the corresponding letter. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c real ( kind = rk ) cdf real ( kind = rk ), save :: cdf_vec(27) = (/ & 0.00000, & 0.08167, 0.09659, 0.12441, 0.16694, 0.29396, & 0.31624, 0.33639, 0.39733, 0.46699, 0.46852, & 0.47624, 0.51649, 0.54055, 0.60804, 0.68311, & 0.70240, 0.70335, 0.76322, 0.82649, 0.91705, & 0.94463, 0.95441, 0.97802, 0.97952, 0.99926, & 1.00000 /) integer i c = ' ' do i = 2, 27 if ( cdf <= cdf_vec(i) ) then c = achar ( iachar ( 'a' ) + i - 2 ) exit end if end do return end subroutine english_letter_cdf ( c, cdf ) !*****************************************************************************80 ! !! ENGLISH_LETTER_CDF evaluates the English Letter CDF. ! ! Discussion: ! ! CDF('c') = 0.12441 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2016 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Lewand, ! Cryptological Mathematics, ! Mathematics Association of America, 2000, ! ISBN13: 978-0883857199 ! ! Parameters: ! ! Input, character C, the letter whose probability is desired. ! 'a' <= c <= 'z', but case is ignored. ! ! Output, real ( kind = rk ) CDF, the probability that a random letter is less ! than or equal to C. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c real ( kind = rk ) cdf real ( kind = rk ), save :: cdf_vec(27) = (/ & 0.00000, & 0.08167, 0.09659, 0.12441, 0.16694, 0.29396, & 0.31624, 0.33639, 0.39733, 0.46699, 0.46852, & 0.47624, 0.51649, 0.54055, 0.60804, 0.68311, & 0.70240, 0.70335, 0.76322, 0.82649, 0.91705, & 0.94463, 0.95441, 0.97802, 0.97952, 0.99926, & 1.00000 /) integer i if ( 'a' <= c .and. c <= 'z' ) then i = iachar ( c ) - iachar ( 'a' ) + 2 cdf = cdf_vec(i) else if ( 'A' <= c .and. c <= 'Z' ) then i = iachar ( c ) - iachar ( 'A' ) + 2 cdf = cdf_vec(i) else cdf = 0.0D+00 end if return end subroutine english_letter_pdf ( c, pdf ) !*****************************************************************************80 ! !! ENGLISH_LETTER_PDF evaluates the English Letter PDF. ! ! Discussion: ! ! PDF('c') = 0.02782 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2016 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Robert Lewand, ! Cryptological Mathematics, ! Mathematics Association of America, 2000, ! ISBN13: 978-0883857199 ! ! Parameters: ! ! Input, character C, the letter whose probability is desired. ! 'a' <= c <= 'z', but case is ignored. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c integer i real ( kind = rk ) pdf real ( kind = rk ), save :: pdf_vec(26) = (/ & 0.08167, 0.01492, 0.02782, 0.04253, 0.12702, & 0.02228, 0.02015, 0.06094, 0.06966, 0.00153, & 0.00772, 0.04025, 0.02406, 0.06749, 0.07507, & 0.01929, 0.00095, 0.05987, 0.06327, 0.09056, & 0.02758, 0.00978, 0.02361, 0.00150, 0.01974, & 0.00074 /) if ( 'a' <= c .and. c <= 'z' ) then i = iachar ( c ) - iachar ( 'a' ) + 1 pdf = pdf_vec(i) else if ( 'A' <= c .and. c <= 'Z' ) then i = iachar ( c ) - iachar ( 'A' ) + 1 pdf = pdf_vec(i) else pdf = 0.0D+00 end if return end subroutine english_letter_sample ( c ) !*****************************************************************************80 ! !! ENGLISH_LETTER_SAMPLE samples the English Letter PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, character C, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character c real ( kind = rk ) cdf call random_number ( harvest = cdf ) call english_letter_cdf_inv ( cdf, c ) return end subroutine english_sentence_length_cdf ( x, cdf ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_CDF evaluates the English Sentence Length CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, integer X, the sentence length whose CDF is desired. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: sentence_length_max = 79 real ( kind = rk ) cdf real ( kind = rk ), dimension ( sentence_length_max ) :: pdf_vec = (/ & 0.00806D+00, & 0.01370D+00, & 0.01862D+00, & 0.02547D+00, & 0.03043D+00, & 0.03189D+00, & 0.03516D+00, & 0.03545D+00, & 0.03286D+00, & 0.03533D+00, & 0.03562D+00, & 0.03788D+00, & 0.03669D+00, & 0.03751D+00, & 0.03518D+00, & 0.03541D+00, & 0.03434D+00, & 0.03305D+00, & 0.03329D+00, & 0.03103D+00, & 0.02867D+00, & 0.02724D+00, & 0.02647D+00, & 0.02526D+00, & 0.02086D+00, & 0.02178D+00, & 0.02128D+00, & 0.01801D+00, & 0.01690D+00, & 0.01556D+00, & 0.01512D+00, & 0.01326D+00, & 0.01277D+00, & 0.01062D+00, & 0.01051D+00, & 0.00901D+00, & 0.00838D+00, & 0.00764D+00, & 0.00683D+00, & 0.00589D+00, & 0.00624D+00, & 0.00488D+00, & 0.00477D+00, & 0.00406D+00, & 0.00390D+00, & 0.00350D+00, & 0.00318D+00, & 0.00241D+00, & 0.00224D+00, & 0.00220D+00, & 0.00262D+00, & 0.00207D+00, & 0.00174D+00, & 0.00174D+00, & 0.00128D+00, & 0.00121D+00, & 0.00103D+00, & 0.00117D+00, & 0.00124D+00, & 0.00082D+00, & 0.00088D+00, & 0.00061D+00, & 0.00061D+00, & 0.00075D+00, & 0.00063D+00, & 0.00056D+00, & 0.00052D+00, & 0.00057D+00, & 0.00031D+00, & 0.00029D+00, & 0.00021D+00, & 0.00017D+00, & 0.00021D+00, & 0.00034D+00, & 0.00031D+00, & 0.00011D+00, & 0.00011D+00, & 0.00008D+00, & 0.00006D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99768D+00 integer x if ( x < 1 ) then cdf = 0.0D+00 else if ( x < sentence_length_max ) then cdf = sum ( pdf_vec(1:x) ) / pdf_sum else if ( sentence_length_max <= x ) then cdf = 1.0D+00 end if return end subroutine english_sentence_length_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_CDF_INV inverts the English Sentence Length CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, integer X, the corresponding sentence length for which ! CDF(X-1) < CDF <= CDF(X) ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: sentence_length_max = 79 real ( kind = rk ) cdf real ( kind = rk ) cum integer j real ( kind = rk ), dimension ( sentence_length_max ) :: pdf_vec = (/ & 0.00806D+00, & 0.01370D+00, & 0.01862D+00, & 0.02547D+00, & 0.03043D+00, & 0.03189D+00, & 0.03516D+00, & 0.03545D+00, & 0.03286D+00, & 0.03533D+00, & 0.03562D+00, & 0.03788D+00, & 0.03669D+00, & 0.03751D+00, & 0.03518D+00, & 0.03541D+00, & 0.03434D+00, & 0.03305D+00, & 0.03329D+00, & 0.03103D+00, & 0.02867D+00, & 0.02724D+00, & 0.02647D+00, & 0.02526D+00, & 0.02086D+00, & 0.02178D+00, & 0.02128D+00, & 0.01801D+00, & 0.01690D+00, & 0.01556D+00, & 0.01512D+00, & 0.01326D+00, & 0.01277D+00, & 0.01062D+00, & 0.01051D+00, & 0.00901D+00, & 0.00838D+00, & 0.00764D+00, & 0.00683D+00, & 0.00589D+00, & 0.00624D+00, & 0.00488D+00, & 0.00477D+00, & 0.00406D+00, & 0.00390D+00, & 0.00350D+00, & 0.00318D+00, & 0.00241D+00, & 0.00224D+00, & 0.00220D+00, & 0.00262D+00, & 0.00207D+00, & 0.00174D+00, & 0.00174D+00, & 0.00128D+00, & 0.00121D+00, & 0.00103D+00, & 0.00117D+00, & 0.00124D+00, & 0.00082D+00, & 0.00088D+00, & 0.00061D+00, & 0.00061D+00, & 0.00075D+00, & 0.00063D+00, & 0.00056D+00, & 0.00052D+00, & 0.00057D+00, & 0.00031D+00, & 0.00029D+00, & 0.00021D+00, & 0.00017D+00, & 0.00021D+00, & 0.00034D+00, & 0.00031D+00, & 0.00011D+00, & 0.00011D+00, & 0.00008D+00, & 0.00006D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99768D+00 integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ENGLISH_SENTENCE_LENGTH_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cum = 0.0D+00 do j = 1, sentence_length_max cum = cum + pdf_vec(j) if ( cdf <= cum / pdf_sum ) then x = j return end if end do x = sentence_length_max return end subroutine english_sentence_length_mean ( mean ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_MEAN: mean of the English Sentence Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: sentence_length_max = 79 integer j real ( kind = rk ) mean real ( kind = rk ), dimension ( sentence_length_max ) :: pdf_vec = (/ & 0.00806D+00, & 0.01370D+00, & 0.01862D+00, & 0.02547D+00, & 0.03043D+00, & 0.03189D+00, & 0.03516D+00, & 0.03545D+00, & 0.03286D+00, & 0.03533D+00, & 0.03562D+00, & 0.03788D+00, & 0.03669D+00, & 0.03751D+00, & 0.03518D+00, & 0.03541D+00, & 0.03434D+00, & 0.03305D+00, & 0.03329D+00, & 0.03103D+00, & 0.02867D+00, & 0.02724D+00, & 0.02647D+00, & 0.02526D+00, & 0.02086D+00, & 0.02178D+00, & 0.02128D+00, & 0.01801D+00, & 0.01690D+00, & 0.01556D+00, & 0.01512D+00, & 0.01326D+00, & 0.01277D+00, & 0.01062D+00, & 0.01051D+00, & 0.00901D+00, & 0.00838D+00, & 0.00764D+00, & 0.00683D+00, & 0.00589D+00, & 0.00624D+00, & 0.00488D+00, & 0.00477D+00, & 0.00406D+00, & 0.00390D+00, & 0.00350D+00, & 0.00318D+00, & 0.00241D+00, & 0.00224D+00, & 0.00220D+00, & 0.00262D+00, & 0.00207D+00, & 0.00174D+00, & 0.00174D+00, & 0.00128D+00, & 0.00121D+00, & 0.00103D+00, & 0.00117D+00, & 0.00124D+00, & 0.00082D+00, & 0.00088D+00, & 0.00061D+00, & 0.00061D+00, & 0.00075D+00, & 0.00063D+00, & 0.00056D+00, & 0.00052D+00, & 0.00057D+00, & 0.00031D+00, & 0.00029D+00, & 0.00021D+00, & 0.00017D+00, & 0.00021D+00, & 0.00034D+00, & 0.00031D+00, & 0.00011D+00, & 0.00011D+00, & 0.00008D+00, & 0.00006D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99768D+00 mean = 0.0D+00 do j = 1, sentence_length_max mean = mean + real ( j, kind = rk ) * pdf_vec(j) end do mean = mean / pdf_sum return end subroutine english_sentence_length_pdf ( x, pdf ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_PDF evaluates the English Sentence Length PDF. ! ! Discussion: ! ! PDF(A,B;X) = B(X) if 1 <= X <= A ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, integer X, the sentence length whose probability ! is desired. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: sentence_length_max = 79 real ( kind = rk ) pdf real ( kind = rk ), dimension ( sentence_length_max ) :: pdf_vec = (/ & 0.00806D+00, & 0.01370D+00, & 0.01862D+00, & 0.02547D+00, & 0.03043D+00, & 0.03189D+00, & 0.03516D+00, & 0.03545D+00, & 0.03286D+00, & 0.03533D+00, & 0.03562D+00, & 0.03788D+00, & 0.03669D+00, & 0.03751D+00, & 0.03518D+00, & 0.03541D+00, & 0.03434D+00, & 0.03305D+00, & 0.03329D+00, & 0.03103D+00, & 0.02867D+00, & 0.02724D+00, & 0.02647D+00, & 0.02526D+00, & 0.02086D+00, & 0.02178D+00, & 0.02128D+00, & 0.01801D+00, & 0.01690D+00, & 0.01556D+00, & 0.01512D+00, & 0.01326D+00, & 0.01277D+00, & 0.01062D+00, & 0.01051D+00, & 0.00901D+00, & 0.00838D+00, & 0.00764D+00, & 0.00683D+00, & 0.00589D+00, & 0.00624D+00, & 0.00488D+00, & 0.00477D+00, & 0.00406D+00, & 0.00390D+00, & 0.00350D+00, & 0.00318D+00, & 0.00241D+00, & 0.00224D+00, & 0.00220D+00, & 0.00262D+00, & 0.00207D+00, & 0.00174D+00, & 0.00174D+00, & 0.00128D+00, & 0.00121D+00, & 0.00103D+00, & 0.00117D+00, & 0.00124D+00, & 0.00082D+00, & 0.00088D+00, & 0.00061D+00, & 0.00061D+00, & 0.00075D+00, & 0.00063D+00, & 0.00056D+00, & 0.00052D+00, & 0.00057D+00, & 0.00031D+00, & 0.00029D+00, & 0.00021D+00, & 0.00017D+00, & 0.00021D+00, & 0.00034D+00, & 0.00031D+00, & 0.00011D+00, & 0.00011D+00, & 0.00008D+00, & 0.00006D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99768D+00 integer x if ( 1 <= x .and. x <= sentence_length_max ) then pdf = pdf_vec(x) / pdf_sum else pdf = 0.0D+00 end if return end subroutine english_sentence_length_sample ( x ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_SAMPLE samples the English Sentence Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call english_sentence_length_cdf_inv ( cdf, x ) return end subroutine english_sentence_length_variance ( variance ) !*****************************************************************************80 ! !! ENGLISH_SENTENCE_LENGTH_VARIANCE: variance of English Sentence Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: sentence_length_max = 79 integer j real ( kind = rk ) mean real ( kind = rk ), dimension ( sentence_length_max ) :: pdf_vec = (/ & 0.00806D+00, & 0.01370D+00, & 0.01862D+00, & 0.02547D+00, & 0.03043D+00, & 0.03189D+00, & 0.03516D+00, & 0.03545D+00, & 0.03286D+00, & 0.03533D+00, & 0.03562D+00, & 0.03788D+00, & 0.03669D+00, & 0.03751D+00, & 0.03518D+00, & 0.03541D+00, & 0.03434D+00, & 0.03305D+00, & 0.03329D+00, & 0.03103D+00, & 0.02867D+00, & 0.02724D+00, & 0.02647D+00, & 0.02526D+00, & 0.02086D+00, & 0.02178D+00, & 0.02128D+00, & 0.01801D+00, & 0.01690D+00, & 0.01556D+00, & 0.01512D+00, & 0.01326D+00, & 0.01277D+00, & 0.01062D+00, & 0.01051D+00, & 0.00901D+00, & 0.00838D+00, & 0.00764D+00, & 0.00683D+00, & 0.00589D+00, & 0.00624D+00, & 0.00488D+00, & 0.00477D+00, & 0.00406D+00, & 0.00390D+00, & 0.00350D+00, & 0.00318D+00, & 0.00241D+00, & 0.00224D+00, & 0.00220D+00, & 0.00262D+00, & 0.00207D+00, & 0.00174D+00, & 0.00174D+00, & 0.00128D+00, & 0.00121D+00, & 0.00103D+00, & 0.00117D+00, & 0.00124D+00, & 0.00082D+00, & 0.00088D+00, & 0.00061D+00, & 0.00061D+00, & 0.00075D+00, & 0.00063D+00, & 0.00056D+00, & 0.00052D+00, & 0.00057D+00, & 0.00031D+00, & 0.00029D+00, & 0.00021D+00, & 0.00017D+00, & 0.00021D+00, & 0.00034D+00, & 0.00031D+00, & 0.00011D+00, & 0.00011D+00, & 0.00008D+00, & 0.00006D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99768D+00 real ( kind = rk ) variance mean = 0.0D+00 do j = 1, sentence_length_max mean = mean + real ( j, kind = rk ) * pdf_vec(j) end do mean = mean / pdf_sum variance = 0.0D+00 do j = 1, sentence_length_max variance = variance + pdf_vec(j) * ( j - mean ) ** 2 end do variance = variance / pdf_sum return end subroutine english_word_length_cdf ( x, cdf ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_CDF evaluates the English Word Length CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, integer X, the word length whose CDF is desired. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: word_length_max = 27 real ( kind = rk ) cdf real ( kind = rk ), dimension ( word_length_max ) :: pdf_vec = (/ & 0.03160D+00, & 0.16975D+00, & 0.21192D+00, & 0.15678D+00, & 0.10852D+00, & 0.08524D+00, & 0.07724D+00, & 0.05623D+00, & 0.04032D+00, & 0.02766D+00, & 0.01582D+00, & 0.00917D+00, & 0.00483D+00, & 0.00262D+00, & 0.00099D+00, & 0.00050D+00, & 0.00027D+00, & 0.00022D+00, & 0.00011D+00, & 0.00006D+00, & 0.00005D+00, & 0.00002D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99997D+00 integer x if ( x < 1 ) then cdf = 0.0D+00 else if ( x < word_length_max ) then cdf = sum ( pdf_vec(1:x) ) / pdf_sum else if ( word_length_max <= x ) then cdf = 1.0D+00 end if return end subroutine english_word_length_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_CDF_INV inverts the English Word Length CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, integer X, the corresponding word length for which ! CDF(X-1) < CDF <= CDF(X) ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: word_length_max = 27 real ( kind = rk ) cdf real ( kind = rk ) cum integer j real ( kind = rk ), dimension ( word_length_max ) :: pdf_vec = (/ & 0.03160D+00, & 0.16975D+00, & 0.21192D+00, & 0.15678D+00, & 0.10852D+00, & 0.08524D+00, & 0.07724D+00, & 0.05623D+00, & 0.04032D+00, & 0.02766D+00, & 0.01582D+00, & 0.00917D+00, & 0.00483D+00, & 0.00262D+00, & 0.00099D+00, & 0.00050D+00, & 0.00027D+00, & 0.00022D+00, & 0.00011D+00, & 0.00006D+00, & 0.00005D+00, & 0.00002D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99997D+00 integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ENGLISH_WORD_LENGTH_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cum = 0.0D+00 do j = 1, word_length_max cum = cum + pdf_vec(j) if ( cdf <= cum / pdf_sum ) then x = j return end if end do x = word_length_max return end subroutine english_word_length_mean ( mean ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_MEAN evaluates the mean of the English Word Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: word_length_max = 27 integer j real ( kind = rk ) mean real ( kind = rk ), dimension ( word_length_max ) :: pdf_vec = (/ & 0.03160D+00, & 0.16975D+00, & 0.21192D+00, & 0.15678D+00, & 0.10852D+00, & 0.08524D+00, & 0.07724D+00, & 0.05623D+00, & 0.04032D+00, & 0.02766D+00, & 0.01582D+00, & 0.00917D+00, & 0.00483D+00, & 0.00262D+00, & 0.00099D+00, & 0.00050D+00, & 0.00027D+00, & 0.00022D+00, & 0.00011D+00, & 0.00006D+00, & 0.00005D+00, & 0.00002D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99997D+00 mean = 0.0D+00 do j = 1, word_length_max mean = mean + real ( j, kind = rk ) * pdf_vec(j) end do mean = mean / pdf_sum return end subroutine english_word_length_pdf ( x, pdf ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_PDF evaluates the English Word Length PDF. ! ! Discussion: ! ! PDF(A,B;X) = B(X) if 1 <= X <= A ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Input, integer X, the word length whose probability ! is desired. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: word_length_max = 27 real ( kind = rk ) pdf real ( kind = rk ), dimension ( word_length_max ) :: pdf_vec = (/ & 0.03160D+00, & 0.16975D+00, & 0.21192D+00, & 0.15678D+00, & 0.10852D+00, & 0.08524D+00, & 0.07724D+00, & 0.05623D+00, & 0.04032D+00, & 0.02766D+00, & 0.01582D+00, & 0.00917D+00, & 0.00483D+00, & 0.00262D+00, & 0.00099D+00, & 0.00050D+00, & 0.00027D+00, & 0.00022D+00, & 0.00011D+00, & 0.00006D+00, & 0.00005D+00, & 0.00002D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99997D+00 integer x if ( 1 <= x .and. x <= word_length_max ) then pdf = pdf_vec(x) / pdf_sum else pdf = 0.0D+00 end if return end subroutine english_word_length_sample ( x ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_SAMPLE samples the English Word Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call english_word_length_cdf_inv ( cdf, x ) return end subroutine english_word_length_variance ( variance ) !*****************************************************************************80 ! !! ENGLISH_WORD_LENGTH_VARIANCE: variance of the English Word Length PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Henry Kucera, Winthrop Francis, ! Computational Analysis of Present-Day American English, ! Brown University Press, 1967. ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: word_length_max = 27 integer j real ( kind = rk ) mean real ( kind = rk ), dimension ( word_length_max ) :: pdf_vec = (/ & 0.03160D+00, & 0.16975D+00, & 0.21192D+00, & 0.15678D+00, & 0.10852D+00, & 0.08524D+00, & 0.07724D+00, & 0.05623D+00, & 0.04032D+00, & 0.02766D+00, & 0.01582D+00, & 0.00917D+00, & 0.00483D+00, & 0.00262D+00, & 0.00099D+00, & 0.00050D+00, & 0.00027D+00, & 0.00022D+00, & 0.00011D+00, & 0.00006D+00, & 0.00005D+00, & 0.00002D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00, & 0.00001D+00 /) real ( kind = rk ), parameter :: pdf_sum = 0.99997D+00 real ( kind = rk ) variance mean = 0.0D+00 do j = 1, word_length_max mean = mean + real ( j, kind = rk ) * pdf_vec(j) end do mean = mean / pdf_sum variance = 0.0D+00 do j = 1, word_length_max variance = variance + pdf_vec(j) * ( j - mean ) ** 2 end do variance = variance / pdf_sum return end subroutine erlang_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! ERLANG_CDF evaluates the Erlang CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) cdf real ( kind = rk ) p2 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) x real ( kind = rk ) x2 if ( x < a ) then cdf = 0.0D+00 else x2 = ( x - a ) / b p2 = real ( c, kind = rk ) cdf = r8_gamma_inc ( p2, x2 ) end if return end subroutine erlang_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! ERLANG_CDF_INV inverts the Erlang CDF. ! ! Discussion: ! ! A simple bisection method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ERLANG_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = a return else if ( 1.0D+00 == cdf ) then x = huge ( x ) return end if x1 = a cdf1 = 0.0D+00 x2 = a + 1.0D+00 do call erlang_cdf ( x2, a, b, c, cdf2 ) if ( cdf < cdf2 ) then exit end if x2 = a + 2.0D+00 * ( x2 - a ) end do ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call erlang_cdf ( x3, a, b, c, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ERLANG_CDF_INV - Warning!' write ( *, '(a)' ) ' Iteration limit exceeded.' return end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function erlang_check ( a, b, c ) !*****************************************************************************80 ! !! ERLANG_CHECK checks the parameters of the Erlang PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, logical ERLANG_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c logical erlang_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ERLANG_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.0' erlang_check = .false. return end if if ( c <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ERLANG_CHECK - Warning!' write ( *, '(a)' ) ' C <= 0.' erlang_check = .false. return end if erlang_check = .true. return end subroutine erlang_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! ERLANG_MEAN returns the mean of the Erlang PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) mean mean = a + b * real ( c, kind = rk ) return end subroutine erlang_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! ERLANG_PDF evaluates the Erlang PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = ( ( X - A ) / B )^( C - 1 ) ! / ( B * Gamma ( C ) * EXP ( ( X - A ) / B ) ) ! ! for 0 < B, 0 < C integer, A <= X. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = y ** ( c - 1 ) / ( b * lgamma ( real ( c, kind = rk ) ) * exp ( y ) ) end if return end subroutine erlang_sample ( a, b, c, x ) !*****************************************************************************80 ! !! ERLANG_SAMPLE samples the Erlang PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 integer c integer i real ( kind = rk ) x real ( kind = rk ) x2 a2 = 0.0D+00 b2 = b x = a do i = 1, c call exponential_sample ( a2, b2, x2 ) x = x + x2 end do return end subroutine erlang_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! ERLANG_VARIANCE returns the variance of the Erlang PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, integer C, the parameters of the PDF. ! 0.0 < B. ! 0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer c real ( kind = rk ) variance variance = b * b * real ( c ) return end function euler_constant ( ) !*****************************************************************************80 ! !! EULER_CONSTANT returns the value of the Euler-Mascheroni constant. ! ! Discussion: ! ! The Euler-Mascheroni constant is often denoted by a lower-case ! Gamma. Gamma is defined as ! ! Gamma = limit ( M -> Infinity ) ! ( Sum ( 1 <= N <= M ) 1 / N ) - Log ( M ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) EULER_CONSTANT, the value of the ! Euler-Mascheroni constant. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) euler_constant euler_constant = 0.577215664901532860606512090082402431042D+00 return end subroutine exponential_01_cdf ( x, cdf ) !*****************************************************************************80 ! !! EXPONENTIAL_01_CDF evaluates the Exponential 01 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else cdf = 1.0D+00 - exp ( - x ) end if return end subroutine exponential_01_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! EXPONENTIAL_01_CDF_INV inverts the Exponential 01 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EXPONENTIAL_01_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = - log ( 1.0D+00 - cdf ) return end subroutine exponential_01_mean ( mean ) !*****************************************************************************80 ! !! EXPONENTIAL_01_MEAN returns the mean of the Exponential 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 1.0D+00 return end subroutine exponential_01_pdf ( x, pdf ) !*****************************************************************************80 ! !! EXPONENTIAL_01_PDF evaluates the Exponential 01 PDF. ! ! Discussion: ! ! PDF(X) = EXP ( - X ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = exp ( - x ) end if return end subroutine exponential_01_sample ( x ) !*****************************************************************************80 ! !! EXPONENTIAL_01_SAMPLE samples the Exponential PDF with parameter 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) x = - log ( 1.0D+00 - cdf ) return end subroutine exponential_01_variance ( variance ) !*****************************************************************************80 ! !! EXPONENTIAL_01_VARIANCE returns the variance of the Exponential 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance variance = 1.0D+00 return end subroutine exponential_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! EXPONENTIAL_CDF evaluates the Exponential CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else cdf = 1.0D+00 - exp ( ( a - x ) / b ) end if return end subroutine exponential_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! EXPONENTIAL_CDF_INV inverts the Exponential CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EXPONENTIAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a - b * log ( 1.0D+00 - cdf ) return end subroutine exponential_cdf_values ( n_data, lambda, x, fx ) !*****************************************************************************80 ! !! EXPONENTIAL_CDF_VALUES returns some values of the Exponential CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = ExponentialDistribution [ lambda ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) LAMBDA, the parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 9 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.3934693402873666D+00, & 0.6321205588285577D+00, & 0.7768698398515702D+00, & 0.8646647167633873D+00, & 0.8646647167633873D+00, & 0.9816843611112658D+00, & 0.9975212478233336D+00, & 0.9996645373720975D+00, & 0.9999546000702375D+00 /) real ( kind = rk ) lambda real ( kind = rk ), save, dimension ( n_max ) :: lambda_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 lambda = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else lambda = lambda_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function exponential_check ( a, b ) !*****************************************************************************80 ! !! EXPONENTIAL_CHECK checks the parameters of the Exponential CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, logical EXPONENTIAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical exponential_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EXPONENTIAL_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.0' exponential_check = .false. return end if exponential_check = .true. return end subroutine exponential_mean ( a, b, mean ) !*****************************************************************************80 ! !! EXPONENTIAL_MEAN returns the mean of the Exponential PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a + b return end subroutine exponential_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! EXPONENTIAL_PDF evaluates the Exponential PDF. ! ! Discussion: ! ! PDF(A,B;X) = ( 1 / B ) * EXP ( ( A - X ) / B ) ! ! The time interval between two Poisson events is a random ! variable with the Exponential PDF. The parameter B is the ! average interval between events. ! ! In another context, the Exponential PDF is related to ! the Boltzmann distribution, which describes the relative ! probability of finding a system, which is in thermal equilibrium ! at absolute temperature T, in a given state having energy E. ! The relative probability is ! ! Boltzmann_Relative_Probability(E,T) = exp ( - E / ( k * T ) ), ! ! where k is the Boltzmann constant, ! ! k = 1.38 * 10^(-23) joules / degree Kelvin ! ! and normalization requires a determination of the possible ! energy states of the system. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < a ) then pdf = 0.0D+00 else pdf = ( 1.0D+00 / b ) * exp ( ( a - x ) / b ) end if return end subroutine exponential_sample ( a, b, x ) !*****************************************************************************80 ! !! EXPONENTIAL_SAMPLE samples the Exponential PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call exponential_cdf_inv ( cdf, a, b, x ) return end subroutine exponential_variance ( a, b, variance ) !*****************************************************************************80 ! !! EXPONENTIAL_VARIANCE returns the variance of the Exponential PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = b * b return end subroutine extreme_values_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! EXTREME_VALUES_CDF evaluates the Extreme Values CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b cdf = exp ( - exp ( - y ) ) return end subroutine extreme_values_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! EXTREME_VALUES_CDF_INV inverts the Extreme Values CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EXTREME_VALUES_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a - b * log ( - log ( cdf ) ) return end subroutine extreme_values_cdf_values ( n_data, alpha, beta, x, fx ) !*****************************************************************************80 ! !! EXTREME_VALUES_CDF_VALUES returns some values of the Extreme Values CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = ExtremeValuesDistribution [ alpha, beta ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) ALPHA, the first parameter of the distribution. ! ! Output, real ( kind = rk ) BETA, the second parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) alpha real ( kind = rk ), save, dimension ( n_max ) :: alpha_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) real ( kind = rk ) beta real ( kind = rk ), save, dimension ( n_max ) :: beta_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.3678794411714423D+00, & 0.8734230184931166D+00, & 0.9818510730616665D+00, & 0.9975243173927525D+00, & 0.5452392118926051D+00, & 0.4884435800065159D+00, & 0.4589560693076638D+00, & 0.4409910259429826D+00, & 0.5452392118926051D+00, & 0.3678794411714423D+00, & 0.1922956455479649D+00, & 0.6598803584531254D-01 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 alpha = 0.0D+00 beta = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else alpha = alpha_vec(n_data) beta = beta_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function extreme_values_check ( a, b ) !*****************************************************************************80 ! !! EXTREME_VALUES_CHECK checks the parameters of the Extreme Values CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical EXTREME_VALUES_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical extreme_values_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'EXTREME_VALUES_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.' extreme_values_check = .false. return end if extreme_values_check = .true. return end subroutine extreme_values_mean ( a, b, mean ) !*****************************************************************************80 ! !! EXTREME_VALUES_MEAN returns the mean of the Extreme Values PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) euler_constant real ( kind = rk ) mean mean = a + b * euler_constant ( ) return end subroutine extreme_values_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! EXTREME_VALUES_PDF evaluates the Extreme Values PDF. ! ! Discussion: ! ! PDF(A,B;X) = ! ( 1 / B ) * exp ( ( A - X ) / B ) * exp ( - exp ( ( A - X ) / B ) ). ! ! The Extreme Values PDF is also known as the Fisher-Tippet PDF ! and the Log-Weibull PDF. ! ! The special case A = 0 and B = 1 is the Gumbel PDF. ! ! The Extreme Values PDF is the limiting distribution for the ! smallest or largest value in a large sample drawn from ! any of a great variety of distributions. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Eric Weisstein, editor, ! CRC Concise Encylopedia of Mathematics, ! CRC Press, 1998. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x pdf = ( 1.0D+00 / b ) * exp ( ( a - x ) / b - exp ( ( a - x ) / b ) ) return end subroutine extreme_values_sample ( a, b, x ) !*****************************************************************************80 ! !! EXTREME_VALUES_SAMPLE samples the Extreme Values PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call extreme_values_cdf_inv ( cdf, a, b, x ) return end subroutine extreme_values_variance ( a, b, variance ) !*****************************************************************************80 ! !! EXTREME_VALUES_VARIANCE returns the variance of the Extreme Values PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = r8_pi * r8_pi * b * b / 6.0D+00 return end subroutine f_cdf ( x, m, n, cdf ) !*****************************************************************************80 ! !! F_CDF evaluates the F central CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) arg1 real ( kind = rk ) arg2 real ( kind = rk ) arg3 real ( kind = rk ) beta_inc real ( kind = rk ) cdf integer m integer n real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else arg1 = 0.5D+00 * real ( n, kind = rk ) arg2 = 0.5D+00 * real ( m, kind = rk ) arg3 = real ( n, kind = rk ) & / ( real ( n, kind = rk ) + real ( m, kind = rk ) * x ) cdf = 1.0D+00 - beta_inc ( arg1, arg2, arg3 ) end if return end subroutine f_cdf_values ( n_data, a, b, x, fx ) !*****************************************************************************80 ! !! F_CDF_VALUES returns some values of the F CDF test function. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = FRatioDistribution [ dfn, dfd ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer A, integer B, the parameters of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 20 integer a integer, save, dimension ( n_max ) :: a_vec = (/ & 1, & 1, & 5, & 1, & 2, & 4, & 1, & 6, & 8, & 1, & 3, & 6, & 1, & 1, & 1, & 1, & 2, & 3, & 4, & 5 /) integer b integer, save, dimension ( n_max ) :: b_vec = (/ & 1, & 5, & 1, & 5, & 10, & 20, & 5, & 6, & 16, & 5, & 10, & 12, & 5, & 5, & 5, & 5, & 5, & 5, & 5, & 5 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.4999714850534485D+00, & 0.4996034370170990D+00, & 0.7496993658293228D+00, & 0.7504656462757382D+00, & 0.7514156325324275D+00, & 0.8999867031372156D+00, & 0.8997127554259699D+00, & 0.9002845660853669D+00, & 0.9500248817817622D+00, & 0.9500574946122442D+00, & 0.9501926400000000D+00, & 0.9750133887312993D+00, & 0.9900022327445249D+00, & 0.9949977837872073D+00, & 0.9989999621122122D+00, & 0.5687988496283079D+00, & 0.5351452100063650D+00, & 0.5143428032407864D+00, & 0.5000000000000000D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 1.00D+00, & 0.528D+00, & 1.89D+00, & 1.69D+00, & 1.60D+00, & 1.47D+00, & 4.06D+00, & 3.05D+00, & 2.09D+00, & 6.61D+00, & 3.71D+00, & 3.00D+00, & 10.01D+00, & 16.26D+00, & 22.78D+00, & 47.18D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0 b = 0 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) b = b_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function f_check ( m, n ) !*****************************************************************************80 ! !! F_CHECK checks the parameters of the F PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! ! Output, logical F_CHECK, is TRUE if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical f_check integer m integer n if ( m < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_CHECK - Warning!' write ( *, '(a)' ) ' M < 1.' f_check = .false. return end if if ( n < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_CHECK - Warning!' write ( *, '(a)' ) ' N < 1.' f_check = .false. return end if f_check = .true. return end subroutine f_mean ( m, n, mean ) !*****************************************************************************80 ! !! F_MEAN returns the mean of the F central PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! Note, however, that the mean is not defined unless 3 <= N. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) mean integer n if ( n < 3 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_MEAN - Fatal error!' write ( *, '(a)' ) ' The mean is not defined for N < 3.' stop 1 end if mean = real ( n, kind = rk ) / real ( n - 2, kind = rk ) return end subroutine f_pdf ( x, m, n, pdf ) !*****************************************************************************80 ! !! F_PDF evaluates the F central PDF. ! ! Discussion: ! ! PDF(M,N;X) = M^(M/2) * X^((M-2)/2) ! / ( Beta(M/2,N/2) * N^(M/2) * ( 1 + (M/N) * X )^((M+N)/2) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) bot1 real ( kind = rk ) bot2 integer m integer n real ( kind = rk ) pdf real ( kind = rk ) r8_beta real ( kind = rk ) top real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else a = real ( m, kind = rk ) b = real ( n, kind = rk ) top = sqrt ( a ** m * b ** n * x ** ( m - 2 ) ) bot1 = r8_beta ( a / 2.0D+00, b / 2.0D+00 ) bot2 = sqrt ( ( b + a * x ) ** ( m + n ) ) pdf = top / ( bot1 * bot2 ) end if return end subroutine f_sample ( m, n, x ) !*****************************************************************************80 ! !! F_SAMPLE samples the F central PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a integer m integer n real ( kind = rk ) x real ( kind = rk ) xm real ( kind = rk ) xn a = real ( m, kind = rk ) call chi_square_sample ( a, xm ) a = real ( n, kind = rk ) call chi_square_sample ( a, xn ) x = real ( n, kind = rk ) * xm / ( real ( m, kind = rk ) * xn ) return end subroutine f_variance ( m, n, variance ) !*****************************************************************************80 ! !! F_VARIANCE returns the variance of the F central PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! Note, however, that the variance is not defined unless 5 <= N. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) variance if ( n < 5 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_VARIANCE - Fatal error!' write ( *, '(a)' ) ' The variance is not defined for N < 5.' stop 1 end if variance = real ( 2 * n * n * ( m + n - 2 ), kind = rk ) / & real ( m * ( n - 2 ) ** 2 * ( n - 4 ), kind = rk ) return end subroutine f_noncentral_cdf_values ( n_data, n1, n2, lambda, x, fx ) !*****************************************************************************80 ! !! F_NONCENTRAL_CDF_VALUES returns some values of the F CDF test function. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = NoncentralFRatioDistribution [ n1, n2, lambda ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer N1, integer N2, the numerator and denominator ! degrees of freedom. ! ! Output, real ( kind = rk ) LAMBDA, the noncentrality parameter. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 22 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.6367825323508774D+00, & 0.5840916116305482D+00, & 0.3234431872392788D+00, & 0.4501187879813550D+00, & 0.6078881441188312D+00, & 0.7059275551414605D+00, & 0.7721782003263727D+00, & 0.8191049017635072D+00, & 0.3170348430749965D+00, & 0.4327218008454471D+00, & 0.4502696915707327D+00, & 0.4261881186594096D+00, & 0.6753687206341544D+00, & 0.4229108778879005D+00, & 0.6927667261228938D+00, & 0.3632174676491226D+00, & 0.4210054012695865D+00, & 0.4266672258818927D+00, & 0.4464016600524644D+00, & 0.8445888579504827D+00, & 0.4339300273343604D+00 /) real ( kind = rk ) lambda real ( kind = rk ), save, dimension ( n_max ) :: lambda_vec = (/ & 0.00D+00, & 0.00D+00, & 0.25D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 1.00D+00, & 1.00D+00, & 0.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00 /) integer n_data integer n1 integer, save, dimension ( n_max ) :: n1_vec = (/ & 1, 1, 1, 1, & 1, 1, 1, 1, & 1, 1, 2, 2, & 3, 3, 4, 4, & 5, 5, 6, 6, & 8, 16 /) integer n2 integer, save, dimension ( n_max ) :: n2_vec = (/ & 1, 5, 5, 5, & 5, 5, 5, 5, & 5, 5, 5, 10, & 5, 5, 5, 5, & 1, 5, 6, 12, & 16, 8 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 1.00D+00, & 1.00D+00, & 1.00D+00, & 0.50D+00, & 1.00D+00, & 2.00D+00, & 3.00D+00, & 4.00D+00, & 5.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 2.00D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 n1 = 0 n2 = 0 lambda = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else n1 = n1_vec(n_data) n2 = n2_vec(n_data) lambda = lambda_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function f_noncentral_check ( a, m, n ) !*****************************************************************************80 ! !! F_NONCENTRAL_CHECK checks the parameters of the F noncentral PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! ! Input, integer M, N, the parameters of the PDF. ! 1 <= M, ! 1 <= N. ! ! Output, logical F_NONCENTRAL_CHECK, is TRUE if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical f_noncentral_check integer m integer n if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_NONCENTRAL_CHECK - Warning!' write ( *, '(a)' ) ' A <= 0.' f_noncentral_check = .false. return end if if ( m < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_NONCENTRAL_CHECK - Warning!' write ( *, '(a)' ) ' M < 1.' f_noncentral_check = .false. return end if if ( n < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_NONCENTRAL_CHECK - Warning!' write ( *, '(a)' ) ' N < 1.' f_noncentral_check = .false. return end if f_noncentral_check = .true. return end subroutine f_noncentral_mean ( a, m, n, mean ) !*****************************************************************************80 ! !! F_NONCENTRAL_MEAN returns the mean of the F noncentral PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! ! Input, integer M, N, parameters of the PDF. ! 1 <= M, ! 1 <= N. ! Note, however, that the mean is not defined unless 3 <= N. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a integer m real ( kind = rk ) mean integer n if ( n < 3 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_NONCENTRAL_MEAN - Fatal error!' write ( *, '(a)' ) ' The mean is not defined for N < 3.' stop 1 end if mean = ( real ( m, kind = rk ) + a ) * real ( n, kind = rk ) & / ( real ( m, kind = rk ) * real ( n - 2, kind = rk ) ) return end subroutine f_noncentral_variance ( a, m, n, variance ) !*****************************************************************************80 ! !! F_NONCENTRAL_VARIANCE returns the variance of the F noncentral PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! ! Input, integer M, N, parameters of the PDF. ! 1 <= M, ! 1 <= N. ! Note, however, that the variance is not defined unless 5 <= N. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a integer m real ( kind = rk ) mr integer n real ( kind = rk ) nr real ( kind = rk ) variance if ( n < 5 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'F_NONCENTRAL_VARIANCE - Fatal error!' write ( *, '(a)' ) ' The variance is not defined for N < 5.' stop 1 end if mr = real ( m, kind = rk ) nr = real ( n, kind = rk ) variance = ( ( mr + a ) ** 2 + 2.0D+00 * ( mr + a ) * nr ** 2 ) & / ( ( nr - 2.0D+00 ) * ( nr - 4.0D+00 ) * mr ** 2 ) - & ( mr + a ) ** 2 * nr ** 2 / ( ( nr - 2.0D+00 ) ** 2 * mr ** 2 ) return end subroutine fermi_dirac_sample ( u, v, z ) !*****************************************************************************80 ! !! FERMI_DIRAC_SAMPLE samples a (continuous) Fermi-Dirac distribution. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 January 2008 ! ! Author: ! ! Original BASIC version by Frederick Ruckdeschel. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Frederick Ruckdeschel, ! BASIC Scientific Subroutines, ! Volume I, ! McGraw Hill, 1980, ! ISBN: 0-07-054201-5, ! LC: QA76.95.R82. ! ! Parameters: ! ! Input, real ( kind = rk ) U, V, the parameters of the distribution. ! The value of U represents the halfway point for the distribution. ! Half the probability is to the left, and half to the right, of ! the value U. The value of V controls the shape of the distribution. ! The ratio U/V determines the relative shape of the distribution. ! Values of U/V in excess of 100 will risk overflow. ! ! Output, real ( kind = rk ) Z, a sample from the Fermi-Dirac distribution. ! Output values will be nonnegative, and roughly half of them should ! be less than or equal to U. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer, parameter :: iter_max = 1000 integer iter_num real ( kind = rk ) u real ( kind = rk ) v real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) y1 real ( kind = rk ) z call random_number ( harvest = x ) y = 1.0D+00 a = exp ( 4.0D+00 * u / v ) b = ( x - 1.0D+00 ) * log ( 1.0D+00 + a ) iter_num = 0 do y1 = b + log ( a + exp ( y ) ) if ( abs ( y - y1 ) < 0.001D+00 ) then exit end if y = y1 iter_num = iter_num + 1 if ( iter_max < iter_num ) then exit end if end do z = v * y1 / 4.0D+00 return end subroutine fisher_pdf ( x, kappa, mu, pdf ) !*****************************************************************************80 ! !! FISHER_PDF evaluates the Fisher PDF. ! ! Discussion: ! ! The formula for the PDF is: ! ! PDF(KAPPA,MU;X) = C(KAPPA) * exp ( KAPPA * MU' * X ) ! ! where: ! ! 0 <= KAPPA is the concentration parameter, ! MU is a point on the unit sphere, the mean direction, ! X is any point on the unit sphere, ! and C(KAPPA) is a normalization factor: ! ! C(KAPPA) = sqrt ( KAPPA ) / ( ( 2 * pi )^(3/2) * I(0.5,KAPPA) ) ! ! where ! ! I(nu,X) is the Bessel function of order NU and argument X. ! ! For a fixed value of MU, the value of KAPPA determines the ! tendency of sample points to tend to be near MU. In particular, ! KAPPA = 0 corresponds to a uniform distribution of points on the ! sphere, but as KAPPA increases, the sample points will tend to ! cluster more closely to MU. ! ! The Fisher distribution for points on the unit sphere is ! analogous to the normal distribution of points on a line, ! and, more precisely, to the von Mises distribution on a circle. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 January 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Kanti Mardia, Peter Jupp, ! Directional Statistics, ! Wiley, 2000, ! LC: QA276.M335 ! ! Parameters: ! ! Input, real ( kind = rk ) X(3), the argument of the PDF. ! X should have unit Euclidean norm, but this routine will ! automatically work with a normalized version of X. ! ! Input, real ( kind = rk ) KAPPA, the concentration parameter. ! 0 <= KAPPA is required. ! ! Input, real ( kind = rk ) MU(3), the mean direction. ! MU should have unit Euclidean norm, but this routine will ! automatically work with a normalized version of MU. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: nb = 1 real ( kind = rk ) alpha real ( kind = rk ) arg real ( kind = rk ) b(nb) real ( kind = rk ) cf integer ize real ( kind = rk ) kappa real ( kind = rk ) mu(3) real ( kind = rk ) mu_norm integer ncalc real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x(3) real ( kind = rk ) x_norm if ( kappa < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISHER_PDF - Fatal error!' write ( *, '(a)' ) ' KAPPA must be nonnegative.' write ( *, '(a,g14.6)' ) ' Input KAPPA = ', kappa stop 1 end if if ( kappa == 0.0D+00 ) then pdf = 1.0D+00 / ( 4.0D+00 * r8_pi ) return end if ! ! Compute the normalization factor CF. ! alpha = 0.5D+00 ize = 1 call ribesl ( kappa, alpha, nb, ize, b, ncalc ) cf = sqrt ( kappa ) / ( sqrt ( ( 2.0D+00 * r8_pi ) ** 3 ) * b(1) ) ! ! Normalize MU. ! mu_norm = sqrt ( sum ( mu(1:3) ** 2 ) ) if ( mu_norm == 0.0D+00 ) then pdf = cf return end if ! ! Normalize X. ! x_norm = sqrt ( sum ( x(1:3) ** 2 ) ) if ( x_norm == 0.0D+00 ) then pdf = cf return end if ! ! Evaluate the PDF. ! arg = kappa * dot_product ( x(1:3), mu(1:3) ) / ( x_norm * mu_norm ) pdf = cf * exp ( arg ) return end subroutine fisher_sample ( kappa, mu, n, xyz ) !*****************************************************************************80 ! !! FISHER_SAMPLE samples the Fisher distribution. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2007 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Nicholas Fisher, Toby Lewis, Brian Embleton, ! Statistical Analysis of Spherical Data, ! Cambridge, 2003, ! ISBN13: 978-0521456999, ! LC: QA276.F489. ! ! Parameters: ! ! Input, real ( kind = rk ) KAPPA, the concentration parameter. ! ! Input, real ( kind = rk ) MU(3), the mean direction. ! MU should have unit Euclidean norm, but this routine will ! automatically work with a normalized version of MU. ! ! Input, integer N, the number of samples to choose. ! ! Output, real ( kind = rk ) XYZ(3,N), a sample of the Fisher distribution. ! ! Local: ! ! Local, real ( kind = rk ) ALPHA, BETA, the colatitude (theta) and ! longitude (phi) of the mean direction. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(3,3) real ( kind = rk ) alpha real ( kind = rk ) beta real ( kind = rk ) kappa real ( kind = rk ) lambda real ( kind = rk ) mu(3) real ( kind = rk ) mu_norm real ( kind = rk ) phi(1:n) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) theta(1:n) real ( kind = rk ) xyz(3,n) mu_norm = sqrt ( sum ( mu(1:3) ** 2 ) ) if ( mu_norm == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISHER_SAMPLE - Fatal error!' write ( *, '(a)' ) ' MU(1:3) = 0.' stop 1 end if alpha = - acos ( mu(3) / mu_norm ) beta = atan2 ( mu(2), mu(1) ) lambda = exp ( - 2.0D+00 * kappa ) call random_number ( harvest = theta(1:n) ) if ( kappa == 0.0D+00 ) then theta(1:n) = 2.0D+00 * asin ( sqrt ( 1.0D+00 - theta(1:n) ) ) else theta(1:n) = 2.0D+00 * asin ( sqrt ( & - log ( theta(1:n) * ( 1.0D+00 - lambda ) + lambda ) & / ( 2.0D+00 * kappa ) ) ) end if call random_number ( harvest = phi(1:n) ) phi(1:n) = 2.0D+00 * r8_pi * phi(1:n) ! ! Compute the unrotated points. ! xyz(1,1:n) = sin ( theta(1:n) ) * cos ( phi(1:n) ) xyz(2,1:n) = sin ( theta(1:n) ) * sin ( phi(1:n) ) xyz(3,1:n) = cos ( theta(1:n) ) ! ! Compute the rotation matrix. ! a(1,1) = cos ( alpha ) * cos ( beta ) a(2,1) = - sin ( beta ) a(3,1) = sin ( alpha ) * cos ( beta ) a(1,2) = cos ( alpha ) * sin ( beta ) a(2,2) = + cos ( beta ) a(3,2) = sin ( alpha ) * sin ( beta ) a(1,3) = - sin ( alpha ) a(2,3) = 0.0D+00 a(3,3) = cos ( alpha ) ! ! Rotate the points. ! xyz(1:3,1:n) = matmul ( a(1:3,1:3), xyz(1:3,1:n) ) return end subroutine fisk_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! FISK_CDF evaluates the Fisk CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else cdf = 1.0D+00 / ( 1.0D+00 + ( b / ( x - a ) ) ** c ) end if return end subroutine fisk_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! FISK_CDF_INV inverts the Fisk CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISK_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf <= 0.0D+00 ) then x = a else if ( cdf < 1.0D+00 ) then x = a + b * ( cdf / ( 1.0D+00 - cdf ) ) ** ( 1.0D+00 / c ) else if ( 1.0D+00 <= cdf ) then x = huge ( x ) end if return end function fisk_check ( a, b, c ) !*****************************************************************************80 ! !! FISK_CHECK checks the parameters of the Fisk PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, logical FISK_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical fisk_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISK_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.' fisk_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISK_CHECK - Warning!' write ( *, '(a)' ) ' C <= 0.' fisk_check = .false. return end if fisk_check = .true. return end subroutine fisk_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! FISK_MEAN returns the mean of the Fisk PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 April 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r8_csc if ( c <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISK_MEAN - Fatal error!' write ( *, '(a)' ) ' No mean defined for C <= 1.0' stop 1 end if mean = a + r8_pi * ( b / c ) * r8_csc ( r8_pi / c ) return end subroutine fisk_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! FISK_PDF evaluates the Fisk PDF. ! ! Discussion: ! ! The Fisk PDF is also known as the Log Logistic PDF. ! ! The formula for the PDF is: ! ! PDF(A,B,C;X) = ! ( C / B ) * ( ( X - A ) / B )^( C - 1 ) / ! ( 1 + ( ( X - A ) / B )^C )^2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = ( c / b ) * y ** ( c - 1.0D+00 ) / ( 1.0D+00 + y ** c ) ** 2 end if return end subroutine fisk_sample ( a, b, c, x ) !*****************************************************************************80 ! !! FISK_SAMPLE samples the Fisk PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call fisk_cdf_inv ( cdf, a, b, c, x ) return end subroutine fisk_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! FISK_VARIANCE returns the variance of the Fisk PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) g real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r8_csc real ( kind = rk ) variance if ( c <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FISK_VARIANCE - Fatal error!' write ( *, '(a)' ) ' No variance defined for C <= 2.0' stop 1 end if g = r8_pi / c variance = b * b & * ( 2.0D+00 * g * r8_csc ( 2.0D+00 * g ) - ( g * r8_csc ( g ) ) ** 2 ) return end subroutine folded_normal_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! FOLDED_NORMAL_CDF evaluates the Folded Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! 0.0 <= X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 if ( x < 0.0D+00 ) then cdf = 0.0D+00 else x1 = ( x - a ) / b call normal_01_cdf ( x1, cdf1 ) x2 = ( - x - a ) / b call normal_01_cdf ( x2, cdf2 ) cdf = cdf1 - cdf2 end if return end subroutine folded_normal_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! FOLDED_NORMAL_CDF_INV inverts the Folded Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the argument of the CDF. ! 0.0 <= X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 real ( kind = rk ) xa real ( kind = rk ) xb if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FOLDED_NORMAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = 0.0D+00 return else if ( 1.0D+00 == cdf ) then x = huge ( x ) return end if ! ! Find X1, for which the value of CDF will be too small. ! if ( 0.0D+00 <= a ) then call normal_cdf_inv ( cdf, a, b, x1 ) else call normal_cdf_inv ( cdf, -a, b, x1 ) end if x1 = max ( x1, 0.0D+00 ) call folded_normal_cdf ( x1, a, b, cdf1 ) ! ! Find X2, for which the value of CDF will be too big. ! cdf2 = ( 1.0D+00 - cdf ) / 2.0D+00 call normal_cdf_inv ( cdf2, a, b, xa ) call normal_cdf_inv ( cdf2, -a, b, xb ) x2 = max ( abs ( xa ), abs ( xb ) ) call folded_normal_cdf ( x2, a, b, cdf2 ) ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call folded_normal_cdf ( x3, a, b, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FOLDED_NORMAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function folded_normal_check ( a, b ) !*****************************************************************************80 ! !! FOLDED_NORMAL_CHECK checks the parameters of the Folded Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, logical FOLDED_NORMAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical folded_normal_check if ( a < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FOLDED_NORMAL_CHECK - Warning!' write ( *, '(a)' ) ' A < 0.' folded_normal_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FOLDED_NORMAL_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.' folded_normal_check = .false. return end if folded_normal_check = .true. return end subroutine folded_normal_mean ( a, b, mean ) !*****************************************************************************80 ! !! FOLDED_NORMAL_MEAN returns the mean of the Folded Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) mean real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 a2 = a / b call normal_01_cdf ( a2, cdf ) mean = b * sqrt ( 2.0D+00 / r8_pi ) * exp ( - 0.5D+00 * a2 * a2 ) & - a * ( 1.0D+00 - 2.0D+00 * cdf ) return end subroutine folded_normal_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! FOLDED_NORMAL_PDF evaluates the Folded Normal PDF. ! ! Discussion: ! ! The formula for the PDF is: ! ! PDF(A;X) = sqrt ( 2 / PI ) * ( 1 / B ) * cosh ( A * X / B^2 ) ! * exp ( - 0.5D+00 * ( X^2 + A^2 ) / B^2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = sqrt ( 2.0D+00 / r8_pi ) * ( 1.0D+00 / b ) * cosh ( a * x / b ** 2 ) & * exp ( - 0.5D+00 * ( x * x + a * a ) / b ** 2 ) end if return end subroutine folded_normal_sample ( a, b, x ) !*****************************************************************************80 ! !! FOLDED_NORMAL_SAMPLE samples the Folded Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call folded_normal_cdf_inv ( cdf, a, b, x ) return end subroutine folded_normal_variance ( a, b, variance ) !*****************************************************************************80 ! !! FOLDED_NORMAL_VARIANCE returns the variance of the Folded Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A, ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean real ( kind = rk ) variance call folded_normal_mean ( a, b, mean ) variance = a * a + b * b - mean * mean return end subroutine frechet_cdf ( x, alpha, cdf ) !*****************************************************************************80 ! !! FRECHET_CDF evaluates the Frechet CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 0.0 < ALPHA. ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) cdf real ( kind = rk ) x if ( alpha <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_CDF - Fatal error!' write ( *, '(a)' ) ' ALPHA <= 0.0.' stop 1 end if if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else cdf = exp ( - 1.0D+00 / x ** alpha ) end if return end subroutine frechet_cdf_inv ( cdf, alpha, x ) !*****************************************************************************80 ! !! FRECHET_CDF_INV inverts the Frechet CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 0.0 < ALPHA. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( alpha <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_CDF_INV - Fatal error!' write ( *, '(a)' ) ' ALPHA <= 0.0.' stop 1 end if if ( cdf == 0.0D+00 ) then x = 0.0D+00 else x = ( - 1.0D+00 / log ( cdf ) ) ** ( 1.0D+00 / alpha ) end if return end subroutine frechet_mean ( alpha, mean ) !*****************************************************************************80 ! !! FRECHET_MEAN returns the mean of the Frechet PDF. ! ! Discussion: ! ! The distribution does not have a mean value unless 1 < ALPHA. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 1.0 < ALPHA. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) mean if ( alpha <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_MEAN - Fatal error!' write ( *, '(a)' ) ' Mean does not exist if ALPHA <= 1.' stop 1 end if mean = gamma ( ( alpha - 1.0D+00 ) / alpha ) return end subroutine frechet_pdf ( x, alpha, pdf ) !*****************************************************************************80 ! !! FRECHET_PDF evaluates the Frechet PDF. ! ! Discussion: ! ! PDF(X) = ALPHA * exp ( -1 / X^ALPHA ) / X^(ALPHA+1) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 0.0 < ALPHA. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) pdf real ( kind = rk ) x if ( alpha <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_PDF - Fatal error!' write ( *, '(a)' ) ' ALPHA <= 0.0.' stop 1 end if pdf = alpha * exp ( - 1.0D+00 / x ** alpha ) / x ** ( alpha + 1.0D+00 ) return end subroutine frechet_sample ( alpha, x ) !*****************************************************************************80 ! !! FRECHET_SAMPLE samples the Frechet PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 0.0 < ALPHA. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) cdf real ( kind = rk ) x if ( alpha <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_SAMPLE - Fatal error!' write ( *, '(a)' ) ' ALPHA <= 0.0.' stop 1 end if call random_number ( harvest = cdf ) call frechet_cdf_inv ( cdf, alpha, x ) return end subroutine frechet_variance ( alpha, variance ) !*****************************************************************************80 ! !! FRECHET_VARIANCE returns the variance of the Frechet PDF. ! ! Discussion: ! ! The PDF does not have a variance unless 2 < ALPHA. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) ALPHA, the parameter. ! It is required that 2.0 < ALPHA. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) alpha real ( kind = rk ) mean real ( kind = rk ) variance if ( alpha <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FRECHET_VARIANCE - Fatal error!' write ( *, '(a)' ) ' Variance does not exist if ALPHA <= 2.' stop 1 end if mean = gamma ( ( alpha - 1.0D+00 ) / alpha ) variance = gamma ( ( alpha - 2.0D+00 ) / alpha ) - mean * mean return end subroutine gamma_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! GAMMA_CDF evaluates the Gamma CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) p2 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) x real ( kind = rk ) x2 x2 = ( x - a ) / b p2 = c cdf = r8_gamma_inc ( p2, x2 ) return end subroutine gamma_cdf_values ( n_data, mu, sigma, x, fx ) !*****************************************************************************80 ! !! GAMMA_CDF_VALUES returns some values of the Gamma CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = GammaDistribution [ mu, sigma ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) SIGMA, the variance of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.8646647167633873D+00, & 0.9816843611112658D+00, & 0.9975212478233336D+00, & 0.9996645373720975D+00, & 0.6321205588285577D+00, & 0.4865828809674080D+00, & 0.3934693402873666D+00, & 0.3296799539643607D+00, & 0.4421745996289254D+00, & 0.1911531694619419D+00, & 0.6564245437845009D-01, & 0.1857593622214067D-01 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) sigma real ( kind = rk ), save, dimension ( n_max ) :: sigma_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 sigma = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) sigma = sigma_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function gamma_check ( a, b, c ) !*****************************************************************************80 ! !! GAMMA_CHECK checks the parameters of the Gamma PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, logical GAMMA_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical gamma_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GAMMA_CHECK - Warning!' write ( *, '(a)' ) ' B <= 0.' write ( *, '(a,g14.6)' ) ' B = ', b gamma_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GAMMA_CHECK - Warning!' write ( *, '(a)' ) ' C <= 0.' write ( *, '(a,g14.6)' ) ' C = ', c gamma_check = .false. return end if gamma_check = .true. return end subroutine gamma_inc_values ( n_data, a, x, fx ) !*****************************************************************************80 ! !! GAMMA_INC_VALUES returns some values of the incomplete Gamma function. ! ! Discussion: ! ! The (normalized) incomplete Gamma function P(A,X) is defined as: ! ! PN(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. ! ! With this definition, for all A and X, ! ! 0 <= PN(A,X) <= 1 ! ! and ! ! PN(A,INFINITY) = 1.0 ! ! In Mathematica, the function can be evaluated by: ! ! 1 - GammaRegularized[A,X] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 November 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, the parameter of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 20 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.10D+01, & 0.10D+01, & 0.10D+01, & 0.11D+01, & 0.11D+01, & 0.11D+01, & 0.20D+01, & 0.20D+01, & 0.20D+01, & 0.60D+01, & 0.60D+01, & 0.11D+02, & 0.26D+02, & 0.41D+02 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.7382350532339351D+00, & 0.9083579897300343D+00, & 0.9886559833621947D+00, & 0.3014646416966613D+00, & 0.7793286380801532D+00, & 0.9918490284064973D+00, & 0.9516258196404043D-01, & 0.6321205588285577D+00, & 0.9932620530009145D+00, & 0.7205974576054322D-01, & 0.5891809618706485D+00, & 0.9915368159845525D+00, & 0.1018582711118352D-01, & 0.4421745996289254D+00, & 0.9927049442755639D+00, & 0.4202103819530612D-01, & 0.9796589705830716D+00, & 0.9226039842296429D+00, & 0.4470785799755852D+00, & 0.7444549220718699D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.30D-01, & 0.30D+00, & 0.15D+01, & 0.75D-01, & 0.75D+00, & 0.35D+01, & 0.10D+00, & 0.10D+01, & 0.50D+01, & 0.10D+00, & 0.10D+01, & 0.50D+01, & 0.15D+00, & 0.15D+01, & 0.70D+01, & 0.25D+01, & 0.12D+02, & 0.16D+02, & 0.25D+02, & 0.45D+02 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine gamma_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! GAMMA_MEAN returns the mean of the Gamma PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 September 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = a + b * c return end subroutine gamma_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! GAMMA_PDF evaluates the Gamma PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = exp ( - ( X - A ) / B ) * ( ( X - A ) / B )^(C-1) ! / ( B * GAMMA ( C ) ) ! ! GAMMA_PDF(A,B,C;X), where C is an integer, is the Erlang PDF. ! GAMMA_PDF(A,B,1;X) is the Exponential PDF. ! GAMMA_PDF(0,2,C/2;X) is the Chi Squared PDF with C degrees of freedom. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A controls the location of the peak; A is often chosen to be 0.0. ! B is the "scale" parameter; 0.0 < B, and is often 1.0. ! C is the "shape" parameter; 0.0 < C, and is often 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = y ** ( c - 1.0D+00 ) / ( b * gamma ( c ) * exp ( y ) ) end if return end subroutine gamma_sample ( a, b, c, x ) !*****************************************************************************80 ! !! GAMMA_SAMPLE samples the Gamma PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 September 2000 ! ! Author: ! ! Original FORTRAN77 version by Joachim Ahrens, Ulrich Dieter. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Joachim Ahrens, Ulrich Dieter, ! Generating Gamma Variates by a Modified Rejection Technique, ! Communications of the ACM, ! Volume 25, Number 1, January 1982, pages 47 - 54. ! ! Joachim Ahrens, Ulrich Dieter, ! Computer Methods for Sampling from Gamma, Beta, Poisson and ! Binomial Distributions. ! Computing, ! Volume 12, 1974, pages 223 - 246. ! ! Joachim Ahrens, KD Kohrt, Ulrich Dieter, ! Algorithm 599, ! ACM Transactions on Mathematical Software, ! Volume 9, Number 2, June 1983, pages 255-257. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ), parameter :: a1 = 0.3333333D+00 real ( kind = rk ), parameter :: a2 = - 0.2500030D+00 real ( kind = rk ), parameter :: a3 = 0.2000062D+00 real ( kind = rk ), parameter :: a4 = - 0.1662921D+00 real ( kind = rk ), parameter :: a5 = 0.1423657D+00 real ( kind = rk ), parameter :: a6 = - 0.1367177D+00 real ( kind = rk ), parameter :: a7 = 0.1233795D+00 real ( kind = rk ) b real ( kind = rk ) bcoef real ( kind = rk ) c real ( kind = rk ) co real ( kind = rk ) d real ( kind = rk ) e real ( kind = rk ), parameter :: e1 = 1.0D+00 real ( kind = rk ), parameter :: e2 = 0.4999897D+00 real ( kind = rk ), parameter :: e3 = 0.1668290D+00 real ( kind = rk ), parameter :: e4 = 0.0407753D+00 real ( kind = rk ), parameter :: e5 = 0.0102930D+00 real ( kind = rk ), parameter :: euler = 2.71828182845904D+00 real ( kind = rk ) p real ( kind = rk ) q real ( kind = rk ) q0 real ( kind = rk ), parameter :: q1 = 0.04166669D+00 real ( kind = rk ), parameter :: q2 = 0.02083148D+00 real ( kind = rk ), parameter :: q3 = 0.00801191D+00 real ( kind = rk ), parameter :: q4 = 0.00144121D+00 real ( kind = rk ), parameter :: q5 = - 0.00007388D+00 real ( kind = rk ), parameter :: q6 = 0.00024511D+00 real ( kind = rk ), parameter :: q7 = 0.00024240D+00 real ( kind = rk ) r real ( kind = rk ) s real ( kind = rk ) si real ( kind = rk ) s2 real ( kind = rk ) t real ( kind = rk ) u real ( kind = rk ) v real ( kind = rk ) w real ( kind = rk ) x ! ! Allow C = 0. ! if ( c == 0.0D+00 ) then x = a return end if ! ! C < 1. ! if ( c < 1.0D+00 ) then do call random_number ( harvest = u ) t = 1.0D+00 + c / euler p = u * t call exponential_01_sample ( s ) if ( p < 1.0D+00 ) then x = exp ( log ( p ) / c ) if ( x <= s ) then exit end if else x = - log ( ( t - p ) / c ) if ( ( 1.0D+00 - c ) * log ( x ) <= s ) then exit end if end if end do x = a + b * x return ! ! 1 <= C. ! else s2 = c - 0.5D+00 s = sqrt ( c - 0.5D+00 ) d = sqrt ( 32.0D+00 ) - 12.0D+00 * sqrt ( c - 0.5D+00 ) call normal_01_sample ( t ) x = ( sqrt ( c - 0.5D+00 ) + 0.5D+00 * t ) ** 2 if ( 0.0D+00 <= t ) then x = a + b * x return end if call random_number ( harvest = u ) if ( d * u <= t ** 3 ) then x = a + b * x return end if r = 1.0D+00 / c q0 = ( ( ( ( ( ( & q7 * r & + q6 ) * r & + q5 ) * r & + q4 ) * r & + q3 ) * r & + q2 ) * r & + q1 ) * r if ( c <= 3.686D+00 ) then bcoef = 0.463D+00 + s - 0.178D+00 * s2 si = 1.235D+00 co = 0.195D+00 / s - 0.079D+00 + 0.016D+00 * s else if ( c <= 13.022D+00 ) then bcoef = 1.654D+00 + 0.0076D+00 * s2 si = 1.68D+00 / s + 0.275D+00 co = 0.062D+00 / s + 0.024D+00 else bcoef = 1.77D+00 si = 0.75D+00 co = 0.1515D+00 / s end if if ( 0.0D+00 < sqrt ( c - 0.5D+00 ) + 0.5D+00 * t ) then v = 0.5D+00 * t / s if ( 0.25D+00 < abs ( v ) ) then q = q0 - s * t + 0.25D+00 * t * t + 2.0D+00 * s2 * log ( 1.0D+00 + v ) else q = q0 + 0.5D+00 * t ** 2 * ( ( ( ( ( ( & a7 * v & + a6 ) * v & + a5 ) * v & + a4 ) * v & + a3 ) * v & + a2 ) * v & + a1 ) * v end if if ( log ( 1.0D+00 - u ) <= q ) then x = a + b * x return end if end if do call exponential_01_sample ( e ) call random_number ( harvest = u ) u = 2.0D+00 * u - 1.0D+00 t = bcoef + sign ( si * e, u ) if ( -0.7187449D+00 <= t ) then v = 0.5D+00 * t / s if ( 0.25D+00 < abs ( v ) ) then q = q0 - s * t + 0.25D+00 * t ** 2 & + 2.0D+00 * s2 * log ( 1.0D+00 + v ) else q = q0 + 0.5D+00 * t ** 2 * ( ( ( ( ( ( & a7 * v & + a6 ) * v & + a5 ) * v & + a4 ) * v & + a3 ) * v & + a2 ) * v & + a1 ) * v end if if ( 0.0D+00 < q ) then if ( 0.5D+00 < q ) then w = exp ( q ) - 1.0D+00 else w = ( ( ( ( & e5 * q & + e4 ) * q & + e3 ) * q & + e2 ) * q & + e1 ) * q end if if ( co * abs ( u ) <= w * exp ( e - 0.5D+00 * t ** 2 ) ) then x = a + b * ( s + 0.5D+00 * t ) ** 2 return end if end if end if end do end if return end subroutine gamma_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! GAMMA_VARIANCE returns the variance of the Gamma PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance variance = b * b * c return end subroutine genlogistic_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! GENLOGISTIC_CDF evaluates the Generalized Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b cdf = 1.0D+00 / ( 1.0D+00 + exp ( - y ) ) ** c return end subroutine genlogistic_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! GENLOGISTIC_CDF_INV inverts the Generalized Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GENLOGISTIC_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = - huge ( x ) else if ( cdf < 1.0D+00 ) then x = a - b * log ( cdf ** ( - 1.0D+00 / c ) - 1.0D+00 ) else if ( 1.0D+00 == cdf ) then x = huge ( x ) end if return end function genlogistic_check ( a, b, c ) !*****************************************************************************80 ! !! GENLOGISTIC_CHECK checks the parameters of the Generalized Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, logical GENLOGISTIC_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical genlogistic_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GENLOGISTIC_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' genlogistic_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GENLOGISTIC_CHECK - Fatal error!' write ( *, '(a)' ) ' C <= 0.' genlogistic_check = .false. return end if genlogistic_check = .true. return end subroutine genlogistic_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! GENLOGISTIC_MEAN returns the mean of the Generalized Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) digamma real ( kind = rk ) euler_constant real ( kind = rk ) mean mean = a + b * ( euler_constant ( ) + digamma ( c ) ) return end subroutine genlogistic_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! GENLOGISTIC_PDF evaluates the Generalized Logistic PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = ( C / B ) * exp ( ( A - X ) / B ) / ! ( ( 1 + exp ( ( A - X ) / B ) )^(C+1) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b pdf = ( c / b ) * exp ( - y ) / ( 1.0D+00 + exp ( - y ) ) ** ( c + 1.0D+00 ) return end subroutine genlogistic_sample ( a, b, c, x ) !*****************************************************************************80 ! !! GENLOGISTIC_SAMPLE samples the Generalized Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call genlogistic_cdf_inv ( cdf, a, b, c, x ) return end subroutine genlogistic_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! GENLOGISTIC_VARIANCE returns the variance of the Generalized Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) trigamma real ( kind = rk ) variance variance = b * b * ( r8_pi * r8_pi / 6.0D+00 + trigamma ( c ) ) return end subroutine geometric_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! GEOMETRIC_CDF evaluates the Geometric CDF. ! ! Discussion: ! ! CDF(X,P) is the probability that there will be at least one ! successful trial in the first X Bernoulli trials, given that ! the probability of success in a single trial is P. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the maximum number of trials. ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x if ( x <= 0 ) then cdf = 0.0D+00 else if ( a == 0.0D+00 ) then cdf = 0.0D+00 else if ( a == 1.0D+00 ) then cdf = 1.0D+00 else cdf = 1.0D+00 - ( 1.0D+00 - a ) ** x end if return end subroutine geometric_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! GEOMETRIC_CDF_INV inverts the Geometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0D+00 ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, integer X, the corresponding value of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GEOMETRIC_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( a == 1.0D+00 ) then x = 1 else if ( a == 0.0D+00 ) then x = huge ( x ) else x = 1 + int ( log ( 1.0D+00 - cdf ) / log ( 1.0D+00 - a ) ) end if return end subroutine geometric_cdf_values ( n_data, x, p, cdf ) !*****************************************************************************80 ! !! GEOMETRIC_CDF_VALUES returns values of the geometric CDF. ! ! Discussion: ! ! The geometric or Pascal probability density function gives the ! probability that the first success will happen on the X-th Bernoulli ! trial, given that the probability of a success on a single trial is P. ! ! The value of CDF ( X, P ) is the probability that the first success ! will happen on or before the X-th trial. ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`DiscreteDistributions`] ! dist = GeometricDistribution [ p ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Daniel Zwillinger, Stephen Kokoska, ! CRC Standard Probability and Statistics Tables and Formulae, ! Chapman and Hall / CRC Press, 2000. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer X, the number of trials. ! ! Output, real ( kind = rk ) P, the probability of success ! on one trial. ! ! Output, real ( kind = rk ) CDF, the cumulative density function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 14 real ( kind = rk ) cdf real ( kind = rk ), save, dimension ( n_max ) :: cdf_vec = (/ & 0.1900000000000000D+00, & 0.2710000000000000D+00, & 0.3439000000000000D+00, & 0.6861894039100000D+00, & 0.3600000000000000D+00, & 0.4880000000000000D+00, & 0.5904000000000000D+00, & 0.9141006540800000D+00, & 0.7599000000000000D+00, & 0.8704000000000000D+00, & 0.9375000000000000D+00, & 0.9843750000000000D+00, & 0.9995117187500000D+00, & 0.9999000000000000D+00 /) integer n_data real ( kind = rk ) p real ( kind = rk ), save, dimension ( n_max ) :: p_vec = (/ & 0.1D+00, & 0.1D+00, & 0.1D+00, & 0.1D+00, & 0.2D+00, & 0.2D+00, & 0.2D+00, & 0.2D+00, & 0.3D+00, & 0.4D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 0.9D+00 /) integer x integer, save, dimension ( n_max ) :: x_vec = (/ & 1, 2, 3, 10, 1, & 2, 3, 10, 3, 3, & 3, 5, 10, 3 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0 p = 0.0D+00 cdf = 0.0D+00 else x = x_vec(n_data) p = p_vec(n_data) cdf = cdf_vec(n_data) end if return end function geometric_check ( a ) !*****************************************************************************80 ! !! GEOMETRIC_CHECK checks the parameter of the Geometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, logical GEOMETRIC_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical geometric_check if ( a < 0.0D+00 .or. 1.0D+00 < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 0 or 1 < A.' geometric_check = .false. return end if geometric_check = .true. return end subroutine geometric_mean ( a, mean ) !*****************************************************************************80 ! !! GEOMETRIC_MEAN returns the mean of the Geometric PDF. ! ! Discussion: ! ! MEAN is the expected value of the number of trials required ! to obtain a single success. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = 1.0D+00 / a return end subroutine geometric_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! GEOMETRIC_PDF evaluates the Geometric PDF. ! ! Discussion: ! ! PDF(A;X) = A * ( 1 - A )^(X-1) ! ! PDF(A;X) is the probability that exactly X Bernoulli trials, each ! with probability of success A, will be required to achieve ! a single success. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the number of trials. ! 0 < X ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf integer x ! ! Special cases. ! if ( x < 1 ) then pdf = 0.0D+00 else if ( a == 0.0D+00 ) then pdf = 0.0D+00 else if ( a == 1.0D+00 ) then if ( x == 1 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if else pdf = a * ( 1.0D+00 - a ) ** ( x - 1 ) end if return end subroutine geometric_sample ( a, x ) !*****************************************************************************80 ! !! GEOMETRIC_SAMPLE samples the Geometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call geometric_cdf_inv ( cdf, a, x ) return end subroutine geometric_variance ( a, variance ) !*****************************************************************************80 ! !! GEOMETRIC_VARIANCE returns the variance of the Geometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of success on one trial. ! 0.0 <= A <= 1.0. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = ( 1.0D+00 - a ) / ( a * a ) return end subroutine gompertz_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! GOMPERTZ_CDF evaluates the Gompertz CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Norman Johnson, Samuel Kotz, Balakrishnan, ! Continuous Univariate Distributions, second edition, ! Wiley, 1994, ! QA273.6.J6 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1 < A, 0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else cdf = 1.0D+00 - exp ( - b * ( a**x - 1.0D+00 ) / log ( a ) ) end if return end subroutine gompertz_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! GOMPERTZ_CDF_INV inverts the Gompertz CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Norman Johnson, Samuel Kotz, Balakrishnan, ! Continuous Univariate Distributions, second edition, ! Wiley, 1994, ! QA273.6.J6 ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1 < A, 0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GOMPERTZ_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf < 1.0D+00 ) then x = log ( 1.0D+00 - log ( 1.0D+00 - cdf ) * log ( a ) / b ) / log ( a ) else x = huge ( x ) end if return end function gompertz_check ( a, b ) !*****************************************************************************80 ! !! GOMPERTZ_CHECK checks the parameters of the Gompertz PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Norman Johnson, Samuel Kotz, Balakrishnan, ! Continuous Univariate Distributions, second edition, ! Wiley, 1994, ! QA273.6.J6 ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1 < A, 0 < B. ! ! Output, logical GOMPERTZ_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical gompertz_check if ( a <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GOMPERTZ_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 1.0!' gompertz_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GOMPERTZ_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.0!' gompertz_check = .false. return end if gompertz_check = .true. return end subroutine gompertz_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! GOMPERTZ_PDF evaluates the Gompertz PDF. ! ! Discussion: ! ! PDF(A,B;X) = B * A^X / exp ( B * ( A^X - 1 ) / log ( A ) ) ! ! for ! ! 0.0 <= X ! 1.0 < A ! 0.0 < B ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Norman Johnson, Samuel Kotz, Balakrishnan, ! Continuous Univariate Distributions, second edition, ! Wiley, 1994, ! QA273.6.J6 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1 < A, 0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else if ( 1.0D+00 < a ) then pdf = exp ( log ( b ) + x * log ( a ) & - ( b / log ( a ) ) * ( a**x - 1.0D+00 ) ) end if return end subroutine gompertz_sample ( a, b, x ) !*****************************************************************************80 ! !! GOMPERTZ_SAMPLE samples the Gompertz PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1 < A, 0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call gompertz_cdf_inv ( cdf, a, b, x ) return end subroutine gumbel_cdf ( x, cdf ) !*****************************************************************************80 ! !! GUMBEL_CDF evaluates the Gumbel CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x cdf = exp ( - exp ( - x ) ) return end subroutine gumbel_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! GUMBEL_CDF_INV inverts the Gumbel CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'GUMBEL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = - log ( - log ( cdf ) ) return end subroutine gumbel_mean ( mean ) !*****************************************************************************80 ! !! GUMBEL_MEAN returns the mean of the Gumbel PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) euler_constant real ( kind = rk ) mean mean = euler_constant ( ) return end subroutine gumbel_pdf ( x, pdf ) !*****************************************************************************80 ! !! GUMBEL_PDF evaluates the Gumbel PDF. ! ! Discussion: ! ! PDF(X) = exp ( -X ) * exp ( - exp ( -X ) ). ! ! GUMBEL_PDF(X) = EXTREME_PDF(0,1;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Eric Weisstein, editor, ! CRC Concise Encylopedia of Mathematics, ! CRC Press, 1998. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ) x pdf = exp ( - x - exp ( - x ) ) return end subroutine gumbel_sample ( x ) !*****************************************************************************80 ! !! GUMBEL_SAMPLE samples the Gumbel PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call gumbel_cdf_inv ( cdf, x ) return end subroutine gumbel_variance ( variance ) !*****************************************************************************80 ! !! GUMBEL_VARIANCE returns the variance of the Gumbel PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = r8_pi * r8_pi / 6.0D+00 return end subroutine half_normal_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! HALF_NORMAL_CDF evaluates the Half Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else call normal_cdf ( x, a, b, cdf2 ) cdf = 2.0D+00 * cdf2 - 1.0D+00 end if return end subroutine half_normal_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! HALF_NORMAL_CDF_INV inverts the Half Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HALF_NORMAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cdf2 = 0.5D+00 * ( cdf + 1.0D+00 ) call normal_cdf_inv ( cdf2, a, b, x ) return end function half_normal_check ( a, b ) !*****************************************************************************80 ! !! HALF_NORMAL_CHECK checks the parameters of the Half Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical HALF_NORMAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical half_normal_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HALF_NORMAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' half_normal_check = .false. return end if half_normal_check = .true. return end subroutine half_normal_mean ( a, b, mean ) !*****************************************************************************80 ! !! HALF_NORMAL_MEAN returns the mean of the Half Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 mean = a + b * sqrt ( 2.0D+00 / r8_pi ) return end subroutine half_normal_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! HALF_NORMAL_PDF evaluates the Half Normal PDF. ! ! Discussion: ! ! PDF(A,B;X) = ! sqrt ( 2 / PI ) * ( 1 / B ) * exp ( - 0.5D+00 * ( ( X - A ) / B )^2 ) ! ! for A <= X ! ! The Half Normal PDF is a special case of both the Chi PDF and the ! Folded Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y if ( x <= a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = sqrt ( 2.0D+00 / r8_pi ) * ( 1.0D+00 / b ) * exp ( - 0.5D+00 * y * y ) end if return end subroutine half_normal_sample ( a, b, x ) !*****************************************************************************80 ! !! HALF_NORMAL_SAMPLE samples the Half Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call half_normal_cdf_inv ( cdf, a, b, x ) return end subroutine half_normal_variance ( a, b, variance ) !*****************************************************************************80 ! !! HALF_NORMAL_VARIANCE returns the variance of the Half Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = b * b * ( 1.0D+00 - 2.0D+00 / r8_pi ) return end subroutine hypergeometric_cdf ( x, n, m, l, cdf ) !*****************************************************************************80 ! !! hypergeometric_cdf() evaluates the Hypergeometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) c1_log real ( kind = rk ) c2_log real ( kind = rk ) i4_choose_log integer l integer m integer n real ( kind = rk ) pdf integer x integer x2 c1_log = i4_choose_log ( l - m, n ) c2_log = i4_choose_log ( l, n ) pdf = exp ( c1_log - c2_log ) cdf = pdf do x2 = 0, x - 1 pdf = pdf * real ( ( m - x2 ) * ( n - x2 ), kind = rk ) & / real ( ( x2 + 1 ) * ( l - m - n + x2 + 1 ), kind = rk ) cdf = cdf + pdf end do return end subroutine hypergeometric_cdf_values ( n_data, sam, suc, pop, n, fx ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_CDF_VALUES returns some values of the hypergeometric CDF. ! ! Discussion: ! ! CDF(X)(A,B) is the probability of at most X successes in A trials, ! given that the probability of success on a single trial is B. ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`DiscreteDistributions`] ! dist = HypergeometricDistribution [ sam, suc, pop ] ! CDF [ dist, n ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Daniel Zwillinger, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, CRC Press, 1996, pages 651-652. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer SAM, integer SUC, integer POP, the sample ! size, success size, and population parameters of the function. ! ! Output, integer N, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 16 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.6001858177500578D-01, & 0.2615284665839845D+00, & 0.6695237889132748D+00, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.5332595856827856D+00, & 0.1819495964117640D+00, & 0.4448047017527730D-01, & 0.9999991751316731D+00, & 0.9926860896560750D+00, & 0.8410799901444538D+00, & 0.3459800113391901D+00, & 0.0000000000000000D+00, & 0.2088888139634505D-02, & 0.3876752992448843D+00, & 0.9135215248834896D+00 /) integer n integer n_data integer, save, dimension ( n_max ) :: n_vec = (/ & 7, 8, 9, 10, & 6, 6, 6, 6, & 6, 6, 6, 6, & 0, 0, 0, 0 /) integer pop integer, save, dimension ( n_max ) :: pop_vec = (/ & 100, 100, 100, 100, & 100, 100, 100, 100, & 100, 100, 100, 100, & 90, 200, 1000, 10000 /) integer sam integer, save, dimension ( n_max ) :: sam_vec = (/ & 10, 10, 10, 10, & 6, 7, 8, 9, & 10, 10, 10, 10, & 10, 10, 10, 10 /) integer suc integer, save, dimension ( n_max ) :: suc_vec = (/ & 90, 90, 90, 90, & 90, 90, 90, 90, & 10, 30, 50, 70, & 90, 90, 90, 90 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 sam = 0 suc = 0 pop = 0 n = 0 fx = 0.0D+00 else sam = sam_vec(n_data) suc = suc_vec(n_data) pop = pop_vec(n_data) n = n_vec(n_data) fx = fx_vec(n_data) end if return end function hypergeometric_check ( n, m, l ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_CHECK checks the parameters of the Hypergeometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls in the population. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, logical HYPERGEOMETRIC_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical hypergeometric_check integer l integer m integer n if ( n < 0 .or. l < n ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HYPERGEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' Input N is out of range.' hypergeometric_check = .false. return end if if ( m < 0 .or. l < m ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HYPERGEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' Input M is out of range.' hypergeometric_check = .false. return end if if ( l < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'HYPERGEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' Input L is out of range.' hypergeometric_check = .false. return end if hypergeometric_check = .true. return end subroutine hypergeometric_mean ( n, m, l, mean ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_MEAN returns the mean of the Hypergeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls in the population. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer l integer m real ( kind = rk ) mean integer n mean = real ( n * m, kind = rk ) / real ( l, kind = rk ) return end subroutine hypergeometric_pdf ( x, n, m, l, pdf ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_PDF evaluates the Hypergeometric PDF. ! ! Discussion: ! ! PDF(N,M,L;X) = C(M,X) * C(L-M,N-X) / C(L,N). ! ! PDF(N,M,L;X) is the probability of drawing X white balls in a ! single random sample of size N from a population containing ! M white balls and a total of L balls. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the desired number of white balls. ! 0 <= X <= N, usually, although any value of X can be given. ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, real ( kind = rk ) PDF, the probability of exactly K white balls. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) c1 real ( kind = rk ) c2 real ( kind = rk ) c3 real ( kind = rk ) i4_choose_log integer l integer m integer n real ( kind = rk ) pdf real ( kind = rk ) pdf_log integer x ! ! Special cases. ! if ( x < 0 ) then pdf = 1.0D+00 else if ( n < x ) then pdf = 0.0D+00 else if ( m < x ) then pdf = 0.0D+00 else if ( l < x ) then pdf = 0.0D+00 else if ( n == 0 ) then if ( x == 0 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if else c1 = i4_choose_log ( m, x ) c2 = i4_choose_log ( l - m, n - x ) c3 = i4_choose_log ( l, n ) pdf_log = c1 + c2 - c3 pdf = exp ( pdf_log ) end if return end subroutine hypergeometric_sample ( n, m, l, x ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_SAMPLE samples the Hypergeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 165. ! ! Parameters: ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c1_log real ( kind = rk ) c2_log real ( kind = rk ) i4_choose_log integer l integer m integer n real ( kind = rk ) u integer x c1_log = i4_choose_log ( l - m, n ) c2_log = i4_choose_log ( l, n ) a = exp ( c1_log - c2_log ) b = a call random_number ( harvest = u ) x = 0 do while ( a < u ) b = b * real ( ( m - x ) * ( n - x ), kind = rk ) & / real ( ( x + 1 ) * ( l - m - n + x + 1 ), kind = rk ) a = a + b x = x + 1 end do return end subroutine hypergeometric_variance ( n, m, l, variance ) !*****************************************************************************80 ! !! HYPERGEOMETRIC_VARIANCE returns the variance of the Hypergeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of balls selected. ! 0 <= N <= L. ! ! Input, integer M, the number of white balls. ! 0 <= M <= L. ! ! Input, integer L, the number of balls to select from. ! 0 <= L. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer l integer m integer n real ( kind = rk ) variance variance = real ( n * m * ( l - m ) * ( l - n ), kind = rk ) & / real ( l * l * ( l - 1 ), kind = rk ) return end function i4_choose ( n, k ) !*****************************************************************************80 ! !! i4_choose() computes the binomial coefficient C(N,K) as an I4. ! ! Discussion: ! ! The value is calculated in such a way as to avoid overflow and ! roundoff. The calculation is done in integer arithmetic. ! ! The formula used is: ! ! C(N,K) = N! / ( K! * (N-K)! ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 October 2014 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! ML Wolfson, HV Wright, ! Algorithm 160: ! Combinatorial of M Things Taken N at a Time, ! Communications of the ACM, ! Volume 6, Number 4, April 1963, page 161. ! ! Parameters: ! ! Input, integer N, K, are the values of N and K. ! ! Output, integer I4_CHOOSE, the number of combinations of N ! things taken K at a time. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer i4_choose integer k integer mn integer mx integer n integer value mn = min ( k, n - k ) mx = max ( k, n - k ) if ( mn < 0 ) then value = 0 else if ( mn == 0 ) then value = 1 else value = mx + 1 do i = 2, mn value = ( value * ( mx + i ) ) / i end do end if i4_choose = value return end function i4_choose_log ( n, k ) !*****************************************************************************80 ! !! i4_choose_log() computes the logarithm of the Binomial coefficient. ! ! Discussion: ! ! The formula is: ! ! LOG ( C(N,K) ) = LOG ( N! / ( K! * (N-K)! ) ). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, K, are the values of N and K. ! ! Output, real ( kind = rk ) I4_CHOOSE_LOG, the logarithm of C(N,K). ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) i4_choose_log integer k integer n i4_choose_log = & lgamma ( real ( n + 1, kind = rk ) ) & - lgamma ( real ( k + 1, kind = rk ) ) & - lgamma ( real ( n - k + 1, kind = rk ) ) return end function i4_factorial ( n ) !*****************************************************************************80 ! !! i4_factorial() computes the factorial of N. ! ! Discussion: ! ! factorial ( N ) = product ( 1 <= I <= N ) I ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 June 2008 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N, the argument of the factorial function. ! If N is less than 1, the function value is returned as 1. ! 0 <= N <= 13 is required. ! ! Output: ! ! integer I4_FACTORIAL, the factorial of N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer i4_factorial integer n i4_factorial = 1 if ( 13 < n ) then i4_factorial = - 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_FACTORIAL - Fatal error!' write ( *, '(a)' ) ' I4_FACTORIAL(N) cannot be computed as an integer' write ( *, '(a)' ) ' for 13 < N.' write ( *, '(a,i8)' ) ' Input value N = ', n stop 1 end if do i = 1, n i4_factorial = i4_factorial * i end do return end function i4_huge ( ) !*****************************************************************************80 ! !! i4_huge() returns a "huge" I4. ! ! Discussion: ! ! On an IEEE 32 bit machine, I4_HUGE should be 2^31 - 1, and its ! bit pattern should be ! ! 01111111111111111111111111111111 ! ! In this case, its numerical value is 2147483647. ! ! Using the Dec/Compaq/HP Alpha FORTRAN compiler FORT, I could ! use I4_HUGE() and HUGE interchangeably. ! ! An I4 is an integer value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer I4_HUGE, a "huge" I4. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i4_huge i4_huge = 2147483647 return end function i4_is_power_of_10 ( n ) !*****************************************************************************80 ! !! i4_is_power_of_10() reports whether an I4 is a power of 10. ! ! Discussion: ! ! The powers of 10 are 1, 10, 100, 1000, 10000, and so on. ! ! An I4 is an integer value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the integer to be tested. ! ! Output, logical I4_IS_POWER_OF_10, TRUE if N is a power of 10. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) logical i4_is_power_of_10 integer n integer n_copy n_copy = n i4_is_power_of_10 = .false. if ( n_copy <= 0 ) then return end if do while ( 1 < n_copy ) if ( mod ( n_copy, 10 ) /= 0 ) then return end if n_copy = n_copy / 10 end do i4_is_power_of_10 = .true. return end function i4_mop ( i ) !*****************************************************************************80 ! !! i4_mop() returns the I-th power of -1 as an I4. ! ! Discussion: ! ! An I4 is an integer value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 November 2007 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer I, the power of -1. ! ! Output: ! ! integer I4_MOP, the I-th power of -1. ! implicit none integer i integer i4_mop if ( mod ( i, 2 ) == 0 ) then i4_mop = 1 else i4_mop = -1 end if return end function i4_uniform_ab ( a, b ) !*****************************************************************************80 ! !! i4_uniform_ab() returns a scaled pseudorandom I4. ! ! Discussion: ! ! An I4 is an integer value. ! ! The pseudorandom number will be scaled to be uniformly distributed ! between A and B. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 November 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Pierre L'Ecuyer, ! Random Number Generation, ! in Handbook of Simulation, ! edited by Jerry Banks, ! Wiley Interscience, page 95, 1998. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer A, B, the limits of the interval. ! ! Output, integer I4_UNIFORM_AB, a number between A and B. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b integer i4_uniform_ab real r integer value call random_number ( harvest = r ) ! ! Scale R to lie between A-0.5 and B+0.5. ! r = ( 1.0E+00 - r ) * ( real ( min ( a, b ) ) - 0.5E+00 ) & + r * ( real ( max ( a, b ) ) + 0.5E+00 ) ! ! Use rounding to convert R to an integer between A and B. ! value = nint ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) i4_uniform_ab = value return end subroutine i4row_max ( m, n, a, amax ) !*****************************************************************************80 ! !! I4ROW_MAX returns the maximums of the rows of an I4ROW. ! ! Discussion: ! ! An I4ROW is an M by N array of I4's, regarded ! as an array of M rows of length N. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), the array to be examined. ! ! Output, integer AMAX(M), the maximums of the rows ! of the array. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) integer amax(m) integer i integer j do i = 1, m amax(i) = a(i,1) do j = 2, n if ( amax(i) < a(i,j) ) then amax(i) = a(i,j) end if end do end do return end subroutine i4row_mean ( m, n, a, mean ) !*****************************************************************************80 ! !! i4row_mean() returns the means of the rows of an I4ROW. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns of data. ! ! Input, integer A(M,N), the array. ! ! Output, real ( kind = rk ) MEAN(M), the mean of each row. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) integer i real ( kind = rk ) mean(m) do i = 1, m mean(i) = sum ( a(i,1:n) ) / real ( n, kind = rk ) end do return end subroutine i4row_min ( m, n, a, amin ) !*****************************************************************************80 ! !! I4ROW_MIN returns the minimums of the rows of an I4ROW. ! ! Discussion: ! ! An I4ROW is an M by N array of I4's, regarded ! as an array of M rows of length N. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), the array to be examined. ! ! Output, integer AMIN(M), the minimums of the rows. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) integer amin(m) integer i integer j do i = 1, m amin(i) = a(i,1) do j = 2, n if ( a(i,j) < amin(i) ) then amin(i) = a(i,j) end if end do end do return end subroutine i4row_variance ( m, n, a, variance ) !*****************************************************************************80 ! !! I4ROW_VARIANCE returns the variances of the rows of an I4ROW. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns of data. ! ! Input, integer A(M,N), the array. ! ! Output, real ( kind = rk ) VARIANCE(M), the variance of each row. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m,n) integer i integer j real ( kind = rk ) mean real ( kind = rk ) variance(m) do i = 1, m mean = real ( sum ( a(i,1:n) ), kind = rk ) / real ( n, kind = rk ) variance(i) = 0.0D+00 do j = 1, n variance(i) = variance(i) + ( real ( a(i,j), kind = rk ) - mean ) ** 2 end do if ( 1 < n ) then variance(i) = variance(i) / real ( n - 1, kind = rk ) else variance(i) = 0.0D+00 end if end do return end subroutine i4vec_max ( n, a, amax ) !*****************************************************************************80 ! !! I4VEC_MAX computes the maximum element of an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the array. ! ! Input, integer A(N), the array. ! ! Output, integer AMAX, the value of the largest entry. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer amax amax = maxval ( a(1:n) ) return end subroutine i4vec_mean ( n, x, mean ) !*****************************************************************************80 ! !! I4VEC_MEAN returns the mean of an I4VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, integer X(N), the vector whose mean is desired. ! ! Output, real ( kind = rk ) MEAN, the mean, or average, of ! the vector entries. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mean integer x(n) mean = real ( sum ( x(1:n) ), kind = rk ) / real ( n, kind = rk ) return end subroutine i4vec_min ( n, a, amin ) !*****************************************************************************80 ! !! I4VEC_MIN computes the minimum element of an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the array. ! ! Input, integer A(N), the array. ! ! Output, integer AMIN, the value of the smallest entry. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer amin amin = minval ( a(1:n) ) return end subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 November 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, integer A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title to be printed first. ! TITLE may be blank. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer big integer i character ( len = * ) title if ( title /= ' ' ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if big = maxval ( abs ( a(1:n) ) ) write ( *, '(a)' ) ' ' if ( big < 1000 ) then do i = 1, n write ( *, '(i8,1x,i4)' ) i, a(i) end do else if ( big < 1000000 ) then do i = 1, n write ( *, '(i8,1x,i7)' ) i, a(i) end do else do i = 1, n write ( *, '(i8,i11)' ) i, a(i) end do end if return end subroutine i4vec_run_count ( n, a, run_count ) !*****************************************************************************80 ! !! I4VEC_RUN_COUNT counts runs of equal values in an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of integer values. ! ! A run is a sequence of equal values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, integer A(N), the vector to be examined. ! ! Output, integer RUN_COUNT, the number of runs. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer i integer run_count integer test run_count = 0 if ( n < 1 ) then return end if test = 0 do i = 1, n if ( i == 1 .or. a(i) /= test ) then run_count = run_count + 1 test = a(i) end if end do return end subroutine i4vec_uniform_ab ( n, a, b, x ) !*****************************************************************************80 ! !! I4VEC_UNIFORM_AB returns a scaled pseudorandom I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! The pseudorandom numbers should be scaled to be uniformly distributed ! between A and B. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 November 2006 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the dimension of the vector. ! ! Input, integer A, B, the limits of the interval. ! ! Output, integer X(N), a vector of numbers between A and B. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a integer b integer i real r integer value integer x(n) do i = 1, n call random_number ( harvest = r ) ! ! Scale R to lie between A-0.5 and B+0.5. ! r = ( 1.0E+00 - r ) * ( real ( min ( a, b ) ) - 0.5E+00 ) & + r * ( real ( max ( a, b ) ) + 0.5E+00 ) ! ! Use rounding to convert R to an integer between A and B. ! value = nint ( r ) value = max ( value, min ( a, b ) ) value = min ( value, max ( a, b ) ) x(i) = value end do return end subroutine i4vec_unique_count ( n, a, unique_num ) !*****************************************************************************80 ! !! I4VEC_UNIQUE_COUNT counts the unique elements in an unsorted I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Because the array is unsorted, this algorithm is O(N^2). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 April 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of elements of A. ! ! Input, integer A(N), the unsorted array to examine. ! ! Output, integer UNIQUE_NUM, the number of unique elements ! of A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer a(n) integer i integer j integer unique_num unique_num = 0 do i = 1, n unique_num = unique_num + 1 do j = 1, i - 1 if ( a(i) == a(j) ) then unique_num = unique_num - 1 exit end if end do end do return end subroutine i4vec_variance ( n, x, variance ) !*****************************************************************************80 ! !! I4VEC_VARIANCE returns the variance of an I4VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 May 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, integer X(N), the vector whose variance is desired. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the vector entries. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mean real ( kind = rk ) variance integer x(n) call i4vec_mean ( n, x, mean ) variance = sum ( ( real ( x(1:n), kind = rk ) - mean ) ** 2 ) if ( 1 < n ) then variance = variance / real ( n - 1, kind = rk ) else variance = 0.0D+00 end if return end subroutine inverse_gaussian_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_CDF evaluates the Inverse Gaussian CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! 0.0 < X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else x1 = sqrt ( b / x ) * ( x - a ) / a call normal_01_cdf ( x1, cdf1 ) x2 = - sqrt ( b / x ) * ( x + a ) / a call normal_01_cdf ( x2, cdf2 ) cdf = cdf1 + exp ( 2.0D+00 * b / a ) * cdf2 end if return end function inverse_gaussian_check ( a, b ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_CHECK checks the parameters of the Inverse Gaussian CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, logical INVERSE_GAUSSIAN_CHECK, is true if the parameters ! are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical inverse_gaussian_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'INVERSE_GAUSSIAN_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' inverse_gaussian_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'INVERSE_GAUSSIAN_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' inverse_gaussian_check = .false. return end if inverse_gaussian_check = .true. return end subroutine inverse_gaussian_mean ( a, b, mean ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_MEAN returns the mean of the Inverse Gaussian PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine inverse_gaussian_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_PDF evaluates the Inverse Gaussian PDF. ! ! Discussion: ! ! The Inverse Gaussian PDF is also known as the Wald PDF ! and the Inverse Normal PDF. ! ! PDF(A,B;X) ! = sqrt ( B / ( 2 * PI * X^3 ) ) ! * exp ( - B * ( X - A )^2 / ( 2.0D+00 * A^2 * X ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 < X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= 0.0D+00 ) then pdf = 0.0D+00 else pdf = sqrt ( b / ( 2.0D+00 * r8_pi * x ** 3 ) ) * & exp ( - b * ( x - a ) ** 2 / ( 2.0D+00 * a * a * x ) ) end if return end subroutine inverse_gaussian_sample ( a, b, x ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_SAMPLE samples the Inverse Gaussian PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) phi real ( kind = rk ) t real ( kind = rk ) u real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) z phi = b / a call normal_01_sample ( z ) y = z * z t = 1.0D+00 + 0.5D+00 * ( y - sqrt ( 4.0D+00 * phi * y + y * y ) ) / phi call random_number ( harvest = u ) if ( u * ( 1.0D+00 + t ) <= 1.0D+00 ) then x = a * t else x = a / t end if return end subroutine inverse_gaussian_variance ( a, b, variance ) !*****************************************************************************80 ! !! INVERSE_GAUSSIAN_VARIANCE returns the variance of the Inverse Gaussian PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = a ** 3 / b return end subroutine laplace_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! LAPLACE_CDF evaluates the Laplace CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b if ( x <= a ) then cdf = 0.5D+00 * exp ( y ) else cdf = 1.0D+00 - 0.5D+00 * exp ( - y ) end if return end subroutine laplace_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! LAPLACE_CDF_INV inverts the Laplace CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LAPLACE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf <= 0.5D+00 ) then x = a + b * log ( 2.0D+00 * cdf ) else x = a - b * log ( 2.0D+00 * ( 1.0D+00 - cdf ) ) end if return end subroutine laplace_cdf_values ( n_data, mu, beta, x, fx ) !*****************************************************************************80 ! !! LAPLACE_CDF_VALUES returns some values of the Laplace CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = LaplaceDistribution [ mu, beta ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) BETA, the shape parameter. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) beta real ( kind = rk ), save, dimension ( n_max ) :: beta_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.8160602794142788D+00, & 0.9323323583816937D+00, & 0.9751064658160680D+00, & 0.6967346701436833D+00, & 0.6417343447131054D+00, & 0.6105996084642976D+00, & 0.5906346234610091D+00, & 0.5000000000000000D+00, & 0.3032653298563167D+00, & 0.1839397205857212D+00, & 0.1115650800742149D+00 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.0000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.0000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 beta = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) beta = beta_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function laplace_check ( a, b ) !*****************************************************************************80 ! !! LAPLACE_CHECK checks the parameters of the Laplace PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical LAPLACE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical laplace_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LAPLACE_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' laplace_check = .false. return end if laplace_check = .true. return end subroutine laplace_mean ( a, b, mean ) !*****************************************************************************80 ! !! LAPLACE_MEAN returns the mean of the Laplace PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine laplace_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! LAPLACE_PDF evaluates the Laplace PDF. ! ! Discussion: ! ! PDF(A,B;X) = exp ( - abs ( X - A ) / B ) / ( 2 * B ) ! ! The Laplace PDF is also known as the Double Exponential PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x pdf = exp ( - abs ( x - a ) / b ) / ( 2.0D+00 * b ) return end subroutine laplace_sample ( a, b, x ) !*****************************************************************************80 ! !! LAPLACE_SAMPLE samples the Laplace PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call laplace_cdf_inv ( cdf, a, b, x ) return end subroutine laplace_variance ( a, b, variance ) !*****************************************************************************80 ! !! LAPLACE_VARIANCE returns the variance of the Laplace PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = 2.0D+00 * b * b return end function lerch ( a, b, c ) !*****************************************************************************80 ! !! LERCH estimates the Lerch transcendent function. ! ! Discussion: ! ! The Lerch transcendent function is defined as: ! ! LERCH ( A, B, C ) = Sum ( 0 <= K < Infinity ) A^K / ( C + K )^B ! ! excluding any term with ( C + K ) = 0. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 December 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Eric Weisstein, editor, ! CRC Concise Encylopedia of Mathematics, ! CRC Press, 1998. ! ! Thanks: ! ! Oscar van Vlijmen ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the function. ! ! Output, real ( kind = rk ) LERCH, an approximation to the Lerch ! transcendent function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a_k real ( kind = rk ) b real ( kind = rk ) c integer k real ( kind = rk ) lerch real ( kind = rk ) sum2 real ( kind = rk ) sum2_old sum2 = 0.0D+00 k = 0 a_k = 1.0D+00 do sum2_old = sum2 if ( c + real ( k, kind = rk ) == 0.0D+00 ) then k = k + 1 a_k = a_k * a cycle end if sum2 = sum2 + a_k / ( c + real ( k, kind = rk ) ) ** b if ( sum2 <= sum2_old ) then exit end if k = k + 1 a_k = a_k * a end do lerch = sum2 return end subroutine levy_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! LEVY_CDF evaluates the Levy CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 April 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! Normally, A <= X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) r8_error_f real ( kind = rk ) x if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVY_CDF - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0' stop 1 end if if ( x <= a ) then cdf = 0.0D+00 else cdf = 1.0D+00 - r8_error_f ( sqrt ( b / ( 2.0D+00 * ( x - a ) ) ) ) end if return end subroutine levy_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! LEVY_CDF_INV inverts the Levy CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 April 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) x real ( kind = rk ) x1 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVY_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVY_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0' stop 1 end if cdf1 = 1.0D+00 - 0.5D+00 * cdf call normal_01_cdf_inv ( cdf1, x1 ) x = a + b / ( x1 * x1 ) return end subroutine levy_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! LEVY_PDF evaluates the Levy PDF. ! ! Discussion: ! ! PDF(A,B;X) = sqrt ( B / ( 2 * PI ) ) ! * exp ( - B / ( 2 * ( X - A ) ) ! / ( X - A )^(3/2) ! ! for A <= X. ! ! Note that the Levy PDF does not have a finite mean or variance. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 April 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! Normally, A <= X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LEVY_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0' stop 1 end if if ( x <= a ) then pdf = 0.0D+00 else pdf = sqrt ( b / ( 2.0D+00 * r8_pi ) ) & * exp ( - b / ( 2.0D+00 * ( x - a ) ) ) & / sqrt ( ( x - a ) ** 3 ) end if return end subroutine levy_sample ( a, b, x ) !*****************************************************************************80 ! !! LEVY_SAMPLE samples the Levy PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 April 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call levy_cdf_inv ( cdf, a, b, x ) return end subroutine logistic_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! LOGISTIC_CDF evaluates the Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x cdf = 1.0D+00 / ( 1.0D+00 + exp ( ( a - x ) / b ) ) return end subroutine logistic_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! LOGISTIC_CDF_INV inverts the Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOGISTIC_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a - b * log ( ( 1.0D+00 - cdf ) / cdf ) return end subroutine logistic_cdf_values ( n_data, mu, beta, x, fx ) !*****************************************************************************80 ! !! LOGISTIC_CDF_VALUES returns some values of the Logistic CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = LogisticDistribution [ mu, beta ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) BETA, the shape parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) beta real ( kind = rk ), save, dimension ( n_max ) :: beta_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.8807970779778824D+00, & 0.9820137900379084D+00, & 0.9975273768433652D+00, & 0.6224593312018546D+00, & 0.5825702064623147D+00, & 0.5621765008857981D+00, & 0.5498339973124779D+00, & 0.6224593312018546D+00, & 0.5000000000000000D+00, & 0.3775406687981454D+00, & 0.2689414213699951D+00 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 beta = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) beta = beta_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function logistic_check ( a, b ) !*****************************************************************************80 ! !! LOGISTIC_CHECK checks the parameters of the Logistic CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical LOGISTIC_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical logistic_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOGISTIC_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' logistic_check = .false. return end if logistic_check = .true. return end subroutine logistic_mean ( a, b, mean ) !*****************************************************************************80 ! !! LOGISTIC_MEAN returns the mean of the Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine logistic_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! LOGISTIC_PDF evaluates the Logistic PDF. ! ! Discussion: ! ! PDF(A,B;X) = exp ( ( A - X ) / B ) / ! ( B * ( 1 + exp ( ( A - X ) / B ) )^2 ) ! ! The Logistic PDF is also known as the Sech-Squared PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) temp real ( kind = rk ) x temp = exp ( ( a - x ) / b ) pdf = temp / ( b * ( 1.0D+00 + temp ) ** 2 ) return end subroutine logistic_sample ( a, b, x ) !*****************************************************************************80 ! !! LOGISTIC_SAMPLE samples the Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call logistic_cdf_inv ( cdf, a, b, x ) return end subroutine logistic_variance ( a, b, variance ) !*****************************************************************************80 ! !! LOGISTIC_VARIANCE returns the variance of the Logistic PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = r8_pi * r8_pi * b * b / 3.0D+00 return end subroutine log_normal_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! LOG_NORMAL_CDF evaluates the Lognormal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 < X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) logx real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else logx = log ( x ) call normal_cdf ( logx, a, b, cdf ) end if return end subroutine log_normal_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! LOG_NORMAL_CDF_INV inverts the Lognormal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Input, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) logx real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_NORMAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if call normal_cdf_inv ( cdf, a, b, logx ) x = exp ( logx ) return end subroutine log_normal_cdf_values ( n_data, mu, sigma, x, fx ) !*****************************************************************************80 ! !! LOG_NORMAL_CDF_VALUES returns some values of the Log Normal CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = LogNormalDistribution [ mu, sigma ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) SIGMA, the shape parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.2275013194817921D-01, & 0.2697049307349095D+00, & 0.5781741008028732D+00, & 0.7801170895122241D+00, & 0.4390310097476894D+00, & 0.4592655190218048D+00, & 0.4694258497695908D+00, & 0.4755320473858733D+00, & 0.3261051056816658D+00, & 0.1708799040927608D+00, & 0.7343256357952060D-01, & 0.2554673736161761D-01 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) sigma real ( kind = rk ), save, dimension ( n_max ) :: sigma_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 sigma = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) sigma = sigma_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function log_normal_check ( a, b ) !*****************************************************************************80 ! !! LOG_NORMAL_CHECK checks the parameters of the Lognormal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, logical LOG_NORMAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical log_normal_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_NORMAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' log_normal_check = .false. return end if log_normal_check = .true. return end subroutine log_normal_mean ( a, b, mean ) !*****************************************************************************80 ! !! LOG_NORMAL_MEAN returns the mean of the Lognormal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = exp ( a + 0.5D+00 * b * b ) return end subroutine log_normal_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! LOG_NORMAL_PDF evaluates the Lognormal PDF. ! ! Discussion: ! ! PDF(A,B;X) ! = exp ( - 0.5 * ( ( log ( X ) - A ) / B )^2 ) ! / ( B * X * sqrt ( 2 * PI ) ) ! ! The Lognormal PDF is also known as the Cobb-Douglas PDF, ! and as the Antilog_normal PDF. ! ! The Lognormal PDF describes a variable X whose logarithm ! is normally distributed. ! ! The special case A = 0, B = 1 is known as Gilbrat's PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 < X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x <= 0.0D+00 ) then pdf = 0.0D+00 else pdf = exp ( - 0.5D+00 * ( ( log ( x ) - a ) / b ) ** 2 ) & / ( b * x * sqrt ( 2.0D+00 * r8_pi ) ) end if return end subroutine log_normal_sample ( a, b, x ) !*****************************************************************************80 ! !! LOG_NORMAL_SAMPLE samples the Lognormal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call log_normal_cdf_inv ( cdf, a, b, x ) return end subroutine log_normal_variance ( a, b, variance ) !*****************************************************************************80 ! !! LOG_NORMAL_VARIANCE returns the variance of the Lognormal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = exp ( 2.0D+00 * a + b * b ) * ( exp ( b * b ) - 1.0D+00 ) return end subroutine log_series_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! LOG_SERIES_CDF evaluates the Logarithmic Series CDF. ! ! Discussion: ! ! Simple summation is used, with a recursion to generate successive ! values of the PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 1999 ! ! Author: ! ! John Burkardt ! ! Thanks: ! ! Oscar van Vlijmen ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 0 < X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) pdf integer x integer x2 cdf = 0.0D+00 do x2 = 1, x if ( x2 == 1 ) then pdf = - a / log ( 1.0D+00 - a ) else pdf = real ( x2 - 1, kind = rk ) * a * pdf / real ( x2, kind = rk ) end if cdf = cdf + pdf end do return end subroutine log_series_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! LOG_SERIES_CDF_INV inverts the Logarithmic Series CDF. ! ! Discussion: ! ! Simple summation is used. The only protection against an ! infinite loop caused by roundoff is that X cannot be larger ! than 1000. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, real ( kind = rk ) X, the argument of the CDF for which ! CDF(X-1) <= CDF <= CDF(X). ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) pdf integer x integer, parameter :: xmax = 1000 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_SERIES_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cdf2 = 0.0D+00 x = 1 do while ( cdf2 < cdf .and. x < xmax ) if ( x == 1 ) then pdf = - a / log ( 1.0D+00 - a ) else pdf = real ( x - 1, kind = rk ) * a * pdf / real ( x, kind = rk ) end if cdf2 = cdf2 + pdf x = x + 1 end do return end subroutine log_series_cdf_values ( n_data, t, n, fx ) !*****************************************************************************80 ! !! LOG_SERIES_CDF_VALUES returns some values of the log series CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`DiscreteDistributions`] ! dist = LogSeriesDistribution [ t ] ! CDF [ dist, n ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) T, the parameter of the function. ! ! Output, integer N, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 29 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.9491221581029903D+00, & 0.9433541128559735D+00, & 0.9361094611773272D+00, & 0.9267370278044118D+00, & 0.9141358246245129D+00, & 0.8962840235449100D+00, & 0.8690148741955517D+00, & 0.8221011541254772D+00, & 0.7213475204444817D+00, & 0.6068261510845583D+00, & 0.5410106403333613D+00, & 0.4970679476476894D+00, & 0.4650921887927060D+00, & 0.4404842934597863D+00, & 0.4207860535926143D+00, & 0.4045507673897055D+00, & 0.3908650337129266D+00, & 0.2149757685421097D+00, & 0.0000000000000000D+00, & 0.2149757685421097D+00, & 0.3213887739704539D+00, & 0.3916213575531612D+00, & 0.4437690508633213D+00, & 0.4850700239649681D+00, & 0.5191433267738267D+00, & 0.5480569580144867D+00, & 0.5731033910767085D+00, & 0.5951442521714636D+00, & 0.6147826594068904D+00 /) integer n integer n_data integer, save, dimension ( n_max ) :: n_vec = (/ & 1, 1, 1, 1, 1, & 1, 1, 1, 1, 1, & 1, 1, 1, 1, 1, & 1, 1, 1, 0, 1, & 2, 3, 4, 5, 6, & 7, 8, 9, 10 /) real ( kind = rk ) t real ( kind = rk ), save, dimension ( n_max ) :: t_vec = (/ & 0.1000000000000000D+00, & 0.1111111111111111D+00, & 0.1250000000000000D+00, & 0.1428571428571429D+00, & 0.1666666666666667D+00, & 0.2000000000000000D+00, & 0.2500000000000000D+00, & 0.3333333333333333D+00, & 0.5000000000000000D+00, & 0.6666666666666667D+00, & 0.7500000000000000D+00, & 0.8000000000000000D+00, & 0.8333333333333333D+00, & 0.8571485714857149D+00, & 0.8750000000000000D+00, & 0.8888888888888889D+00, & 0.9000000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00, & 0.9900000000000000D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 t = 0.0D+00 n = 0 fx = 0.0D+00 else t = t_vec(n_data) n = n_vec(n_data) fx = fx_vec(n_data) end if return end function log_series_check ( a ) !*****************************************************************************80 ! !! LOG_SERIES_CHECK checks the parameter of the Logarithmic Series PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, logical LOG_SERIES_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical log_series_check if ( a <= 0.0D+00 .or. 1.0D+00 <= a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_SERIES_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.0D+00 or 1.0D+00 <= A' log_series_check = .false. return end if log_series_check = .true. return end subroutine log_series_mean ( a, mean ) !*****************************************************************************80 ! !! LOG_SERIES_MEAN returns the mean of the Logarithmic Series PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = - a / ( ( 1.0D+00 - a ) * log ( 1.0D+00 - a ) ) return end subroutine log_series_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! LOG_SERIES_PDF evaluates the Logarithmic Series PDF. ! ! Discussion: ! ! PDF(A;X) = - A**X / ( X * log ( 1 - A ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 0 < X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf integer x if ( x <= 0 ) then pdf = 0.0D+00 else pdf = - a**x / ( real ( x, kind = rk ) * log ( 1.0D+00 - a ) ) end if return end subroutine log_series_sample ( a, x ) !*****************************************************************************80 ! !! LOG_SERIES_SAMPLE samples the Logarithmic Series PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Luc Devroye, ! Non-Uniform Random Variate Generation, ! Springer-Verlag, 1986, page 547. ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) u real ( kind = rk ) v integer x call random_number ( harvest = u ) call random_number ( harvest = v ) x = int ( 1.0D+00 + log ( v ) / ( log ( 1.0D+00 - ( 1.0D+00 - a ) ** u ) ) ) return end subroutine log_series_variance ( a, variance ) !*****************************************************************************80 ! !! LOG_SERIES_VARIANCE returns the variance of the Logarithmic Series PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A < 1.0. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) variance alpha = - 1.0D+00 / log ( 1.0D+00 - a ) variance = a * alpha * ( 1.0D+00 - alpha * a ) / ( 1.0D+00 - a ) ** 2 return end subroutine log_uniform_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! LOG_UNIFORM_CDF evaluates the Log Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else if ( x < b ) then cdf = ( log ( x ) - log ( a ) ) / ( log ( b ) - log ( a ) ) else cdf = 1.0D+00 end if return end subroutine log_uniform_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! LOG_UNIFORM_CDF_INV inverts the Log Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_UNIFORM_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a * exp ( ( log ( b ) - log ( a ) ) * cdf ) return end function log_uniform_check ( a, b ) !*****************************************************************************80 ! !! LOG_UNIFORM_CHECK checks the parameters of the Log Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1.0 < A < B. ! ! Output, logical LOG_UNIFORM_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical log_uniform_check if ( a <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_UNIFORM_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 1.' log_uniform_check = .false. return end if if ( b <= a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LOG_UNIFORM_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= A.' log_uniform_check = .false. return end if log_uniform_check = .true. return end subroutine log_uniform_mean ( a, b, mean ) !*****************************************************************************80 ! !! LOG_UNIFORM_MEAN returns the mean of the Log Uniform PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1.0 < A < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = ( b - a ) / ( log ( b ) - log ( a ) ) return end subroutine log_uniform_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! LOG_UNIFORM_PDF evaluates the Log Uniform PDF. ! ! Discussion: ! ! PDF(A,B;X) = 1 / ( X * ( log ( B ) - log ( A ) ) ) for A <= X <= B ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1.0 < A < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < a ) then pdf = 0.0D+00 else if ( x <= b ) then pdf = 1.0D+00 / ( x * ( log ( b ) - log ( a ) ) ) else pdf = 0.0D+00 end if return end subroutine log_uniform_sample ( a, b, x ) !*****************************************************************************80 ! !! LOG_UNIFORM_SAMPLE samples the Log Uniform PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 1.0 < A < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call log_uniform_cdf_inv ( cdf, a, b, x ) return end subroutine lorentz_cdf ( x, cdf ) !*****************************************************************************80 ! !! LORENTZ_CDF evaluates the Lorentz CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x cdf = 0.5D+00 + atan ( x ) / r8_pi return end subroutine lorentz_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! LORENTZ_CDF_INV inverts the Lorentz CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'LORENTZ_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = tan ( r8_pi * ( cdf - 0.5D+00 ) ) return end subroutine lorentz_mean ( mean ) !*****************************************************************************80 ! !! LORENTZ_MEAN returns the mean of the Lorentz PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.0D+00 return end subroutine lorentz_pdf ( x, pdf ) !*****************************************************************************80 ! !! LORENTZ_PDF evaluates the Lorentz PDF. ! ! Discussion: ! ! PDF(X) = 1 / ( PI * ( 1 + X^2 ) ) ! ! The chief interest of the Lorentz PDF is that it is easily ! inverted, and can be used to dominate other PDF's in an ! acceptance/rejection method. ! ! LORENTZ_PDF(X) = CAUCHY_PDF(0,1;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x pdf = 1.0D+00 / ( r8_pi * ( 1.0D+00 + x * x ) ) return end subroutine lorentz_sample ( x ) !*****************************************************************************80 ! !! LORENTZ_SAMPLE samples the Lorentz PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call lorentz_cdf_inv ( cdf, x ) return end subroutine lorentz_variance ( variance ) !*****************************************************************************80 ! !! LORENTZ_VARIANCE returns the variance of the Lorentz PDF. ! ! Discussion: ! ! The variance of the Lorentz PDF is not well defined. This routine ! is made available for completeness only, and simply returns ! a "very large" number. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance variance = huge ( variance ) return end subroutine maxwell_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! MAXWELL_CDF evaluates the Maxwell CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) p2 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) x real ( kind = rk ) x2 if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else x2 = x / a p2 = 1.5D+00 cdf = r8_gamma_inc ( p2, x2 ) end if return end subroutine maxwell_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! MAXWELL_CDF_INV inverts the Maxwell CDF. ! ! Discussion: ! ! A simple bisection method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MAXWELL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = 0.0D+00 return else if ( 1.0D+00 == cdf ) then x = huge ( x ) return end if x1 = 0.0D+00 cdf1 = 0.0D+00 x2 = 1.0D+00 do call maxwell_cdf ( x2, a, cdf2 ) if ( cdf < cdf2 ) then exit end if x2 = 2.0D+00 * x2 if ( 1000000.0D+00 < x2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MAXWELL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Initial bracketing effort fails.' stop 1 end if end do ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call maxwell_cdf ( x3, a, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MAXWELL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function maxwell_check ( a ) !*****************************************************************************80 ! !! MAXWELL_CHECK checks the parameters of the Maxwell CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, logical MAXWELL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical maxwell_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MAXWELL_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.0.' maxwell_check = .false. return end if maxwell_check = .true. return end subroutine maxwell_mean ( a, mean ) !*****************************************************************************80 ! !! MAXWELL_MEAN returns the mean of the Maxwell PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) MEAN, the mean value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = sqrt ( 2.0D+00 ) * a * gamma ( 2.0D+00 ) / gamma ( 1.5D+00 ) return end subroutine maxwell_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! MAXWELL_PDF evaluates the Maxwell PDF. ! ! Discussion: ! ! PDF(A;X) = exp ( - 0.5D+00 * ( X / A )^2 ) * ( X / A )^2 / ! ( sqrt ( 2 ) * A * GAMMA ( 1.5D+00 ) ) ! ! MAXWELL_PDF(A;X) = CHI_PDF(0,A,3;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0 < X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= 0.0D+00 ) then pdf = 0.0D+00 else y = x / a pdf = exp ( - 0.5D+00 * y * y ) * y * y & / ( sqrt ( 2.0D+00 ) * a * gamma ( 1.5D+00 ) ) end if return end subroutine maxwell_sample ( a, x ) !*****************************************************************************80 ! !! MAXWELL_SAMPLE samples the Maxwell PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) x a2 = 3.0D+00 call chi_square_sample ( a2, x ) x = a * sqrt ( x ) return end subroutine maxwell_variance ( a, variance ) !*****************************************************************************80 ! !! MAXWELL_VARIANCE returns the variance of the Maxwell PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = a * a * ( 3.0D+00 - 2.0D+00 & * ( gamma ( 2.0D+00 ) / gamma ( 1.5D+00 ) ) ** 2 ) return end function multicoef_check ( nfactor, factor ) !*****************************************************************************80 ! !! MULTICOEF_CHECK checks the parameters of the multinomial coefficient. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer NFACTOR, the number of factors. ! 1 <= NFACTOR. ! ! Input, integer FACTOR(NFACTOR), contains the factors. ! 0.0 <= FACTOR(I). ! ! Output, logical MULTICOEF_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nfactor integer factor(nfactor) integer i logical multicoef_check if ( nfactor < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTICOEF_CHECK - Fatal error!' write ( *, '(a)' ) ' NFACTOR < 1.' multicoef_check = .false. return end if do i = 1, nfactor if ( factor(i) < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTICOEF_CHECK - Fatal error' write ( *, '(a,i8)' ) ' Factor ', I write ( *, '(a,i8)' ) ' = ', factor(i) write ( *, '(a)' ) ' But this value must be nonnegative.' multicoef_check = .false. return end if end do multicoef_check = .true. return end subroutine multinomial_coef1 ( nfactor, factor, ncomb ) !*****************************************************************************80 ! !! MULTINOMIAL_COEF1 computes a Multinomial coefficient. ! ! Discussion: ! ! The multinomial coefficient is a generalization of the binomial ! coefficient. It may be interpreted as the number of combinations of ! N objects, where FACTOR(1) objects are indistinguishable of type 1, ! ... and FACTOR(NFACTOR) are indistinguishable of type NFACTOR, ! and N is the sum of FACTOR(1) through FACTOR(NFACTOR). ! ! NCOMB = N! / ( FACTOR(1)! FACTOR(2)! ... FACTOR(NFACTOR)! ) ! ! The log of the gamma function is used, to avoid overflow. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer NFACTOR, the number of factors. ! 1 <= NFACTOR. ! ! Input, integer FACTOR(NFACTOR), contains the factors. ! 0.0 <= FACTOR(I). ! ! Output, integer NCOMB, the value of the multinomial ! coefficient. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nfactor logical check real ( kind = rk ) facn integer factor(nfactor) integer i integer i4_huge logical multicoef_check integer n integer ncomb check = multicoef_check ( nfactor, factor ) if ( .not. check ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTINOMIAL_COEF1 - Fatal error!' write ( *, '(a)' ) ' MULTICOEF_CHECK failed.' ncomb = - i4_huge ( ) return end if ! ! The factors sum to N. ! n = sum ( factor(1:nfactor) ) facn = lgamma ( real ( n + 1, kind = rk ) ) do i = 1, nfactor facn = facn - lgamma ( real ( factor(i) + 1, kind = rk ) ) end do ncomb = nint ( exp ( facn ) ) return end subroutine multinomial_coef2 ( nfactor, factor, ncomb ) !*****************************************************************************80 ! !! MULTINOMIAL_COEF2 computes a Multinomial coefficient. ! ! Discussion: ! ! The multinomial coefficient is a generalization of the binomial ! coefficient. It may be interpreted as the number of combinations of ! N objects, where FACTOR(1) objects are indistinguishable of type 1, ! ... and FACTOR(NFACTOR) are indistinguishable of type NFACTOR, ! and N is the sum of FACTOR(1) through FACTOR(NFACTOR). ! ! NCOMB = N! / ( FACTOR(1)! FACTOR(2)! ... FACTOR(NFACTOR)! ) ! ! A direct method is used, which should be exact. However, there ! is a possibility of intermediate overflow of the result. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer NFACTOR, the number of factors. ! 1 <= NFACTOR. ! ! Input, integer FACTOR(NFACTOR), contains the factors. ! 0.0 <= FACTOR(I). ! ! Output, integer NCOMB, the value of the multinomial ! coefficient. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nfactor logical check integer factor(nfactor) integer i integer i4_huge integer j integer k logical multicoef_check integer ncomb check = multicoef_check ( nfactor, factor ) if ( .not. check ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTINOMIAL_COEF2 - Fatal error!' write ( *, '(a)' ) ' MULTICOEF_CHECK failed.' ncomb = - i4_huge ( ) return end if ncomb = 1 k = 0 do i = 1, nfactor do j = 1, factor(i) k = k + 1 ncomb = ( ncomb * k ) / j end do end do return end function multinomial_check ( a, b, c ) !*****************************************************************************80 ! !! MULTINOMIAL_CHECK checks the parameters of the Multinomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! ! Input, integer B, the number of outcomes possible on one ! trial. 1 <= B. ! ! Input, real ( kind = rk ) C(B). C(I) is the probability of outcome I on ! any trial. ! 0.0 <= C(I) <= 1.0D+00, ! Sum ( 1 <= I <= B ) C(I) = 1.0. ! ! Output, logical MULTINOMIAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) real ( kind = rk ) c_sum integer i logical multinomial_check if ( b < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B < 1.' multinomial_check = .false. return end if do i = 1, b if ( c(i) < 0.0D+00 .or. 1.0D+00 < c(i) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' Input C(I) is out of range.' multinomial_check = .false. return end if end do c_sum = sum ( c ) if ( 0.0001D+00 < abs ( 1.0D+00 - c_sum ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'MULTINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' The probabilities do not sum to 1.' multinomial_check = .false. return end if multinomial_check = .true. return end subroutine multinomial_covariance ( a, b, c, covariance ) !*****************************************************************************80 ! !! MULTINOMIAL_COVARIANCE returns the covariances of the Multinomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! ! Input, integer B, the number of outcomes possible on one ! trial. 1 <= B. ! ! Input, real ( kind = rk ) C(B). C(I) is the probability of outcome I on ! any trial. ! 0.0 <= C(I) <= 1.0D+00, ! SUM ( 1 <= I <= B) C(I) = 1.0. ! ! Output, real ( kind = rk ) COVARIANCE(B,B), the covariance matrix. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) real ( kind = rk ) covariance(b,b) integer i integer j do i = 1, b do j = 1, b if ( i == j ) then covariance(i,j) = real ( a, kind = rk ) * c(i) * ( 1.0D+00 - c(i) ) else covariance(i,j) = - real ( a, kind = rk ) * c(i) * c(j) end if end do end do return end subroutine multinomial_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! MULTINOMIAL_MEAN returns the means of the Multinomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! ! Input, integer B, the number of outcomes possible on one ! trial. 1 <= B. ! ! Input, real ( kind = rk ) C(B). C(I) is the probability of outcome I on ! any trial. ! 0.0 <= C(I) <= 1.0D+00, ! SUM ( 1 <= I <= B) C(I) = 1.0. ! ! Output, real ( kind = rk ) MEAN(B), MEAN(I) is the expected value of the ! number of outcome I in N trials. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) real ( kind = rk ) mean(b) mean(1:b) = real ( a, kind = rk ) * c(1:b) return end subroutine multinomial_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! MULTINOMIAL_PDF computes a Multinomial PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = Comb(A,B,X) * Product ( 1 <= I <= B ) C(I)^X(I) ! ! where Comb(A,B,X) is the multinomial coefficient ! C( A; X(1), X(2), ..., X(B) ) ! ! PDF(A,B,C;X) is the probability that in A trials there ! will be exactly X(I) occurrences of event I, whose probability ! on one trial is C(I), for I from 1 to B. ! ! As soon as A or B gets large, the number of possible X's explodes, ! and the probability of any particular X can become extremely small. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X(B); X(I) counts the number of occurrences of ! outcome I, out of the total of A trials. ! ! Input, integer A, the total number of trials. ! ! Input, integer B, the number of different possible outcomes on ! one trial. ! ! Input, real ( kind = rk ) C(B); C(I) is the probability of outcome I on ! any one trial. ! ! Output, real ( kind = rk ) PDF, the value of the multinomial PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) integer i real ( kind = rk ) pdf real ( kind = rk ) pdf_log integer x(b) ! ! To try to avoid overflow, do the calculation in terms of logarithms. ! Note that Gamma(A+1) = A factorial. ! pdf_log = lgamma ( real ( a + 1, kind = rk ) ) do i = 1, b pdf_log = pdf_log + x(i) * log ( c(i) ) & - lgamma ( real ( x(i) + 1, kind = rk ) ) end do pdf = exp ( pdf_log ) return end subroutine multinomial_sample ( a, b, c, x ) !*****************************************************************************80 ! !! MULTINOMIAL_SAMPLE samples the Multinomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Luc Devroye, ! Non-Uniform Random Variate Generation, ! Springer-Verlag, New York, 1986, page 559. ! ! Parameters: ! ! Input, integer A, the total number of trials. ! 0 <= A. ! ! Input, integer B, the number of outcomes possible on ! one trial. 1 <= B. ! ! Input, real ( kind = rk ) C(B). C(I) is the probability of outcome I on ! any trial. ! 0.0 <= C(I) <= 1.0D+00, ! sum ( 1 <= I <= B) C(I) = 1.0. ! ! Output, integer X(B); X(I) is the number of ! occurrences of event I during the N trials. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) integer ifactor integer ntot real ( kind = rk ) prob real ( kind = rk ) sum2 integer x(b) ntot = a sum2 = 1.0D+00 x(1:b) = 0 do ifactor = 1, b - 1 prob = c(ifactor) / sum2 ! ! Generate a binomial random deviate for NTOT trials with ! single trial success probability PROB. ! call binomial_sample ( ntot, prob, x(ifactor) ) ntot = ntot - x(ifactor) if ( ntot <= 0 ) then return end if sum2 = sum2 - c(ifactor) end do ! ! The last factor gets what's left. ! x(b) = ntot return end subroutine multinomial_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! MULTINOMIAL_VARIANCE returns the variances of the Multinomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, the number of trials. ! ! Input, integer B, the number of outcomes possible on one ! trial. 1 <= B. ! ! Input, real ( kind = rk ) C(B). C(I) is the probability of outcome I on ! any trial. ! 0.0 <= C(I) <= 1.0D+00, ! sum ( 1 <= I <= B ) C(I) = 1.0. ! ! Output, real ( kind = rk ) VARIANCE(B), VARIANCE(I) is the variance of the ! total number of events of type I. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer b integer a real ( kind = rk ) c(b) integer i real ( kind = rk ) variance(b) do i = 1, b variance(i) = real ( a, kind = rk ) * c(i) * ( 1.0D+00 - c(i) ) end do return end subroutine multinoulli_pdf ( x, n, theta, pdf ) !*****************************************************************************80 ! !! MULTINOULLI_PDF evaluates the Multinoulli PDF. ! ! Discussion: ! ! PDF(X) = THETA(X) for 1 <= X <= N. ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 September 2018 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the index of the outcome. ! 1 <= X <= N. ! ! Input, integer N, the number of legal outcomes. ! ! Input, real ( kind = rk ) THETA(N), the probability of each outcome. ! ! Output, real ( kind = rk ) PDF, the probability of outcome X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) pdf real ( kind = rk ) theta(n) integer x if ( 1 <= x .and. x <= n ) then pdf = theta(x) else pdf = 0.0D+00 end if return end subroutine multivariate_normal_sample ( n, mean, covar_factor, x ) !*****************************************************************************80 ! !! MULTIVARIATE_NORMAL_SAMPLE samples the Multivariate Normal PDF. ! ! Discussion: ! ! PDF ( Mean(1:N), S(1:N,1:N); X(1:N) ) = ! 1 / ( 2 * pi ) ^ ( N / 2 ) * 1 / det ( S ) ! * exp ( - ( X - Mean )' * inverse ( S ) * ( X - Mean ) / 2 ) ! ! Here, ! ! X is the argument vector of length N, ! Mean is the mean vector of length N, ! S is an N by N positive definite symmetric covariance matrix. ! ! The properties of S guarantee that it has a lower triangular ! matrix L, the Cholesky factor, such that S = L * L'. It is the ! matrix L, rather than S, that is required by this routine. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 167. ! ! Parameters: ! ! Input, integer N, the spatial dimension. ! ! Input, real ( kind = rk ) MEAN(N), the mean vector. ! ! Input, real ( kind = rk ) COVAR_FACTOR(N,N), the lower triangular Cholesky ! factor L of the covariance matrix S. ! ! Output, real ( kind = rk ) X(N), a sample point of the distribution. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) covar_factor(n,n) integer i integer j real ( kind = rk ) mean(n) real ( kind = rk ) x(n) real ( kind = rk ) z do i = 1, n call normal_01_sample ( z ) x(i) = mean(i) do j = 1, i x(i) = x(i) + covar_factor(i,j) * z end do end do return end subroutine nakagami_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! NAKAGAMI_CDF evaluates the Nakagami CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) p2 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) x real ( kind = rk ) x2 real ( kind = rk ) y if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else if ( 0.0D+00 < x ) then y = ( x - a ) / b x2 = c * y * y p2 = c cdf = r8_gamma_inc ( p2, x2 ) end if return end subroutine nakagami_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! NAKAGAMI_CDF_INV inverts the Nakagami CDF. ! ! Discussion: ! ! A simple bisection method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 August 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B. ! 0.0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: r8_huge = 1.0D+30 real ( kind = rk ), parameter :: tol = 0.000001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NAKAGAMI_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = c * a * a return else if ( 1.0D+00 == cdf ) then x = r8_huge return end if x1 = a cdf1 = 0.0D+00 x2 = a + 1.0 do call nakagami_cdf ( x2, a, b, c, cdf2 ) if ( cdf < cdf2 ) then exit end if x2 = a + 2.0D+00 * ( x2 - a ) end do ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call nakagami_cdf ( x3, a, b, c, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NAKAGAMI_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function nakagami_check ( a, b, c ) !*****************************************************************************80 ! !! NAKAGAMI_CHECK checks the parameters of the Nakagami PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, logical NAKAGAMI_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical nakagami_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NAKAGAMI_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' nakagami_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NAKAGAMI_CHECK - Fatal error!' write ( *, '(a)' ) ' C <= 0.' nakagami_check = .false. return end if nakagami_check = .true. return end subroutine nakagami_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! NAKAGAMI_MEAN returns the mean of the Nakagami PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B ! 0.0 < C ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = a + b * gamma ( c + 0.5D+00 ) / ( sqrt ( c ) * gamma ( c ) ) return end subroutine nakagami_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! NAKAGAMI_PDF evaluates the Nakagami PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B ! 0.0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x <= 0.0D+00 ) then pdf = 0.0D+00 else if ( 0.0D+00 < x ) then y = ( x - a ) / b pdf = 2.0D+00 * c ** c / ( b * gamma ( c ) ) & * y ** ( 2.0D+00 * c - 1.0D+00 ) & * exp ( - c * y * y ) end if return end subroutine nakagami_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! NAKAGAMI_VARIANCE returns the variance of the Nakagami PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B ! 0.0 < C ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) t1 real ( kind = rk ) t2 real ( kind = rk ) variance t1 = gamma ( c + 0.5D+00 ) t2 = gamma ( c ) variance = b * b * ( 1.0D+00 - t1 * t1 / ( c * t2 * t2 ) ) return end subroutine negative_binomial_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_CDF evaluates the Negative Binomial CDF. ! ! Discussion: ! ! A simple summing approach is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) cdf integer cnk integer i4_choose real ( kind = rk ) pdf integer x integer y cdf = 0.0D+00 do y = a, x cnk = i4_choose ( y - 1, a - 1 ) pdf = real ( cnk, kind = rk ) * b ** a * ( 1.0D+00 - b ) ** ( y - a ) cdf = cdf + pdf end do return end subroutine negative_binomial_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_CDF_INV inverts the Negative Binomial CDF. ! ! Discussion: ! ! A simple discrete approach is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, integer X, the smallest X whose cumulative density ! function is greater than or equal to CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cum real ( kind = rk ) pdf integer x integer, parameter :: x_max = 1000 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NEGATIVE_BINOMIAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if cum = 0.0D+00 x = a do call negative_binomial_pdf ( x, a, b, pdf ) cum = cum + pdf if ( cdf <= cum .or. x_max <= x ) then exit end if x = x + 1 end do return end subroutine negative_binomial_cdf_values ( n_data, f, s, p, cdf ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_CDF_VALUES returns values of the negative binomial CDF. ! ! Discussion: ! ! Assume that a coin has a probability P of coming up heads on ! any one trial. Suppose that we plan to flip the coin until we ! achieve a total of S heads. If we let F represent the number of ! tails that occur in this process, then the value of F satisfies ! a negative binomial PDF: ! ! PDF(F,S,P) = Choose ( F from F+S-1 ) * P^S * (1-P)^F ! ! The negative binomial CDF is the probability that there are F or ! fewer failures upon the attainment of the S-th success. Thus, ! ! CDF(F,S,P) = sum ( 0 <= G <= F ) PDF(G,S,P) ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`DiscreteDistributions`] ! dist = NegativeBinomialDistribution [ s, p ] ! CDF [ dist, f ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! FC Powell, ! Statistical Tables for Sociology, Biology and Physical Sciences, ! Cambridge University Press, 1982. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer F, the maximum number of failures. ! ! Output, integer S, the number of successes. ! ! Output, real ( kind = rk ) P, the probability of a success on one trial. ! ! Output, real ( kind = rk ) CDF, the probability of at most F failures ! before the S-th success. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 27 real ( kind = rk ) cdf real ( kind = rk ), save, dimension ( n_max ) :: cdf_vec = (/ & 0.6367187500000000D+00, & 0.3632812500000000D+00, & 0.1445312500000000D+00, & 0.5000000000000000D+00, & 0.2265625000000000D+00, & 0.6250000000000000D-01, & 0.3437500000000000D+00, & 0.1093750000000000D+00, & 0.1562500000000000D-01, & 0.1792000000000000D+00, & 0.4096000000000000D-01, & 0.4096000000000000D-02, & 0.7047000000000000D-01, & 0.1093500000000000D-01, & 0.7290000000000000D-03, & 0.9861587127990000D+00, & 0.9149749500510000D+00, & 0.7471846521450000D+00, & 0.8499053647030009D+00, & 0.5497160941090026D+00, & 0.2662040052146710D+00, & 0.6513215599000000D+00, & 0.2639010709000000D+00, & 0.7019082640000000D-01, & 0.1000000000000000D+01, & 0.1990000000000000D-01, & 0.1000000000000000D-03 /) integer f integer, save, dimension ( n_max ) :: f_vec = (/ & 4, 3, 2, & 3, 2, 1, & 2, 1, 0, & 2, 1, 0, & 2, 1, 0, & 11, 10, 9, & 17, 16, 15, & 9, 8, 7, & 2, 1, 0 /) integer n_data real ( kind = rk ) p real ( kind = rk ), save, dimension ( n_max ) :: p_vec = (/ & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 0.40D+00, & 0.40D+00, & 0.40D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.30D+00, & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.10D+00, & 0.10D-01, & 0.10D-01, & 0.10D-01 /) integer s integer, save, dimension ( n_max ) :: s_vec = (/ & 4, 5, 6, & 4, 5, 6, & 4, 5, 6, & 4, 5, 6, & 4, 5, 6, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 0, 1, 2 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 f = 0 s = 0 p = 0.0D+00 cdf = 0.0D+00 else f = f_vec(n_data) s = s_vec(n_data) p = p_vec(n_data) cdf = cdf_vec(n_data) end if return end function negative_binomial_check ( a, b ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_CHECK checks the parameters of the Negative Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, logical NEGATIVE_BINOMIAL_CHECK, is true if the ! parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b logical negative_binomial_check if ( a < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NEGATIVE_BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 0.' negative_binomial_check = .false. return end if if ( b <= 0.0D+00 .or. 1.0D+00 < b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NEGATIVE_BINOMIAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0 or 1 < B.' negative_binomial_check = .false. return end if negative_binomial_check = .true. return end subroutine negative_binomial_mean ( a, b, mean ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_MEAN returns the mean of the Negative Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) mean mean = real ( a, kind = rk ) / b return end subroutine negative_binomial_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_PDF evaluates the Negative Binomial PDF. ! ! Discussion: ! ! PDF(A,B;X) = C(X-1,A-1) * B^A * ( 1 - B )^(X-A) ! ! PDF(A,B;X) is the probability that the A-th success will ! occur on the X-th trial, given that the probability ! of a success on a single trial is B. ! ! The Negative Binomial PDF is also known as the Pascal PDF or ! the "Polya" PDF. ! ! NEGATIVE_BINOMIAL_PDF(1,B;X) = GEOMETRIC_PDF(B;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the number of trials. ! A <= X. ! ! Input, integer A, the number of successes required. ! 0 <= A <= X, normally. ! ! Input, real ( kind = rk ) B, the probability of a success on a single trial. ! 0.0 < B <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b integer cnk integer i4_choose real ( kind = rk ) pdf integer x if ( x < a ) then pdf = 0.0D+00 else cnk = i4_choose ( x - 1, a - 1 ) pdf = real ( cnk, kind = rk ) * b ** a * ( 1.0D+00 - b ) ** ( x - a ) end if return end subroutine negative_binomial_sample ( a, b, x ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_SAMPLE samples the Negative Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b integer i4_huge integer num_success real ( kind = rk ) r integer x if ( b == 1.0D+00 ) then x = a return else if ( b == 0.0D+00 ) then x = i4_huge ( ) return end if x = 0 num_success = 0 do while ( num_success < a ) x = x + 1 call random_number ( harvest = r ) if ( r <= b ) then num_success = num_success + 1 end if end do return end subroutine negative_binomial_variance ( a, b, variance ) !*****************************************************************************80 ! !! NEGATIVE_BINOMIAL_VARIANCE returns the variance of the Negative Binomial PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, a parameter of the PDF. ! 0 <= A. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! 0 < B <= 1. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) variance variance = real ( a, kind = rk ) * ( 1.0D+00 - b ) / ( b * b ) return end subroutine normal_01_cdf ( x, cdf ) !*****************************************************************************80 ! !! NORMAL_01_CDF evaluates the Normal 01 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! AG Adams, ! Algorithm 39, ! Areas Under the Normal Curve, ! Computer Journal, ! Volume 12, pages 197-198, 1969. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: a1 = 0.398942280444D+00 real ( kind = rk ), parameter :: a2 = 0.399903438504D+00 real ( kind = rk ), parameter :: a3 = 5.75885480458D+00 real ( kind = rk ), parameter :: a4 = 29.8213557808D+00 real ( kind = rk ), parameter :: a5 = 2.62433121679D+00 real ( kind = rk ), parameter :: a6 = 48.6959930692D+00 real ( kind = rk ), parameter :: a7 = 5.92885724438D+00 real ( kind = rk ), parameter :: b0 = 0.398942280385D+00 real ( kind = rk ), parameter :: b1 = 3.8052D-08 real ( kind = rk ), parameter :: b2 = 1.00000615302D+00 real ( kind = rk ), parameter :: b3 = 3.98064794D-04 real ( kind = rk ), parameter :: b4 = 1.98615381364D+00 real ( kind = rk ), parameter :: b5 = 0.151679116635D+00 real ( kind = rk ), parameter :: b6 = 5.29330324926D+00 real ( kind = rk ), parameter :: b7 = 4.8385912808D+00 real ( kind = rk ), parameter :: b8 = 15.1508972451D+00 real ( kind = rk ), parameter :: b9 = 0.742380924027D+00 real ( kind = rk ), parameter :: b10 = 30.789933034D+00 real ( kind = rk ), parameter :: b11 = 3.99019417011D+00 real ( kind = rk ) cdf real ( kind = rk ) q real ( kind = rk ) x real ( kind = rk ) y ! ! |X| <= 1.28. ! if ( abs ( x ) <= 1.28D+00 ) then y = 0.5D+00 * x * x q = 0.5D+00 - abs ( x ) * ( a1 - a2 * y / ( y + a3 - a4 / ( y + a5 & + a6 / ( y + a7 ) ) ) ) ! ! 1.28 < |X| <= 12.7 ! else if ( abs ( x ) <= 12.7D+00 ) then y = 0.5D+00 * x * x q = exp ( - y ) * b0 / ( abs ( x ) - b1 & + b2 / ( abs ( x ) + b3 & + b4 / ( abs ( x ) - b5 & + b6 / ( abs ( x ) + b7 & - b8 / ( abs ( x ) + b9 & + b10 / ( abs ( x ) + b11 ) ) ) ) ) ) ! ! 12.7 < |X| ! else q = 0.0D+00 end if ! ! Take account of negative X. ! if ( x < 0.0D+00 ) then cdf = q else cdf = 1.0D+00 - q end if return end subroutine normal_01_cdf_inv ( p, x ) !*****************************************************************************80 ! !! NORMAL_01_CDF_INV inverts the standard normal CDF. ! ! Discussion: ! ! The result is accurate to about 1 part in 10^16. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 June 2007 ! ! Author: ! ! Original FORTRAN77 version by Michael Wichura. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Michael Wichura, ! Algorithm AS241: ! The Percentage Points of the Normal Distribution, ! Applied Statistics, ! Volume 37, Number 3, pages 477-484, 1988. ! ! Parameters: ! ! Input, real ( kind = rk ) P, the value of the cumulative probability ! densitity function. 0 < P < 1. If P is outside this range, an ! "infinite" value will be returned. ! ! Output, real ( kind = rk ) X, the normal deviate value ! with the property that the probability of a standard normal deviate being ! less than or equal to the value is P. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter, dimension ( 8 ) :: a = (/ & 3.3871328727963666080D+00, & 1.3314166789178437745D+02, & 1.9715909503065514427D+03, & 1.3731693765509461125D+04, & 4.5921953931549871457D+04, & 6.7265770927008700853D+04, & 3.3430575583588128105D+04, & 2.5090809287301226727D+03 /) real ( kind = rk ), parameter, dimension ( 8 ) :: b = (/ & 1.0D+00, & 4.2313330701600911252D+01, & 6.8718700749205790830D+02, & 5.3941960214247511077D+03, & 2.1213794301586595867D+04, & 3.9307895800092710610D+04, & 2.8729085735721942674D+04, & 5.2264952788528545610D+03 /) real ( kind = rk ), parameter, dimension ( 8 ) :: c = (/ & 1.42343711074968357734D+00, & 4.63033784615654529590D+00, & 5.76949722146069140550D+00, & 3.64784832476320460504D+00, & 1.27045825245236838258D+00, & 2.41780725177450611770D-01, & 2.27238449892691845833D-02, & 7.74545014278341407640D-04 /) real ( kind = rk ), parameter :: const1 = 0.180625D+00 real ( kind = rk ), parameter :: const2 = 1.6D+00 real ( kind = rk ), parameter, dimension ( 8 ) :: d = (/ & 1.0D+00, & 2.05319162663775882187D+00, & 1.67638483018380384940D+00, & 6.89767334985100004550D-01, & 1.48103976427480074590D-01, & 1.51986665636164571966D-02, & 5.47593808499534494600D-04, & 1.05075007164441684324D-09 /) real ( kind = rk ), parameter, dimension ( 8 ) :: e = (/ & 6.65790464350110377720D+00, & 5.46378491116411436990D+00, & 1.78482653991729133580D+00, & 2.96560571828504891230D-01, & 2.65321895265761230930D-02, & 1.24266094738807843860D-03, & 2.71155556874348757815D-05, & 2.01033439929228813265D-07 /) real ( kind = rk ), parameter, dimension ( 8 ) :: f = (/ & 1.0D+00, & 5.99832206555887937690D-01, & 1.36929880922735805310D-01, & 1.48753612908506148525D-02, & 7.86869131145613259100D-04, & 1.84631831751005468180D-05, & 1.42151175831644588870D-07, & 2.04426310338993978564D-15 /) real ( kind = rk ) p real ( kind = rk ) q real ( kind = rk ) r real ( kind = rk ) r8poly_value_horner real ( kind = rk ), parameter :: split1 = 0.425D+00 real ( kind = rk ), parameter :: split2 = 5.0D+00 real ( kind = rk ) x if ( p <= 0.0D+00 ) then x = - huge ( x ) return end if if ( 1.0D+00 <= p ) then x = huge ( x ) return end if q = p - 0.5D+00 if ( abs ( q ) <= split1 ) then r = const1 - q * q x = q * r8poly_value_horner ( 7, a, r ) / r8poly_value_horner ( 7, b, r ) else if ( q < 0.0D+00 ) then r = p else r = 1.0D+00 - p end if if ( r <= 0.0D+00 ) then x = huge ( x ) else r = sqrt ( - log ( r ) ) if ( r <= split2 ) then r = r - const2 x = r8poly_value_horner ( 7, c, r ) / r8poly_value_horner ( 7, d, r ) else r = r - split2 x = r8poly_value_horner ( 7, e, r ) / r8poly_value_horner ( 7, f, r ) end if end if if ( q < 0.0D+00 ) then x = -x end if end if return end subroutine normal_01_cdf_values ( n_data, x, fx ) !*****************************************************************************80 ! !! NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = NormalDistribution [ 0, 1 ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 17 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.5398278372770290D+00, & 0.5792597094391030D+00, & 0.6179114221889526D+00, & 0.6554217416103242D+00, & 0.6914624612740131D+00, & 0.7257468822499270D+00, & 0.7580363477769270D+00, & 0.7881446014166033D+00, & 0.8159398746532405D+00, & 0.8413447460685429D+00, & 0.9331927987311419D+00, & 0.9772498680518208D+00, & 0.9937903346742239D+00, & 0.9986501019683699D+00, & 0.9997673709209645D+00, & 0.9999683287581669D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.0000000000000000D+00, & 0.1000000000000000D+00, & 0.2000000000000000D+00, & 0.3000000000000000D+00, & 0.4000000000000000D+00, & 0.5000000000000000D+00, & 0.6000000000000000D+00, & 0.7000000000000000D+00, & 0.8000000000000000D+00, & 0.9000000000000000D+00, & 0.1000000000000000D+01, & 0.1500000000000000D+01, & 0.2000000000000000D+01, & 0.2500000000000000D+01, & 0.3000000000000000D+01, & 0.3500000000000000D+01, & 0.4000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 fx = 0.0D+00 else x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine normal_01_mean ( mean ) !*****************************************************************************80 ! !! NORMAL_01_MEAN returns the mean of the Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.0D+00 return end subroutine normal_01_pdf ( x, pdf ) !*****************************************************************************80 ! !! NORMAL_01_PDF evaluates the Normal 01 PDF. ! ! Discussion: ! ! The Normal 01 PDF is also called the "Standard Normal" PDF, or ! the Normal PDF with 0 mean and variance 1. ! ! PDF(X) = exp ( - 0.5 * X^2 ) / sqrt ( 2 * PI ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x pdf = exp ( -0.5D+00 * x * x ) / sqrt ( 2.0D+00 * r8_pi ) return end subroutine normal_01_sample ( x ) !*****************************************************************************80 ! !! NORMAL_01_SAMPLE samples the standard normal probability distribution. ! ! Discussion: ! ! The standard normal probability distribution function (PDF) has ! mean 0 and standard deviation 1. ! ! The Box-Muller method is used, which is efficient, but ! generates two values at a time. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) X, a sample of the standard normal PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r1 real ( kind = rk ) r2 real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x call random_number ( harvest = r1 ) call random_number ( harvest = r2 ) x = sqrt ( -2.0D+00 * log ( r1 ) ) * cos ( 2.0D+00 * r8_pi * r2 ) return end subroutine normal_01_samples ( n, x ) !*****************************************************************************80 ! !! NORMAL_01_SAMPLES returns multiple samples of the standard normal PDF. ! ! Discussion: ! ! The standard normal probability distribution function (PDF) has ! mean 0 and standard deviation 1. ! ! The Box-Muller method is used, which is efficient, but ! generates two values at a time. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 September 2018 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of samples. ! ! Output, real ( kind = rk ) X(N), samples of the standard normal PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) r1(n) real ( kind = rk ) r2(n) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x(n) call random_number ( harvest = r1(1:n) ) call random_number ( harvest = r2(1:n) ) x(1:n) = sqrt ( -2.0D+00 * log ( r1(1:n) ) ) & * cos ( 2.0D+00 * r8_pi * r2(1:n) ) return end subroutine normal_01_variance ( variance ) !*****************************************************************************80 ! !! NORMAL_01_VARIANCE returns the variance of the Normal 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance variance = 1.0D+00 return end subroutine normal_01_vector ( n, x ) !*****************************************************************************80 ! !! NORMAL_01_VECTOR samples the standard normal probability distribution. ! ! Discussion: ! ! The standard normal probability distribution function (PDF) has ! mean 0 and standard deviation 1. ! ! The Box-Muller method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of values desired. ! ! Output, real ( kind = rk ) X(N), a sample of the standard normal PDF. ! ! Local: ! ! Local, real R(N+1), is used to store some uniform random values. ! Its dimension is N+1, but really it is only needed to be the ! smallest even number greater than or equal to N. ! ! Local, integer X_LO_INDEX, X_HI_INDEX, records the range of entries of ! X that we need to compute. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer m real ( kind = rk ) r(n+1) real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x(n) integer x_hi_index integer x_lo_index ! ! Record the range of X we need to fill in. ! x_lo_index = 1 x_hi_index = n if ( x_hi_index - x_lo_index + 1 == 1 ) then call random_number ( harvest = r(1:2) ) x(x_hi_index) = & sqrt ( -2.0D+00 * log ( r(1) ) ) * cos ( 2.0D+00 * r8_pi * r(2) ) ! ! If we require an even number of values, that's easy. ! else if ( mod ( x_hi_index - x_lo_index + 1, 2 ) == 0 ) then m = ( x_hi_index - x_lo_index + 1 ) / 2 call random_number ( harvest = r(1:2*m) ) x(x_lo_index:x_hi_index-1:2) = & sqrt ( -2.0D+00 * log ( r(1:2*m-1:2) ) ) & * cos ( 2.0D+00 * r8_pi * r(2:2*m:2) ) x(x_lo_index+1:x_hi_index:2) = & sqrt ( -2.0D+00 * log ( r(1:2*m-1:2) ) ) & * sin ( 2.0D+00 * r8_pi * r(2:2*m:2) ) ! ! If we require an odd number of values, we generate an even number, ! and handle the last pair specially, storing one in X(N), and ! saving the other for later. ! else x_hi_index = x_hi_index - 1 m = ( x_hi_index - x_lo_index + 1 ) / 2 + 1 call random_number ( harvest = r(1:2*m) ) x(x_lo_index:x_hi_index-1:2) = & sqrt ( -2.0D+00 * log ( r(1:2*m-3:2) ) ) & * cos ( 2.0D+00 * r8_pi * r(2:2*m-2:2) ) x(x_lo_index+1:x_hi_index:2) = & sqrt ( -2.0D+00 * log ( r(1:2*m-3:2) ) ) & * sin ( 2.0D+00 * r8_pi * r(2:2*m-2:2) ) x(n) = sqrt ( -2.0D+00 * log ( r(2*m-1) ) ) & * cos ( 2.0D+00 * r8_pi * r(2*m) ) end if return end subroutine normal_cdf ( x, mu, sigma, cdf ) !*****************************************************************************80 ! !! NORMAL_CDF evaluates the Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) x real ( kind = rk ) y y = ( x - mu ) / sigma call normal_01_cdf ( y, cdf ) return end subroutine normal_cdf_inv ( cdf, mu, sigma, x ) !*****************************************************************************80 ! !! NORMAL_CDF_INV inverts the Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) x real ( kind = rk ) x2 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NORMAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if call normal_01_cdf_inv ( cdf, x2 ) x = mu + sigma * x2 return end subroutine normal_cdf_values ( n_data, mu, sigma, x, fx ) !*****************************************************************************80 ! !! NORMAL_CDF_VALUES returns some values of the Normal CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = NormalDistribution [ mu, sigma ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) MU, the mean of the distribution. ! ! Output, real ( kind = rk ) SIGMA, the variance of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.5000000000000000D+00, & 0.9772498680518208D+00, & 0.9999683287581669D+00, & 0.9999999990134124D+00, & 0.6914624612740131D+00, & 0.6305586598182364D+00, & 0.5987063256829237D+00, & 0.5792597094391030D+00, & 0.6914624612740131D+00, & 0.5000000000000000D+00, & 0.3085375387259869D+00, & 0.1586552539314571D+00 /) real ( kind = rk ) mu real ( kind = rk ), save, dimension ( n_max ) :: mu_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) integer n_data real ( kind = rk ) sigma real ( kind = rk ), save, dimension ( n_max ) :: sigma_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 mu = 0.0D+00 sigma = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else mu = mu_vec(n_data) sigma = sigma_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function normal_check ( mu, sigma ) !*****************************************************************************80 ! !! NORMAL_CHECK checks the parameters of the Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, logical NORMAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mu logical normal_check real ( kind = rk ) sigma if ( sigma == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NORMAL_CHECK - Fatal error!' write ( *, '(a)' ) ' SIGMA == 0.' normal_check = .false. return end if normal_check = .true. return end subroutine normal_mean ( mu, sigma, mean ) !*****************************************************************************80 ! !! NORMAL_MEAN returns the mean of the Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean real ( kind = rk ) mu real ( kind = rk ) sigma mean = mu return end subroutine normal_pdf ( x, mu, sigma, pdf ) !*****************************************************************************80 ! !! NORMAL_PDF evaluates the Normal PDF. ! ! Discussion: ! ! PDF(X;MU,SIGMA) ! = exp ( - 0.5 * ( ( X - MU ) / SIGMA )^2 ) / sqrt ( 2 * PI * SIGMA^2 ) ! ! The normal PDF is also known as the Gaussian PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mu real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) sigma real ( kind = rk ) x real ( kind = rk ) y y = ( x - mu ) / sigma pdf = exp ( - 0.5D+00 * y * y ) / sqrt ( 2.0D+00 * r8_pi * sigma * sigma ) return end subroutine normal_sample ( mu, sigma, x ) !*****************************************************************************80 ! !! NORMAL_SAMPLE samples the Normal PDF. ! ! Discussion: ! ! The Box-Muller method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) x call normal_01_sample ( x ) x = mu + sigma * x return end subroutine normal_samples ( n, mu, sigma, x ) !*****************************************************************************80 ! !! NORMAL_SAMPLES returns multiple samples of the Normal PDF. ! ! Discussion: ! ! The Box-Muller method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 September 2018 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of samples. ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) X(N), the samples of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) x(n) call normal_01_samples ( n, x ) x(1:n) = mu + sigma * x(1:n) return end subroutine normal_variance ( mu, sigma, variance ) !*****************************************************************************80 ! !! NORMAL_VARIANCE returns the variance of the Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! SIGMA should not be zero. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) variance variance = sigma * sigma return end subroutine normal_vector ( n, mu, sigma, x ) !*****************************************************************************80 ! !! NORMAL_VECTOR samples the normal probability distribution. ! ! Discussion: ! ! The normal probability distribution function (PDF) has ! a user-specified mean and standard deviation. ! ! The Box-Muller method is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of values desired. ! ! Input, real ( kind = rk ) MU, SIGMA, the mean and standard deviation. ! ! Output, real ( kind = rk ) X(N), a sample of the standard normal PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mu real ( kind = rk ) sigma real ( kind = rk ) x(n) call normal_01_vector ( n, x ) x(1:n) = mu + sigma * x(1:n) return end subroutine normal_truncated_ab_cdf ( x, mu, s, a, b, cdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_CDF evaluates the truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf alpha = ( a - mu ) / s beta = ( b - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) call normal_01_cdf ( xi, xi_cdf ) cdf = ( xi_cdf - alpha_cdf ) / ( beta_cdf - alpha_cdf ) return end subroutine normal_truncated_ab_cdf_inv ( cdf, mu, s, a, b, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_CDF_INV inverts the truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NORMAL_TRUNCATED_AB_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if alpha = ( a - mu ) / s beta = ( b - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) xi_cdf = ( beta_cdf - alpha_cdf ) * cdf + alpha_cdf call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_ab_mean ( mu, s, a, b, mean ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_MEAN returns the mean of the truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviatione of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) alpha_pdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) beta_pdf real ( kind = rk ) mean real ( kind = rk ) mu real ( kind = rk ) s alpha = ( a - mu ) / s beta = ( b - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) call normal_01_pdf ( alpha, alpha_pdf ) call normal_01_pdf ( beta, beta_pdf ) mean = mu + s * ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ) return end subroutine normal_truncated_ab_pdf ( x, mu, s, a, b, pdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_PDF evaluates the truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) mu real ( kind = rk ) pdf real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_pdf alpha = ( a - mu ) / s beta = ( b - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) call normal_01_pdf ( xi, xi_pdf ) pdf = xi_pdf / ( beta_cdf - alpha_cdf ) / s return end subroutine normal_truncated_ab_sample ( mu, s, a, b, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_SAMPLE samples the truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) u real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf alpha = ( a - mu ) / s beta = ( b - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) call random_number ( harvest = u ) xi_cdf = alpha_cdf + u * ( beta_cdf - alpha_cdf ) call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_ab_variance ( mu, s, a, b, variance ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_AB_VARIANCE: variance of the truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, B, the lower and upper truncation limits. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) alpha_pdf real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) beta_pdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) variance alpha = ( a - mu ) / s beta = ( b - mu ) / s call normal_01_pdf ( alpha, alpha_pdf ) call normal_01_pdf ( beta, beta_pdf ) call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( beta, beta_cdf ) variance = s * s * ( 1.0D+00 & + ( alpha * alpha_pdf - beta * beta_pdf ) / ( beta_cdf - alpha_cdf ) & - ( ( alpha_pdf - beta_pdf ) / ( beta_cdf - alpha_cdf ) ) ** 2 ) return end subroutine normal_truncated_a_cdf ( x, mu, s, a, cdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_CDF evaluates the lower truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf alpha = ( a - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_cdf ( xi, xi_cdf ) cdf = ( xi_cdf - alpha_cdf ) / ( 1.0D+00 - alpha_cdf ) return end subroutine normal_truncated_a_cdf_inv ( cdf, mu, s, a, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_CDF_INV inverts the lower truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NORMAL_TRUNCATED_A_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if alpha = ( a - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) xi_cdf = ( 1.0D+00 - alpha_cdf ) * cdf + alpha_cdf call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_a_mean ( mu, s, a, mean ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_MEAN returns the mean of the lower truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviatione of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) alpha_pdf real ( kind = rk ) mean real ( kind = rk ) mu real ( kind = rk ) s alpha = ( a - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_pdf ( alpha, alpha_pdf ) mean = mu + s * alpha_pdf / ( 1.0D+00 - alpha_cdf ) return end subroutine normal_truncated_a_pdf ( x, mu, s, a, pdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_PDF evaluates the lower truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) mu real ( kind = rk ) pdf real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_pdf alpha = ( a - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call normal_01_pdf ( xi, xi_pdf ) pdf = xi_pdf / ( 1.0D+00 - alpha_cdf ) / s return end subroutine normal_truncated_a_sample ( mu, s, a, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_SAMPLE samples the lower truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) u real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf alpha = ( a - mu ) / s call normal_01_cdf ( alpha, alpha_cdf ) call random_number ( harvest = u ) xi_cdf = alpha_cdf + u * ( 1.0D+00 - alpha_cdf ) call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_a_variance ( mu, s, a, variance ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_A_VARIANCE: variance of the lower truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) A, the lower truncation limit. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) alpha real ( kind = rk ) alpha_cdf real ( kind = rk ) alpha_pdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) variance alpha = ( a - mu ) / s call normal_01_pdf ( alpha, alpha_pdf ) call normal_01_cdf ( alpha, alpha_cdf ) variance = s * s * ( 1.0D+00 & + ( alpha * alpha_pdf ) / ( 1.0D+00 - alpha_cdf ) & - ( alpha_pdf / ( 1.0D+00 - alpha_cdf ) ) ** 2 ) return end subroutine normal_truncated_b_cdf ( x, mu, s, b, cdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_CDF evaluates the upper truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf beta = ( b - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( beta, beta_cdf ) call normal_01_cdf ( xi, xi_cdf ) cdf = xi_cdf / beta_cdf return end subroutine normal_truncated_b_cdf_inv ( cdf, mu, s, b, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_CDF_INV inverts the upper truncated Normal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'NORMAL_TRUNCATED_B_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if beta = ( b - mu ) / s call normal_01_cdf ( beta, beta_cdf ) xi_cdf = beta_cdf * cdf call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_b_mean ( mu, s, b, mean ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_MEAN returns the mean of the upper truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviatione of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) beta_pdf real ( kind = rk ) mean real ( kind = rk ) mu real ( kind = rk ) s beta = ( b - mu ) / s call normal_01_cdf ( beta, beta_cdf ) call normal_01_pdf ( beta, beta_pdf ) mean = mu - s * beta_pdf / beta_cdf return end subroutine normal_truncated_b_pdf ( x, mu, s, b, pdf ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_PDF evaluates the upper truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) mu real ( kind = rk ) pdf real ( kind = rk ) s real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_pdf beta = ( b - mu ) / s xi = ( x - mu ) / s call normal_01_cdf ( beta, beta_cdf ) call normal_01_pdf ( xi, xi_pdf ) pdf = xi_pdf / beta_cdf / s return end subroutine normal_truncated_b_sample ( mu, s, b, x ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_SAMPLE samples the upper truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) u real ( kind = rk ) x real ( kind = rk ) xi real ( kind = rk ) xi_cdf beta = ( b - mu ) / s call normal_01_cdf ( beta, beta_cdf ) call random_number ( harvest = u ) xi_cdf = u * beta_cdf call normal_01_cdf_inv ( xi_cdf, xi ) x = mu + s * xi return end subroutine normal_truncated_b_variance ( mu, s, b, variance ) !*****************************************************************************80 ! !! NORMAL_TRUNCATED_B_VARIANCE: variance of the upper truncated Normal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 August 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) MU, S, the mean and standard deviation of the ! parent Normal distribution. ! ! Input, real ( kind = rk ) B, the upper truncation limit. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) b real ( kind = rk ) beta real ( kind = rk ) beta_cdf real ( kind = rk ) beta_pdf real ( kind = rk ) mu real ( kind = rk ) s real ( kind = rk ) variance beta = ( b - mu ) / s call normal_01_pdf ( beta, beta_pdf ) call normal_01_cdf ( beta, beta_cdf ) variance = s * s * ( 1.0D+00 & - ( beta * beta_pdf ) / beta_cdf & - ( beta_pdf / beta_cdf ) ** 2 ) return end subroutine owen_values ( n_data, h, a, t ) !*****************************************************************************80 ! !! OWEN_VALUES returns some values of Owen's T function. ! ! Discussion: ! ! Owen's T function is useful for computation of the bivariate normal ! distribution and the distribution of a skewed normal distribution. ! ! Although it was originally formulated in terms of the bivariate ! normal function, the function can be defined more directly as ! ! T(H,A) = 1 / ( 2 * pi ) * ! Integral ( 0 <= X <= A ) e^(-H^2*(1+X^2)/2) / (1+X^2) dX ! ! In Mathematica, the function can be evaluated by: ! ! fx = 1/(2*Pi) * Integrate [ E^(-h^2*(1+x^2)/2)/(1+x^2), {x,0,a} ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 December 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) H, a parameter. ! ! Output, real ( kind = rk ) A, the upper limit of the integral. ! ! Output, real ( kind = rk ) T, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 22 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.1000000000000000D+02, & 0.1000000000000000D+03 /) real ( kind = rk ) h real ( kind = rk ), save, dimension ( n_max ) :: h_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2500000000000000D+00, & 0.2500000000000000D+00, & 0.2500000000000000D+00, & 0.2500000000000000D+00, & 0.1250000000000000D+00, & 0.1250000000000000D+00, & 0.1250000000000000D+00, & 0.1250000000000000D+00, & 0.7812500000000000D-02, & 0.7812500000000000D-02, & 0.7812500000000000D-02, & 0.7812500000000000D-02, & 0.7812500000000000D-02, & 0.7812500000000000D-02 /) integer n_data real ( kind = rk ) t real ( kind = rk ), save, dimension ( n_max ) :: t_vec = (/ & 0.4306469112078537D-01, & 0.6674188216570097D-01, & 0.7846818699308410D-01, & 0.7929950474887259D-01, & 0.6448860284750376D-01, & 0.1066710629614485D+00, & 0.1415806036539784D+00, & 0.1510840430760184D+00, & 0.7134663382271778D-01, & 0.1201285306350883D+00, & 0.1666128410939293D+00, & 0.1847501847929859D+00, & 0.7317273327500385D-01, & 0.1237630544953746D+00, & 0.1737438887583106D+00, & 0.1951190307092811D+00, & 0.7378938035365546D-01, & 0.1249951430754052D+00, & 0.1761984774738108D+00, & 0.1987772386442824D+00, & 0.2340886964802671D+00, & 0.2479460829231492D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 h = 0.0D+00 a = 0.0D+00 t = 0.0D+00 else h = h_vec(n_data) a = a_vec(n_data) t = t_vec(n_data) end if return end subroutine pareto_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! PARETO_CDF evaluates the Pareto CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x < a ) then cdf = 0.0D+00 else cdf = 1.0D+00 - ( a / x ) ** b end if return end subroutine pareto_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! PARETO_CDF_INV inverts the Pareto CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PARETO_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a / ( 1.0D+00 - cdf ) ** ( 1.0D+00 / b ) return end function pareto_check ( a, b ) !*****************************************************************************80 ! !! PARETO_CHECK checks the parameters of the Pareto CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, logical PARETO_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical pareto_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PARETO_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' pareto_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PARETO_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' pareto_check = .false. return end if pareto_check = .true. return end subroutine pareto_mean ( a, b, mean ) !*****************************************************************************80 ! !! PARETO_MEAN returns the mean of the Pareto PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean if ( b <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PARETO_MEAN - Fatal error!' write ( *, '(a)' ) ' For B <= 1, the mean does not exist.' mean = 0.0D+00 return end if mean = b * a / ( b - 1.0D+00 ) return end subroutine pareto_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! PARETO_PDF evaluates the Pareto PDF. ! ! Discussion: ! ! PDF(A,B;X) = B * A^B / X^(B+1). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < a ) then pdf = 0.0D+00 else pdf = b * ( a ** b ) / x ** ( b + 1.0D+00 ) end if return end subroutine pareto_sample ( a, b, x ) !*****************************************************************************80 ! !! PARETO_SAMPLE samples the Pareto PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call pareto_cdf_inv ( cdf, a, b, x ) return end subroutine pareto_variance ( a, b, variance ) !*****************************************************************************80 ! !! PARETO_VARIANCE returns the variance of the Pareto PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance if ( b <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PARETO_VARIANCE - Warning!' write ( *, '(a)' ) ' For B <= 2, the variance does not exist.' variance = 0.0D+00 return end if variance = a * a * b / ( ( b - 1.0D+00 ) ** 2 * ( b - 2.0D+00 ) ) return end function pearson_05_check ( a, b, c ) !*****************************************************************************80 ! !! PEARSON_05_CHECK checks the parameters of the Pearson 5 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, logical PEARSON_05_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical pearson_05_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PEARSON_05_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' pearson_05_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PEARSON_05_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' pearson_05_check = .false. return end if pearson_05_check = .true. return end subroutine pearson_05_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! PEARSON_05_MEAN evaluates the mean of the Pearson 5 PDF. ! ! Discussion: ! ! The mean is undefined for B <= 1. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < A, 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean if ( b <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PEARSON_05_MEAN - Warning!' write ( *, '(a)' ) ' MEAN undefined for B <= 1.' mean = c return end if mean = c + a / ( b - 1.0D+00 ) return end subroutine pearson_05_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! PEARSON_05_PDF evaluates the Pearson 5 PDF. ! ! Discussion: ! ! PDF(A,B;X) = A^B * ( X - C )^(-B-1) ! * exp ( - A / ( X - C ) ) / Gamma ( B ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! C < X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x if ( x <= c ) then pdf = 0.0D+00 else pdf = ( a ** b ) * ( x - c ) ** ( - b - 1.0D+00 ) & * exp ( - a / ( x - c ) ) / gamma ( b ) end if return end subroutine pearson_05_sample ( a, b, c, x ) !*****************************************************************************80 ! !! PEARSON_05_SAMPLE samples the Pearson 5 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) c real ( kind = rk ) c2 real ( kind = rk ) x real ( kind = rk ) x2 a2 = 0.0D+00 b2 = b c2 = 1.0D+00 / a call gamma_sample ( a2, b2, c2, x2 ) x = c + 1.0D+00 / x2 return end function planck_check ( a, b ) !*****************************************************************************80 ! !! PLANCK_CHECK checks the parameters of the Planck PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 October 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, ! 0.0 < B. ! ! Output, logical PLANCK_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical planck_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PLANCK_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' planck_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PLANCK_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' planck_check = .false. return end if planck_check = .true. return end subroutine planck_mean ( a, b, mean ) !*****************************************************************************80 ! !! PLANCK_MEAN returns the mean of the Planck PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean real ( kind = rk ) r8_zeta mean = ( b + 1.0D+00 ) * r8_zeta ( b + 2.0D+00 ) / r8_zeta ( b + 1.0D+00 ) return end subroutine planck_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! PLANCK_PDF evaluates the Planck PDF. ! ! Discussion: ! ! The Planck PDF has the form ! ! PDF(A,B;X) = A^(B+1) * X^B / ( exp ( A * X ) - 1 ) / K ! ! where K is the normalization constant, and has the value ! ! K = Gamma ( B + 1 ) * Zeta ( B + 1 ). ! ! The original Planck distribution governed the frequencies in ! blackbody radiation at a given temperature T, and has the form ! ! PDF(A;X) = K * X^3 / ( exp ( A * X ) - 1 ) ! ! with ! ! K = 15 / PI^4. ! ! Thus, in terms of the Planck PDF, the original Planck distribution ! has A = 1, B = 3. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 October 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Norman Johnson, Samuel Kotz, Balakrishnan, ! Continuous Univariate Distributions, second edition, ! Wiley, 1994, ! QA273.6.J6 ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0 < B. ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) k real ( kind = rk ) pdf real ( kind = rk ) r8_zeta real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else k = gamma ( b + 1.0D+00 ) * r8_zeta ( b + 1.0D+00 ) pdf = a ** ( b + 1.0D+00 ) * x ** b / ( exp ( a * x ) - 1.0D+00 ) / k end if return end subroutine planck_sample ( a, b, x ) !*****************************************************************************80 ! !! PLANCK_SAMPLE samples the Planck PDF. ! ! Discussion: ! ! The Planck sampling seems to be giving incorrect results. ! I suspect this has to do with a possible problem in the ! ZIPF_SAMPLE routine. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 October 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Luc Devroye, ! Non-Uniform Random Variate Generation, ! Springer Verlag, 1986, pages 552. ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) c2 real ( kind = rk ) g real ( kind = rk ) x integer z a2 = 0.0D+00 b2 = 1.0D+00 c2 = b + 1.0D+00 call gamma_sample ( a2, b2, c2, g ) call zipf_sample ( c2, z ) x = g / ( a * real ( z, kind = rk ) ) return end subroutine planck_variance ( a, b, variance ) !*****************************************************************************80 ! !! PLANCK_VARIANCE returns the variance of the Planck PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean real ( kind = rk ) r8_zeta real ( kind = rk ) variance call planck_mean ( a, b, mean ) variance = ( b + 1.0D+00 ) * ( b + 2.0D+00 ) & * r8_zeta ( b + 3.0D+00 ) / r8_zeta ( b + 1.0D+00 ) - mean * mean return end subroutine point_distance_1d_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! POINT_DISTANCE_1D_PDF evaluates the point distance PDF in 1D. ! ! Discussion: ! ! It is assumed that a set of points has been generated in 1D ! according to a Poisson process. The number of points in a region ! of size LENGTH is a Poisson variate with mean value B * LENGTH. ! ! For a point chosen at random, we may now find the nearest ! Poisson point, the second nearest and so on. We are interested ! in the PDF that governs the expected behavior of the distances ! of rank A = 1, 2, 3, ... with Poisson density B. ! ! Note that this PDF is a form of the Gamma PDF.??? ! ! PDF(A,B;X) = B^A * X^( A - 1 ) * exp ( - B * X ) / ( A - 1 )! ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X. ! ! Input, integer A, indicates the degree of nearness of the ! point. A = 1 means the nearest point, A = 2 the second nearest, and so on. ! 0 < A. ! ! Input, real ( kind = rk ) B, the point density. 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) r8_factorial real ( kind = rk ) x if ( a < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_1D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter A < 1.' stop 1 end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_1D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0.' stop 1 end if if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = b ** a * x ** ( a - 1 ) * exp ( - b * x ) / r8_factorial ( a - 1 ) end if return end subroutine point_distance_2d_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! POINT_DISTANCE_2D_PDF evaluates the point distance PDF in 2D. ! ! Discussion: ! ! It is assumed that a set of points has been generated in 2D ! according to a Poisson process. The number of points in a region ! of size AREA is a Poisson variate with mean value B * AREA. ! ! For a point chosen at random, we may now find the nearest ! Poisson point, the second nearest and so on. We are interested ! in the PDF that governs the expected behavior of the distances ! of rank A = 1, 2, 3, ... with Poisson density B. ! ! PDF(A,B;X) = 2 * ( B * PI )^A * X^( 2 * A - 1 ) ! * EXP ( - B * PI * X * X ) / ( A - 1 )! ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2002 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Daniel Zwillinger, editor, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, ! CRC Press, 1996, pages 579. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X. ! ! Input, integer A, indicates the degree of nearness of the ! point. A = 1 means the nearest point, A = 2 the second nearest, and so on. ! 0 < A. ! ! Input, real ( kind = rk ) B, the point density. 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) r8_factorial real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( a < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_2D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter A < 1.' stop 1 end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_2D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0.' stop 1 end if if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = 2.0D+00 * ( b * r8_pi ) ** a * x ** ( 2 * a - 1 ) & * exp ( - b * r8_pi * x * x ) / r8_factorial ( a - 1 ) end if return end subroutine point_distance_3d_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! POINT_DISTANCE_3D_PDF evaluates the point distance PDF in the 3D. ! ! Discussion: ! ! It is assumed that a set of points has been generated in 3D ! according to a Poisson process. The number of points in a region ! of size VOLUME is a Poisson variate with mean value B * VOLUME. ! ! For a point chosen at random, we may now find the nearest ! Poisson point, the second nearest and so on. We are interested ! in the PDF that governs the expected behavior of the distances ! of rank A = 1, 2, 3, ... with Poisson density B. ! ! PDF(A,B;X) = 3 * ( (4/3) * B * PI )^A * X^( 3 * A - 1 ) ! * EXP ( - (4/3) * B * PI * X * X * X ) / ( A - 1 )! ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2002 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Daniel Zwillinger, editor, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, ! CRC Press, 1996, pages 580. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X. ! ! Input, integer A, indicates the degree of nearness of the ! point. A = 1 means the nearest point, A = 2 the second nearest, and so on. ! 0 < A. ! ! Input, real ( kind = rk ) B, the Poisson point density. 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) r8_factorial real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( a < 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_3D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter A < 1.' stop 1 end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POINT_DISTANCE_3D_PDF - Fatal error!' write ( *, '(a)' ) ' Input parameter B <= 0.0.' stop 1 end if if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = 3.0D+00 * ( ( 4.0D+00 / 3.0D+00 ) * b * r8_pi ) ** a & * x ** ( 3 * a - 1 ) * exp ( - ( 4.0D+00 / 3.0D+00 ) * b & * r8_pi * x ** 3 ) / r8_factorial ( a - 1 ) end if return end subroutine poisson_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! POISSON_CDF evaluates the Poisson CDF. ! ! Discussion: ! ! CDF(X,A) is the probability that the number of events observed ! in a unit time period will be no greater than X, given that the ! expected number of events in a unit time period is A. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! 0 <= X. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer i real ( kind = rk ) last real ( kind = rk ) new real ( kind = rk ) sum2 integer x if ( x < 0 ) then cdf = 0.0D+00 else new = exp ( - a ) sum2 = new do i = 1, x last = new new = last * a / real ( i, kind = rk ) sum2 = sum2 + new end do cdf = sum2 end if return end subroutine poisson_cdf_values ( n_data, a, x, fx ) !*****************************************************************************80 ! !! POISSON_CDF_VALUES returns some values of the Poisson CDF. ! ! Discussion: ! ! CDF(X)(A) is the probability of at most X successes in unit time, ! given that the expected mean number of successes is A. ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`DiscreteDistributions`] ! dist = PoissonDistribution [ a ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Daniel Zwillinger, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, CRC Press, 1996, pages 653-658. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, the parameter of the function. ! ! Output, integer X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 21 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.02D+00, & 0.10D+00, & 0.10D+00, & 0.50D+00, & 0.50D+00, & 0.50D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 1.00D+00, & 2.00D+00, & 2.00D+00, & 2.00D+00, & 2.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.9801986733067553D+00, & 0.9048374180359596D+00, & 0.9953211598395555D+00, & 0.6065306597126334D+00, & 0.9097959895689501D+00, & 0.9856123220330293D+00, & 0.3678794411714423D+00, & 0.7357588823428846D+00, & 0.9196986029286058D+00, & 0.9810118431238462D+00, & 0.1353352832366127D+00, & 0.4060058497098381D+00, & 0.6766764161830635D+00, & 0.8571234604985470D+00, & 0.6737946999085467D-02, & 0.4042768199451280D-01, & 0.1246520194830811D+00, & 0.2650259152973617D+00, & 0.4404932850652124D+00, & 0.6159606548330631D+00, & 0.7621834629729387D+00 /) integer n_data integer x integer, save, dimension ( n_max ) :: x_vec = (/ & 0, 0, 1, 0, & 1, 2, 0, 1, & 2, 3, 0, 1, & 2, 3, 0, 1, & 2, 3, 4, 5, & 6 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 x = 0 fx = 0.0D+00 else a = a_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine poisson_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! POISSON_CDF_INV inverts the Poisson CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 September 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, a value of the CDF. ! 0 <= CDF < 1. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, integer X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer i real ( kind = rk ) last real ( kind = rk ) new real ( kind = rk ) sum2 real ( kind = rk ) sumold integer x integer, parameter :: xmax = 100 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POISSON_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if ! ! Now simply start at X = 0, and find the first value for which ! CDF(X-1) <= CDF <= CDF(X). ! sum2 = 0.0D+00 do i = 0, xmax sumold = sum2 if ( i == 0 ) then new = exp ( - a ) sum2 = new else last = new new = last * a / real ( i, kind = rk ) sum2 = sum2 + new end if if ( sumold <= cdf .and. cdf <= sum2 ) then x = i return end if end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POISSON_CDF_INV - Warning!' write ( *, '(a,i8)' ) ' Exceeded XMAX = ', xmax x = xmax return end function poisson_check ( a ) !*****************************************************************************80 ! !! POISSON_CHECK checks the parameter of the Poisson PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, logical POISSON_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical poisson_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POISSON_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' poisson_check = .false. return end if poisson_check = .true. return end subroutine poisson_mean ( a, mean ) !*****************************************************************************80 ! !! POISSON_MEAN returns the mean of the Poisson PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean mean = a return end subroutine poisson_kernel ( r, n, c, x, y, p ) !*****************************************************************************80 ! !! POISSON_KERNEL evaluates the Poisson kernel. ! ! Discussion: ! ! P(X,Y) = ( R^2 - |X-C|^2 ) / ( R * A * |X-Y|^N ) ! ! where the N-dimensional ball has radius R and center C, ! and A is the area of the unit sphere. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 November 2011 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) R, the radius of the ball. ! ! Input, integer N, the spatial dimension. ! ! Input, real ( kind = rk ) C(N), the center of the ball. ! ! Input, real ( kind = rk ) X(N), a point inside the ball. ! ! Input, real ( kind = rk ) Y(N), a point on the surface of the ball. ! ! Output, real ( kind = rk ) P, the Poisson kernel function P(X,Y). ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) area real ( kind = rk ) b real ( kind = rk ) c(n) real ( kind = rk ) p real ( kind = rk ) r real ( kind = rk ) r8vec_diff_norm real ( kind = rk ) sphere_unit_area_nd real ( kind = rk ) t real ( kind = rk ) x(n) real ( kind = rk ) xc_diff_norm real ( kind = rk ) xy_diff_norm real ( kind = rk ) y(n) xc_diff_norm = r8vec_diff_norm ( n, x, c ) xy_diff_norm = r8vec_diff_norm ( n, x, y ) area = sphere_unit_area_nd ( n ) t = ( r + xc_diff_norm ) * ( r - xc_diff_norm ) b = r * area * ( xy_diff_norm ) ** n p = t / b return end subroutine poisson_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! POISSON_PDF evaluates the Poisson PDF. ! ! Discussion: ! ! PDF(A;X) = EXP ( - A ) * A^X / X! ! ! PDF(A;X) is the probability that the number of events observed ! in a unit time period will be X, given the expected number ! of events in a unit time. ! ! The parameter A is the expected number of events per unit time. ! ! The Poisson PDF is a discrete version of the Exponential PDF. ! ! The time interval between two Poisson events is a random ! variable with the Exponential PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 0 <= X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf real ( kind = rk ) r8_factorial integer x if ( x < 0 ) then pdf = 0.0D+00 else pdf = exp ( - a ) * a ** x / r8_factorial ( x ) end if return end subroutine poisson_sample ( a, x ) !*****************************************************************************80 ! !! POISSON_SAMPLE samples the Poisson PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call poisson_cdf_inv ( cdf, a, x ) return end subroutine poisson_variance ( a, variance ) !*****************************************************************************80 ! !! POISSON_VARIANCE returns the variance of the Poisson PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) variance variance = a return end subroutine power_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! POWER_CDF evaluates the Power CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B, ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else if ( x <= b ) then cdf = ( x / b ) ** a else cdf = 1.0D+00 end if return end subroutine power_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! POWER_CDF_INV inverts the Power CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) X, the argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = 0.0D+00 else if ( cdf < 1.0D+00 ) then x = b * exp ( log ( cdf ) / a ) else x = b end if return end function power_check ( a, b ) !*****************************************************************************80 ! !! POWER_CHECK checks the parameter of the Power PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, logical POWER_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical power_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' power_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'POWER_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' power_check = .false. return end if power_check = .true. return end subroutine power_mean ( a, b, mean ) !*****************************************************************************80 ! !! POWER_MEAN returns the mean of the Power PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a * b / ( a + 1.0D+00 ) return end subroutine power_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! POWER_PDF evaluates the Power PDF. ! ! Discussion: ! ! PDF(A;X) = (A/B) * (X/B)^(A-1) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Daniel Zwillinger, Stephen Kokoska, ! CRC Standard Probability and Statistics Tables and Formulae, ! Chapman and Hall/CRC, 2000, pages 152-153. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X <= B. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 .or. b < x ) then pdf = 0.0D+00 else pdf = ( a / b ) * ( x / b ) ** ( a - 1.0D+00 ) end if return end subroutine power_sample ( a, b, x ) !*****************************************************************************80 ! !! POWER_SAMPLE samples the Power PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call power_cdf_inv ( cdf, a, b, x ) return end subroutine power_variance ( a, b, variance ) !*****************************************************************************80 ! !! POWER_VARIANCE returns the variance of the Power PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 11 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A, 0.0D+00 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = b * b * a / ( ( a + 1.0D+00 ) ** 2 * ( a + 2.0D+00 ) ) return end subroutine psi_values ( n_data, x, fx ) !*****************************************************************************80 ! !! PSI_VALUES returns some values of the Psi or Digamma function. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! PolyGamma[x] ! ! or ! ! PolyGamma[0,x] ! ! PSI(X) = d ln ( Gamma ( X ) ) / d X = Gamma'(X) / Gamma(X) ! ! PSI(1) = -Euler's constant. ! ! PSI(X+1) = PSI(X) + 1 / X. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 11 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & -0.5772156649015329D+00, & -0.4237549404110768D+00, & -0.2890398965921883D+00, & -0.1691908888667997D+00, & -0.6138454458511615D-01, & 0.3648997397857652D-01, & 0.1260474527734763D+00, & 0.2085478748734940D+00, & 0.2849914332938615D+00, & 0.3561841611640597D+00, & 0.4227843350984671D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 1.0D+00, & 1.1D+00, & 1.2D+00, & 1.3D+00, & 1.4D+00, & 1.5D+00, & 1.6D+00, & 1.7D+00, & 1.8D+00, & 1.9D+00, & 2.0D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 x = 0.0D+00 fx = 0.0D+00 else x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine quasigeometric_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_CDF evaluates the Quasigeometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the maximum number of trials. ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer x if ( x < 0 ) then cdf = 0.0D+00 else if ( x == 0 ) then cdf = a else if ( b == 0.0D+00 ) then cdf = 1.0D+00 else cdf = a + ( 1.0D+00 - a ) * ( 1.0D+00 - b**x ) end if return end subroutine quasigeometric_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_CDF_INV inverts the Quasigeometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0D+00 ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, integer X, the corresponding value of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'QUASIGEOMETRIC_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf < a ) then x = 0 else if ( b == 0.0D+00 ) then x = 1 else x = 1 + int ( ( log ( 1.0D+00 - cdf ) - log ( 1.0D+00 - a ) ) / log ( b ) ) end if return end function quasigeometric_check ( a, b ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_CHECK checks the parameters of the Quasigeometric CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, logical QUASIGEOMETRIC_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical quasigeometric_check if ( a < 0.0D+00 .or. 1.0D+00 < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'QUASIGEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 0 or 1 < A.' quasigeometric_check = .false. return end if if ( b < 0.0D+00 .or. 1.0D+00 <= b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'QUASIGEOMETRIC_CHECK - Fatal error!' write ( *, '(a)' ) ' B < 0 or 1 <= B.' quasigeometric_check = .false. return end if quasigeometric_check = .true. return end subroutine quasigeometric_mean ( a, b, mean ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_MEAN returns the mean of the Quasigeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = ( 1.0D+00 - a ) / ( 1.0D+00 - b ) return end subroutine quasigeometric_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_PDF evaluates the Quasigeometric PDF. ! ! Discussion: ! ! PDF(A,B;X) = A if 0 = X; ! = (1-A) * (1-B) * B^(X-1) if 1 <= X. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Darren Glass, Philip Lowry, ! Quasiquasigeometric Distributions and Extra Inning Baseball Games, ! Mathematics Magazine, ! Volume 81, Number 2, April 2008, pages 127-137. ! ! Paul Nahin, ! Digital Dice: Computational Solutions to Practical Probability Problems, ! Princeton University Press, 2008, ! ISBN13: 978-0-691-12698-2, ! LC: QA273.25.N34. ! ! Parameters: ! ! Input, integer X, the independent variable. ! 0 <= X ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf integer x if ( x < 0 ) then pdf = 0.0D+00 else if ( x == 0 ) then pdf = a else if ( b == 0.0D+00 ) then if ( x == 1 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if else pdf = ( 1.0D+00 - a ) * ( 1.0D+00 - b ) * b ** ( x - 1 ) end if return end subroutine quasigeometric_sample ( a, b, x ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_SAMPLE samples the Quasigeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call quasigeometric_cdf_inv ( cdf, a, b, x ) return end subroutine quasigeometric_variance ( a, b, variance ) !*****************************************************************************80 ! !! QUASIGEOMETRIC_VARIANCE returns the variance of the Quasigeometric PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the probability of 0 successes. ! 0.0 <= A <= 1.0. ! ! Input, real ( kind = rk ) B, the depreciation constant. ! 0.0 <= B < 1.0. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = ( 1.0D+00 - a ) * ( a + b ) / ( 1.0D+00 - b ) / ( 1.0D+00 - b ) return end function r8_beta ( a, b ) !*****************************************************************************80 ! !! R8_BETA returns the value of the Beta function. ! ! Discussion: ! ! The Beta function is defined as ! ! BETA(A,B) = ( GAMMA ( A ) * GAMMA ( B ) ) / GAMMA ( A + B ) ! = Integral ( 0 <= T <= 1 ) T^(A-1) (1-T)^(B-1) dT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the function. ! 0.0 < A, ! 0.0 < B. ! ! Output, real ( kind = rk ) R8_BETA, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) r8_beta if ( a <= 0.0D+00 .or. b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_BETA - Fatal error!' write ( *, '(a)' ) ' Both A and B must be greater than 0.' stop 1 end if r8_beta = exp ( lgamma ( a ) + lgamma ( b ) - lgamma ( a + b ) ) return end function r8_ceiling ( r ) !*****************************************************************************80 ! !! R8_CEILING rounds an R8 "up" to the nearest integer. ! ! Example: ! ! R Value ! ! -1.1 -1 ! -1.0 -1 ! -0.9 0 ! 0.0 0 ! 5.0 5 ! 5.1 6 ! 5.9 6 ! 6.0 6 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) R, the real value to be rounded up. ! ! Output, integer R8_CEILING, the rounded value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer r8_ceiling real ( kind = rk ) r integer value value = int ( r ) if ( real ( value, kind = rk ) < r ) then value = value + 1 end if r8_ceiling = value return end function r8_csc ( theta ) !*****************************************************************************80 ! !! R8_CSC returns the cosecant of X. ! ! Discussion: ! ! CSC ( THETA ) = 1.0 / SIN ( THETA ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) THETA, the angle, in radians, whose ! cosecant is desired. It must be the case that SIN ( THETA ) is not zero. ! ! Output, real ( kind = rk ) R8_CSC, the cosecant of THETA. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r8_csc real ( kind = rk ) theta r8_csc = sin ( theta ) if ( r8_csc == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_CSC - Fatal error!' write ( *, '(a,g14.6)' ) ' R8_CSC undefined for THETA = ', theta stop 1 end if r8_csc = 1.0D+00 / r8_csc return end function r8_error_f ( x ) !*****************************************************************************80 ! !! R8_ERROR_F evaluates the error function ERF. ! ! Discussion: ! ! Since some compilers already supply a routine named ERF which evaluates ! the error function, this routine has been given a distinct, if ! somewhat unnatural, name. ! ! The function is defined by: ! ! ERF(X) = ( 2 / sqrt ( PI ) ) * Integral ( 0 <= T <= X ) EXP ( - T^2 ) dT. ! ! Properties of the function include: ! ! Limit ( X -> -Infinity ) ERF(X) = -1.0; ! ERF(0) = 0.0; ! ERF(0.476936...) = 0.5; ! Limit ( X -> +Infinity ) ERF(X) = +1.0. ! ! 0.5D+00 * ( ERF(X/sqrt(2)) + 1 ) = Normal_01_CDF(X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 November 2006 ! ! Author: ! ! Original FORTRAN77 version by William Cody. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! William Cody, ! Rational Chebyshev Approximations for the Error Function, ! Mathematics of Computation, ! 1969, pages 631-638. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the error function. ! ! Output, real ( kind = rk ) R8_ERROR_F, the value of the error function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter, dimension ( 5 ) :: a = (/ & 3.16112374387056560D+00, & 1.13864154151050156D+02, & 3.77485237685302021D+02, & 3.20937758913846947D+03, & 1.85777706184603153D-01 /) real ( kind = rk ), parameter, dimension ( 4 ) :: b = (/ & 2.36012909523441209D+01, & 2.44024637934444173D+02, & 1.28261652607737228D+03, & 2.84423683343917062D+03 /) real ( kind = rk ), parameter, dimension ( 9 ) :: c = (/ & 5.64188496988670089D-01, & 8.88314979438837594D+00, & 6.61191906371416295D+01, & 2.98635138197400131D+02, & 8.81952221241769090D+02, & 1.71204761263407058D+03, & 2.05107837782607147D+03, & 1.23033935479799725D+03, & 2.15311535474403846D-08 /) real ( kind = rk ), parameter, dimension ( 8 ) :: d = (/ & 1.57449261107098347D+01, & 1.17693950891312499D+02, & 5.37181101862009858D+02, & 1.62138957456669019D+03, & 3.29079923573345963D+03, & 4.36261909014324716D+03, & 3.43936767414372164D+03, & 1.23033935480374942D+03 /) real ( kind = rk ) del integer i real ( kind = rk ), parameter, dimension ( 6 ) :: p = (/ & 3.05326634961232344D-01, & 3.60344899949804439D-01, & 1.25781726111229246D-01, & 1.60837851487422766D-02, & 6.58749161529837803D-04, & 1.63153871373020978D-02 /) real ( kind = rk ), parameter, dimension ( 5 ) :: q = (/ & 2.56852019228982242D+00, & 1.87295284992346047D+00, & 5.27905102951428412D-01, & 6.05183413124413191D-02, & 2.33520497626869185D-03 /) real ( kind = rk ) r8_error_f real ( kind = rk ), parameter :: sqrpi = 0.56418958354775628695D+00 real ( kind = rk ), parameter :: thresh = 0.46875D+00 real ( kind = rk ) x real ( kind = rk ) xabs real ( kind = rk ), parameter :: xbig = 26.543D+00 real ( kind = rk ) xden real ( kind = rk ) xnum real ( kind = rk ) xsq xabs = abs ( ( x ) ) ! ! Evaluate ERF(X) for |X| <= 0.46875. ! if ( xabs <= thresh ) then if ( epsilon ( xabs ) < xabs ) then xsq = xabs * xabs else xsq = 0.0D+00 end if xnum = a(5) * xsq xden = xsq do i = 1, 3 xnum = ( xnum + a(i) ) * xsq xden = ( xden + b(i) ) * xsq end do r8_error_f = x * ( xnum + a(4) ) / ( xden + b(4) ) ! ! Evaluate ERFC(X) for 0.46875 <= |X| <= 4.0. ! else if ( xabs <= 4.0D+00 ) then xnum = c(9) * xabs xden = xabs do i = 1, 7 xnum = ( xnum + c(i) ) * xabs xden = ( xden + d(i) ) * xabs end do r8_error_f = ( xnum + c(8) ) / ( xden + d(8) ) xsq = real ( int ( xabs * 16.0D+00 ), kind = rk ) / 16.0D+00 del = ( xabs - xsq ) * ( xabs + xsq ) r8_error_f = exp ( - xsq * xsq ) * exp ( - del ) * r8_error_f r8_error_f = ( 0.5D+00 - r8_error_f ) + 0.5D+00 if ( x < 0.0D+00 ) then r8_error_f = - r8_error_f end if ! ! Evaluate ERFC(X) for 4.0D+00 < |X|. ! else if ( xbig <= xabs ) then if ( 0.0D+00 < x ) then r8_error_f = 1.0D+00 else r8_error_f = - 1.0D+00 end if else xsq = 1.0D+00 / ( xabs * xabs ) xnum = p(6) * xsq xden = xsq do i = 1, 4 xnum = ( xnum + p(i) ) * xsq xden = ( xden + q(i) ) * xsq end do r8_error_f = xsq * ( xnum + p(5) ) / ( xden + q(5) ) r8_error_f = ( sqrpi - r8_error_f ) / xabs xsq = real ( int ( xabs * 16.0D+00 ), kind = rk ) / 16.0D+00 del = ( xabs - xsq ) * ( xabs + xsq ) r8_error_f = exp ( - xsq * xsq ) * exp ( - del ) * r8_error_f r8_error_f = ( 0.5D+00 - r8_error_f ) + 0.5D+00 if ( x < 0.0D+00 ) then r8_error_f = - r8_error_f end if end if end if return end function r8_error_f_inverse ( y ) !*****************************************************************************80 ! !! R8_ERROR_F_INVERSE inverts the error function ERF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 August 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) Y, the value of the error function. ! ! Output, real ( kind = rk ) R8_ERROR_F_INVERSE, the value X such that ! ERF(X) = Y. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r8_error_f_inverse real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) z z = ( y + 1.0D+00 ) / 2.0D+00 call normal_01_cdf_inv ( z, x ) r8_error_f_inverse = x / sqrt ( 2.0D+00 ) return end function r8_factorial ( n ) !*****************************************************************************80 ! !! R8_FACTORIAL computes the factorial of N. ! ! Discussion: ! ! factorial ( N ) = product ( 1 <= I <= N ) I ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the argument of the factorial function. ! If N is less than 1, the function value is returned as 1. ! ! Output, real ( kind = rk ) R8_FACTORIAL, the factorial of N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r8_factorial integer i integer n real ( kind = rk ) value value = 1.0D+00 do i = 1, n value = value * real ( i, kind = rk ) end do r8_factorial = value return end function r8_factorial_log ( n ) !*****************************************************************************80 ! !! R8_FACTORIAL_LOG returns the logarithm of N factorial. ! ! Discussion: ! ! N! = Product ( 1 <= I <= N ) I ! ! N! = Gamma(N+1). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the argument of the function. ! 0 <= N. ! ! Output, real ( kind = rk ) R8_FACTORIAL_LOG, the logarithm of N!. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i integer n real ( kind = rk ) r8_factorial_log if ( n < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_FACTORIAL_LOG - Fatal error!' write ( *, '(a)' ) ' N < 0.' stop 1 end if r8_factorial_log = 0.0D+00 do i = 2, n r8_factorial_log = r8_factorial_log + log ( real ( i, kind = rk ) ) end do return end subroutine r8_fake_use ( x ) !*****************************************************************************80 ! !! r8_fake_use() pretends to use an R8 variable. ! ! Discussion: ! ! Some compilers will issue a warning if a variable is unused. ! Sometimes there's a good reason to include a variable in a program, ! but not to use it. Calling this function with that variable as ! the argument will shut the compiler up. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk ) X, the variable to be "used". ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) x if ( x /= x ) then write ( *, '(a)' ) ' r8_fake_use: variable is NAN.' end if return end function r8_gamma ( x ) !*****************************************************************************80 ! !! R8_GAMMA evaluates Gamma(X) for a real argument. ! ! Discussion: ! ! This routine calculates the gamma function for a real argument X. ! ! Computation is based on an algorithm outlined in reference 1. ! The program uses rational functions that approximate the gamma ! function to at least 20 significant decimal digits. Coefficients ! for the approximation over the interval (1,2) are unpublished. ! Those for the approximation for 12 <= X are from reference 2. ! ! Modified: ! ! 11 February 2008 ! ! Author: ! ! Original FORTRAN77 version by William Cody, Laura Stoltz. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! William Cody, ! An Overview of Software Development for Special Functions, ! in Numerical Analysis Dundee, 1975, ! edited by GA Watson, ! Lecture Notes in Mathematics 506, ! Springer, 1976. ! ! John Hart, Ward Cheney, Charles Lawson, Hans Maehly, ! Charles Mesztenyi, John Rice, Henry Thatcher, ! Christoph Witzgall, ! Computer Approximations, ! Wiley, 1968, ! LC: QA297.C64. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) R8_GAMMA, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) ! ! Coefficients for minimax approximation over (12, INF). ! real ( kind = rk ), dimension ( 7 ) :: c = (/ & -1.910444077728D-03, & 8.4171387781295D-04, & -5.952379913043012D-04, & 7.93650793500350248D-04, & -2.777777777777681622553D-03, & 8.333333333333333331554247D-02, & 5.7083835261D-03 /) real ( kind = rk ), parameter :: eps = 2.22D-16 real ( kind = rk ) fact real ( kind = rk ), parameter :: half = 0.5D+00 integer i integer n real ( kind = rk ), parameter :: one = 1.0D+00 real ( kind = rk ), dimension ( 8 ) :: p = (/ & -1.71618513886549492533811D+00, & 2.47656508055759199108314D+01, & -3.79804256470945635097577D+02, & 6.29331155312818442661052D+02, & 8.66966202790413211295064D+02, & -3.14512729688483675254357D+04, & -3.61444134186911729807069D+04, & 6.64561438202405440627855D+04 /) logical parity real ( kind = rk ), parameter :: r8_pi = 3.1415926535897932384626434D+00 real ( kind = rk ), dimension ( 8 ) :: q = (/ & -3.08402300119738975254353D+01, & 3.15350626979604161529144D+02, & -1.01515636749021914166146D+03, & -3.10777167157231109440444D+03, & 2.25381184209801510330112D+04, & 4.75584627752788110767815D+03, & -1.34659959864969306392456D+05, & -1.15132259675553483497211D+05 /) real ( kind = rk ) r8_gamma real ( kind = rk ) res real ( kind = rk ), parameter :: sqrtpi = 0.9189385332046727417803297D+00 real ( kind = rk ) sum real ( kind = rk ), parameter :: twelve = 12.0D+00 real ( kind = rk ), parameter :: two = 2.0D+00 real ( kind = rk ) x real ( kind = rk ), parameter :: xbig = 171.624D+00 real ( kind = rk ) xden real ( kind = rk ), parameter :: xinf = 1.0D+30 real ( kind = rk ), parameter :: xminin = 2.23D-308 real ( kind = rk ) xnum real ( kind = rk ) y real ( kind = rk ) y1 real ( kind = rk ) ysq real ( kind = rk ) z real ( kind = rk ), parameter :: zero = 0.0D+00 parity = .false. fact = one n = 0 y = x ! ! Argument is negative. ! if ( y <= zero ) then y = - x y1 = aint ( y ) res = y - y1 if ( res /= zero ) then if ( y1 /= aint ( y1 * half ) * two ) then parity = .true. end if fact = - r8_pi / sin ( r8_pi * res ) y = y + one else res = xinf r8_gamma = res return end if end if ! ! Argument is positive. ! if ( y < eps ) then ! ! Argument < EPS. ! if ( xminin <= y ) then res = one / y else res = xinf r8_gamma = res return end if else if ( y < twelve ) then y1 = y ! ! 0.0 < argument < 1.0. ! if ( y < one ) then z = y y = y + one ! ! 1.0 < argument < 12.0. ! Reduce argument if necessary. ! else n = int ( y ) - 1 y = y - real ( n, kind = rk ) z = y - one end if ! ! Evaluate approximation for 1.0 < argument < 2.0. ! xnum = zero xden = one do i = 1, 8 xnum = ( xnum + p(i) ) * z xden = xden * z + q(i) end do res = xnum / xden + one ! ! Adjust result for case 0.0 < argument < 1.0. ! if ( y1 < y ) then res = res / y1 ! ! Adjust result for case 2.0 < argument < 12.0. ! else if ( y < y1 ) then do i = 1, n res = res * y y = y + one end do end if else ! ! Evaluate for 12.0 <= argument. ! if ( y <= xbig ) then ysq = y * y sum = c(7) do i = 1, 6 sum = sum / ysq + c(i) end do sum = sum / y - y + sqrtpi sum = sum + ( y - half ) * log ( y ) res = exp ( sum ) else res = xinf r8_gamma = res return end if end if ! ! Final adjustments and return. ! if ( parity ) then res = - res end if if ( fact /= one ) then res = fact / res end if r8_gamma = res return end function r8_gamma_inc ( p, x ) !*****************************************************************************80 ! !! R8_GAMMA_INC computes the incomplete Gamma function. ! ! Discussion: ! ! GAMMA_INC(P, 0) = 0, ! GAMMA_INC(P,Infinity) = 1. ! ! GAMMA_INC(P,X) = Integral ( 0 <= T <= X ) T^(P-1) EXP(-T) DT / GAMMA(P). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2001 ! ! Author: ! ! Original FORTRAN77 version by B L Shea. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! BL Shea, ! Chi-squared and Incomplete Gamma Integral, ! Algorithm AS239, ! Applied Statistics, ! Volume 37, Number 3, 1988, pages 466-473. ! ! Parameters: ! ! Input, real ( kind = rk ) P, the exponent parameter. ! 0.0 < P. ! ! Input, real ( kind = rk ) X, the integral limit parameter. ! If X is less than or equal to 0, the value is returned as 0. ! ! Output, real ( kind = rk ) R8_GAMMA_INC, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) arg real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ), parameter :: exp_arg_min = -88.0D+00 real ( kind = rk ), parameter :: overflow = 1.0D+37 real ( kind = rk ) p real ( kind = rk ), parameter :: plimit = 1000.0D+00 real ( kind = rk ) pn1 real ( kind = rk ) pn2 real ( kind = rk ) pn3 real ( kind = rk ) pn4 real ( kind = rk ) pn5 real ( kind = rk ) pn6 real ( kind = rk ) r8_gamma_inc real ( kind = rk ) rn real ( kind = rk ), parameter :: tol = 1.0D-07 real ( kind = rk ) x real ( kind = rk ), parameter :: xbig = 1.0D+08 r8_gamma_inc = 0.0D+00 if ( p <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_GAMMA_INC - Fatal error!' write ( *, '(a)' ) ' Parameter P <= 0.' stop 1 end if if ( x <= 0.0D+00 ) then r8_gamma_inc = 0.0D+00 return end if ! ! Use a normal approximation if PLIMIT < P. ! if ( plimit < p ) then pn1 = 3.0D+00 * sqrt ( p ) * ( ( x / p ) ** ( 1.0D+00 / 3.0D+00 ) & + 1.0D+00 / ( 9.0D+00 * p ) - 1.0D+00 ) call normal_01_cdf ( pn1, cdf ) r8_gamma_inc = cdf return end if ! ! Is X extremely large compared to P? ! if ( xbig < x ) then r8_gamma_inc = 1.0D+00 return end if ! ! Use Pearson's series expansion. ! (P is not large enough to force overflow in the log of Gamma. ! if ( x <= 1.0D+00 .or. x < p ) then arg = p * log ( x ) - x - lgamma ( p + 1.0D+00 ) c = 1.0D+00 r8_gamma_inc = 1.0D+00 a = p do a = a + 1.0D+00 c = c * x / a r8_gamma_inc = r8_gamma_inc + c if ( c <= tol ) then exit end if end do arg = arg + log ( r8_gamma_inc ) if ( exp_arg_min <= arg ) then r8_gamma_inc = exp ( arg ) else r8_gamma_inc = 0.0D+00 end if else ! ! Use a continued fraction expansion. ! arg = p * log ( x ) - x - lgamma ( p ) a = 1.0D+00 - p b = a + x + 1.0D+00 c = 0.0D+00 pn1 = 1.0D+00 pn2 = x pn3 = x + 1.0D+00 pn4 = x * b r8_gamma_inc = pn3 / pn4 do a = a + 1.0D+00 b = b + 2.0D+00 c = c + 1.0D+00 pn5 = b * pn3 - a * c * pn1 pn6 = b * pn4 - a * c * pn2 if ( 0.0D+00 < abs ( pn6 ) ) then rn = pn5 / pn6 if ( abs ( r8_gamma_inc - rn ) <= min ( tol, tol * rn ) ) then arg = arg + log ( r8_gamma_inc ) if ( exp_arg_min <= arg ) then r8_gamma_inc = 1.0D+00 - exp ( arg ) else r8_gamma_inc = 1.0D+00 end if return end if r8_gamma_inc = rn end if pn1 = pn3 pn2 = pn4 pn3 = pn5 pn4 = pn6 ! ! Rescale terms in continued fraction if terms are large. ! if ( overflow <= abs ( pn5 ) ) then pn1 = pn1 / overflow pn2 = pn2 / overflow pn3 = pn3 / overflow pn4 = pn4 / overflow end if end do end if return end function r8_gamma_log ( x ) !*****************************************************************************80 ! !! R8_GAMMA_LOG calculates the natural logarithm of GAMMA ( X ). ! ! Discussion: ! ! Computation is based on an algorithm outlined in references 1 and 2. ! The program uses rational functions that theoretically approximate ! LOG(GAMMA(X)) to at least 18 significant decimal digits. The ! approximation for 12 < X is from Hart et al, while approximations ! for X < 12.0D+00 are similar to those in Cody and Hillstrom, ! but are unpublished. ! ! The accuracy achieved depends on the arithmetic system, the compiler, ! intrinsic functions, and proper selection of the machine dependent ! constants. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 June 1999 ! ! Author: ! ! Original FORTRAN77 version by William Cody, Laura Stoltz. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! William Cody, Kenneth Hillstrom, ! Chebyshev Approximations for the Natural Logarithm of the Gamma Function, ! Mathematics of Computation, ! Volume 21, 1967, pages 198-203. ! ! Kenneth Hillstrom, ! ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, ! May 1969. ! ! John Hart, Ward Cheney, Charles Lawson, Hans Maehly, ! Charles Mesztenyi, John Rice, Henry Thacher, Christoph Witzgall, ! Computer Approximations, ! Wiley, 1968. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the Gamma function. ! X must be positive. ! ! Output, real ( kind = rk ) R8_GAMMA_LOG, the logarithm of the Gamma ! function of X. ! ! Local: ! ! Local, real ( kind = rk ) BETA, the radix for the floating-point ! representation. ! ! Local, integer MAXEXP, the smallest positive power of BETA that overflows. ! ! Local, real ( kind = rk ) XBIG, the largest argument for which ! LN(GAMMA(X)) is representable in the machine, the solution to the equation ! LN(GAMMA(XBIG)) = BETA^MAXEXP. ! ! Local, real ( kind = rk ) FRTBIG, a rough estimate of the fourth root ! of XBIG. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter, dimension ( 7 ) :: c = (/ & -1.910444077728D-03, & 8.4171387781295D-04, & -5.952379913043012D-04, & 7.93650793500350248D-04, & -2.777777777777681622553D-03, & 8.333333333333333331554247D-02, & 5.7083835261D-03 /) real ( kind = rk ) corr real ( kind = rk ), parameter :: d1 = -5.772156649015328605195174D-01 real ( kind = rk ), parameter :: d2 = 4.227843350984671393993777D-01 real ( kind = rk ), parameter :: d4 = 1.791759469228055000094023D+00 integer i real ( kind = rk ), parameter :: frtbig = 1.42D+09 real ( kind = rk ), parameter, dimension ( 8 ) :: p1 = (/ & 4.945235359296727046734888D+00, & 2.018112620856775083915565D+02, & 2.290838373831346393026739D+03, & 1.131967205903380828685045D+04, & 2.855724635671635335736389D+04, & 3.848496228443793359990269D+04, & 2.637748787624195437963534D+04, & 7.225813979700288197698961D+03 /) real ( kind = rk ), parameter, dimension ( 8 ) :: p2 = (/ & 4.974607845568932035012064D+00, & 5.424138599891070494101986D+02, & 1.550693864978364947665077D+04, & 1.847932904445632425417223D+05, & 1.088204769468828767498470D+06, & 3.338152967987029735917223D+06, & 5.106661678927352456275255D+06, & 3.074109054850539556250927D+06 /) real ( kind = rk ), parameter, dimension ( 8 ) :: p4 = (/ & 1.474502166059939948905062D+04, & 2.426813369486704502836312D+06, & 1.214755574045093227939592D+08, & 2.663432449630976949898078D+09, & 2.940378956634553899906876D+10, & 1.702665737765398868392998D+11, & 4.926125793377430887588120D+11, & 5.606251856223951465078242D+11 /) real ( kind = rk ), parameter :: pnt68 = 0.6796875D+00 real ( kind = rk ), parameter, dimension ( 8 ) :: q1 = (/ & 6.748212550303777196073036D+01, & 1.113332393857199323513008D+03, & 7.738757056935398733233834D+03, & 2.763987074403340708898585D+04, & 5.499310206226157329794414D+04, & 6.161122180066002127833352D+04, & 3.635127591501940507276287D+04, & 8.785536302431013170870835D+03 /) real ( kind = rk ), parameter, dimension ( 8 ) :: q2 = (/ & 1.830328399370592604055942D+02, & 7.765049321445005871323047D+03, & 1.331903827966074194402448D+05, & 1.136705821321969608938755D+06, & 5.267964117437946917577538D+06, & 1.346701454311101692290052D+07, & 1.782736530353274213975932D+07, & 9.533095591844353613395747D+06 /) real ( kind = rk ), parameter, dimension ( 8 ) :: q4 = (/ & 2.690530175870899333379843D+03, & 6.393885654300092398984238D+05, & 4.135599930241388052042842D+07, & 1.120872109616147941376570D+09, & 1.488613728678813811542398D+10, & 1.016803586272438228077304D+11, & 3.417476345507377132798597D+11, & 4.463158187419713286462081D+11 /) real ( kind = rk ) r8_gamma_log real ( kind = rk ) res real ( kind = rk ), parameter :: sqrtpi = 0.9189385332046727417803297D+00 real ( kind = rk ) x real ( kind = rk ), parameter :: xbig = 4.08D+36 real ( kind = rk ) xden real ( kind = rk ) xm1 real ( kind = rk ) xm2 real ( kind = rk ) xm4 real ( kind = rk ) xnum real ( kind = rk ) xsq ! ! Return immediately if the argument is out of range. ! if ( x <= 0.0D+00 .or. xbig < x ) then r8_gamma_log = huge ( r8_gamma_log ) return end if if ( x <= epsilon ( x ) ) then res = -log ( x ) else if ( x <= 1.5D+00 ) then if ( x < pnt68 ) then corr = - log ( x ) xm1 = x else corr = 0.0D+00 xm1 = ( x - 0.5D+00 ) - 0.5D+00 end if if ( x <= 0.5D+00 .or. pnt68 <= x ) then xden = 1.0D+00 xnum = 0.0D+00 do i = 1, 8 xnum = xnum * xm1 + p1(i) xden = xden * xm1 + q1(i) end do res = corr + ( xm1 * ( d1 + xm1 * ( xnum / xden ) ) ) else xm2 = ( x - 0.5D+00 ) - 0.5D+00 xden = 1.0D+00 xnum = 0.0D+00 do i = 1, 8 xnum = xnum * xm2 + p2(i) xden = xden * xm2 + q2(i) end do res = corr + xm2 * ( d2 + xm2 * ( xnum / xden ) ) end if else if ( x <= 4.0D+00 ) then xm2 = x - 2.0D+00 xden = 1.0D+00 xnum = 0.0D+00 do i = 1, 8 xnum = xnum * xm2 + p2(i) xden = xden * xm2 + q2(i) end do res = xm2 * ( d2 + xm2 * ( xnum / xden ) ) else if ( x <= 12.0D+00 ) then xm4 = x - 4.0D+00 xden = - 1.0D+00 xnum = 0.0D+00 do i = 1, 8 xnum = xnum * xm4 + p4(i) xden = xden * xm4 + q4(i) end do res = d4 + xm4 * ( xnum / xden ) else res = 0.0D+00 if ( x <= frtbig ) then res = c(7) xsq = x * x do i = 1, 6 res = res / xsq + c(i) end do end if res = res / x corr = log ( x ) res = res + sqrtpi - 0.5D+00 * corr res = res + x * ( corr - 1.0D+00 ) end if r8_gamma_log = res return end function r8_gamma_log_int ( n ) !*****************************************************************************80 ! !! R8_GAMMA_LOG_INT computes the logarithm of Gamma of an integer N. ! ! Discussion: ! ! log ( n! ) = r8_gamma_log_int ( n + 1 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the argument of the logarithm of the ! Gamma function. 0 < N. ! ! Output, real ( kind = rk ) R8_GAMMA_LOG_INT, the logarithm of ! the Gamma function of N. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) r8_gamma_log_int if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8_GAMMA_LOG_INT - Fatal error!' write ( *, '(a,i12)' ) ' Illegal input value of N = ', n write ( *, '(a)' ) ' But N must be strictly positive.' stop 1 end if r8_gamma_log_int = lgamma ( real ( n, kind = rk ) ) return end function r8_is_int ( r ) !*****************************************************************************80 ! !! R8_IS_INT determines if an R8 represents an integer value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) R, the number to be checked. ! ! Output, logical R8_IS_INT, is TRUE if R is an integer value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i4_huge real ( kind = rk ) r logical r8_is_int if ( real ( i4_huge ( ), kind = rk ) < r ) then r8_is_int = .false. else if ( r < - real ( i4_huge ( ) , kind = rk ) ) then r8_is_int = .false. else if ( r == real ( int ( r ), kind = rk ) ) then r8_is_int = .true. else r8_is_int = .false. end if return end function r8_pi ( ) !*****************************************************************************80 ! !! R8_PI returns the value of pi to 16 decimal places. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, double precision R8_PI, the value of pi. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) double precision r8_pi r8_pi = 3.141592653589793D+00 return end function r8_zeta ( p ) !*****************************************************************************80 ! !! R8_ZETA estimates the Riemann Zeta function. ! ! Discussion: ! ! For 1 < P, the Riemann Zeta function is defined as: ! ! ZETA ( P ) = Sum ( 1 <= N < Infinity ) 1 / N^P ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Daniel Zwillinger, editor, ! CRC Standard Mathematical Tables and Formulae, ! 30th Edition, ! CRC Press, 1996. ! ! Parameters: ! ! Input, real ( kind = rk ) P, the power to which the integers are raised. ! P must be greater than 1. For integral P up to 20, a ! precomputed value of ZETA is returned; otherwise the infinite ! sum is approximated. ! ! Output, real ( kind = rk ) R8_ZETA, an approximation to the Riemann ! Zeta function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) p real ( kind = rk ), parameter :: r8_huge = 1.0D+30 real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r8_zeta real ( kind = rk ) zsum real ( kind = rk ) zsum_old if ( p <= 1.0D+00 ) then r8_zeta = r8_huge else if ( p == 2.0D+00 ) then r8_zeta = r8_pi ** 2 / 6.0D+00 else if ( p == 3.0D+00 ) then r8_zeta = 1.2020569032D+00 else if ( p == 4.0D+00 ) then r8_zeta = r8_pi ** 4 / 90.0D+00 else if ( p == 5.0D+00 ) then r8_zeta = 1.0369277551D+00 else if ( p == 6.0D+00 ) then r8_zeta = r8_pi ** 6 / 945.0D+00 else if ( p == 7.0D+00 ) then r8_zeta = 1.0083492774D+00 else if ( p == 8.0D+00 ) then r8_zeta = r8_pi ** 8 / 9450.0D+00 else if ( p == 9.0D+00 ) then r8_zeta = 1.0020083928D+00 else if ( p == 10.0D+00 ) then r8_zeta = r8_pi ** 10 / 93555.0D+00 else if ( p == 11.0D+00 ) then r8_zeta = 1.0004941886D+00 else if ( p == 12.0D+00 ) then r8_zeta = 1.0002460866D+00 else if ( p == 13.0D+00 ) then r8_zeta = 1.0001227133D+00 else if ( p == 14.0D+00 ) then r8_zeta = 1.0000612482D+00 else if ( p == 15.0D+00 ) then r8_zeta = 1.0000305882D+00 else if ( p == 16.0D+00 ) then r8_zeta = 1.0000152823D+00 else if ( p == 17.0D+00 ) then r8_zeta = 1.0000076372D+00 else if ( p == 18.0D+00 ) then r8_zeta = 1.0000038173D+00 else if ( p == 19.0D+00 ) then r8_zeta = 1.0000019082D+00 else if ( p == 20.0D+00 ) then r8_zeta = 1.0000009540D+00 else zsum = 0.0D+00 n = 0 do n = n + 1 zsum_old = zsum zsum = zsum + 1.0D+00 / ( real ( n, kind = rk ) ) ** p if ( zsum <= zsum_old ) then exit end if end do r8_zeta = zsum end if return end subroutine r8mat_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_PRINT prints an R8MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the number of rows in A. ! ! Input, integer N, the number of columns in A. ! ! Input, real ( kind = rk ) A(M,N), the matrix. ! ! Input, character ( len = * ) TITLE, a title to be printed. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) character ( len = * ) title call r8mat_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_PRINT_SOME prints some of an R8MAT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: incx = 5 integer m integer n real ( kind = rk ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2 integer j2hi integer j2lo integer jhi integer jlo logical r8_is_int character ( len = * ) title if ( 0 < len_trim ( title ) ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if do j2lo = max ( jlo, 1 ), min ( jhi, n ), incx j2hi = j2lo + incx - 1 j2hi = min ( j2hi, n ) j2hi = min ( j2hi, jhi ) inc = j2hi + 1 - j2lo write ( *, '(a)' ) ' ' do j = j2lo, j2hi j2 = j + 1 - j2lo write ( ctemp(j2), '(i7,7x)') j end do write ( *, '('' Col '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Row' write ( *, '(a)' ) ' ' i2lo = max ( ilo, 1 ) i2hi = min ( ihi, m ) do i = i2lo, i2hi do j2 = 1, inc j = j2lo - 1 + j2 if ( r8_is_int ( a(i,j) ) ) then write ( ctemp(j2), '(f8.0,6x)' ) a(i,j) else write ( ctemp(j2), '(g14.6)' ) a(i,j) end if end do write ( *, '(i5,1x,5a14)' ) i, ( ctemp(j), j = 1, inc ) end do end do return end function r8poly_value_horner ( m, c, x ) !*****************************************************************************80 ! !! R8POLY_VALUE_HORNER evaluates a polynomial using Horner's method. ! ! Discussion: ! ! The polynomial ! ! p(x) = c0 + c1 * x + c2 * x^2 + ... + cm * x^m ! ! is to be evaluated at the value X. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2014 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, the degree. ! ! Input, real ( kind = rk ) C(0:M), the polynomial coefficients. ! C(I) is the coefficient of X^I. ! ! Input, real ( kind = rk ) X, the evaluation point. ! ! Output, real ( kind = rk ) R8POLY_VALUE_HORNER, the polynomial value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) c(0:m) integer i real ( kind = rk ) r8poly_value_horner real ( kind = rk ) value real ( kind = rk ) x value = c(m) do i = m - 1, 0, -1 value = value * x + c(i) end do r8poly_value_horner = value return end subroutine r8row_max ( m, n, a, amax ) !*****************************************************************************80 ! !! R8ROW_MAX returns the maximums of an R8ROW. ! ! Discussion: ! ! An R8ROW is an M by N array of R8 values, regarded ! as an array of M rows of length N. ! ! Example: ! ! A = ! 1 2 3 ! 2 6 7 ! ! MAX = ! 3 ! 7 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns ! in the array. ! ! Input, real ( kind = rk ) A(M,N), the array to be examined. ! ! Output, real ( kind = rk ) AMAX(M), the maximums of the rows. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) real ( kind = rk ) amax(m) integer i integer j do i = 1, m amax(i) = a(i,1) do j = 2, n if ( amax(i) < a(i,j) ) then amax(i) = a(i,j) end if end do end do return end subroutine r8row_mean ( m, n, x, mean ) !*****************************************************************************80 ! !! R8ROW_MEAN returns the means of rows of an R8ROW. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) X(M,N), the array whose row means are desired. ! ! Output, real ( kind = rk ) MEAN(M), the means, or averages, ! of the rows of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer i real ( kind = rk ) mean(m) real ( kind = rk ) x(m,n) do i = 1, m mean(i) = sum ( x(i,1:n) ) / real ( n ) end do return end subroutine r8row_min ( m, n, a, amin ) !*****************************************************************************80 ! !! R8ROW_MIN returns the minimums of an R8ROW. ! ! Discussion: ! ! An R8ROW is an M by N array of R8 values, regarded ! as an array of M rows of length N. ! ! Example: ! ! A = ! 1 2 3 ! 2 6 7 ! ! MIN = ! 1 ! 2 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns ! in the array. ! ! Input, real ( kind = rk ) A(M,N), the array to be examined. ! ! Output, real ( kind = rk ) AMIN(M), the minimums of the rows. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) a(m,n) real ( kind = rk ) amin(m) integer i integer j do i = 1, m amin(i) = a(i,1) do j = 2, n if ( a(i,j) < amin(i) ) then amin(i) = a(i,j) end if end do end do return end subroutine r8row_variance ( m, n, x, variance ) !*****************************************************************************80 ! !! R8ROW_VARIANCE returns the variances of the rows of an R8ROW. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = rk ) X(M,N), the array whose row means are desired. ! ! Output, real ( kind = rk ) VARIANCE(M), the variances of the rows of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer i real ( kind = rk ) mean real ( kind = rk ) variance(m) real ( kind = rk ) x(m,n) do i = 1, m mean = sum ( x(i,1:n) ) / real ( n, kind = rk ) variance(i) = sum ( ( x(i,1:n) - mean ) ** 2 ) if ( 1 < n ) then variance(i) = variance(i) / real ( n - 1, kind = rk ) else variance(i) = 0.0D+00 end if end do return end subroutine r8vec_circular_variance ( n, x, circular_variance ) !*****************************************************************************80 ! !! R8VEC_CIRCULAR_VARIANCE returns the circular variance of an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, real ( kind = rk ) X(N), the vector whose variance is desired. ! ! Output, real ( kind = rk ) CIRCULAR VARIANCE, the circular variance ! of the vector entries. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) circular_variance real ( kind = rk ) mean real ( kind = rk ) x(n) call r8vec_mean ( n, x, mean ) circular_variance = & ( sum ( cos ( x(1:n) - mean ) ) ) ** 2 & + ( sum ( sin ( x(1:n) - mean ) ) ) ** 2 circular_variance = sqrt ( circular_variance ) / real ( n, kind = rk ) circular_variance = 1.0D+00 - circular_variance return end function r8vec_diff_norm ( n, a, b ) !*****************************************************************************80 ! !! R8VEC_DIFF_NORM returns the L2 norm of the difference of R8VEC's. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! The vector L2 norm is defined as: ! ! R8VEC_NORM_L2 = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 April 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in A. ! ! Input, real ( kind = rk ) A(N), B(N), the vectors ! ! Output, real ( kind = rk ) R8VEC_DIFF_NORM, the L2 norm of A - B. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) b(n) real ( kind = rk ) r8vec_diff_norm r8vec_diff_norm = sqrt ( sum ( ( a(1:n) - b(1:n) ) ** 2 ) ) return end subroutine r8vec_max ( n, a, amax ) !*****************************************************************************80 ! !! R8VEC_MAX returns the maximum value in an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the array. ! ! Input, real ( kind = rk ) A(N), the array. ! ! Output, real ( kind = rk ) AMAX, the value of the largest entry. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) amax amax = maxval ( a(1:n) ) return end subroutine r8vec_mean ( n, x, mean ) !*****************************************************************************80 ! !! R8VEC_MEAN returns the mean of an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, real ( kind = rk ) X(N), the vector whose mean is desired. ! ! Output, real ( kind = rk ) MEAN, the mean, or average, ! of the vector entries. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mean real ( kind = rk ) x(n) mean = sum ( x(1:n) ) / real ( n, kind = rk ) return end subroutine r8vec_min ( n, a, amin ) !*****************************************************************************80 ! !! R8VEC_MIN returns the minimum value of an R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 November 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the array. ! ! Input, real ( kind = rk ) A(N), the array. ! ! Output, real ( kind = rk ) AMIN, the value of the smallest entry. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) amin amin = minval ( a(1:n) ) return end subroutine r8vec_print ( n, a, title ) !*****************************************************************************80 ! !! R8VEC_PRINT prints an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, real ( kind = rk ) A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title to be printed first. ! TITLE may be blank. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) integer i character ( len = * ) title if ( title /= ' ' ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) end if write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(i8,g14.6)' ) i, a(i) end do return end subroutine r8vec_uniform ( n, a, b, r ) !*****************************************************************************80 ! !! R8VEC_UNIFORM returns a scaled pseudorandom R8VEC. ! ! Discussion: ! ! An R8VEC is a vector of real ( kind = rk ) values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 July 2006 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Paul Bratley, Bennett Fox, Linus Schrage, ! A Guide to Simulation, ! Springer Verlag, pages 201-202, 1983. ! ! Bennett Fox, ! Algorithm 647: ! Implementation and Relative Efficiency of Quasirandom ! Sequence Generators, ! ACM Transactions on Mathematical Software, ! Volume 12, Number 4, pages 362-376, 1986. ! ! Peter Lewis, Allen Goodman, James Miller ! A Pseudo-Random Number Generator for the System/360, ! IBM Systems Journal, ! Volume 8, pages 136-143, 1969. ! ! Parameters: ! ! Input, integer M, the number of entries in the vector. ! ! Input, real ( kind = rk ) A, B, the lower and upper limits. ! ! Output, real ( kind = rk ) R(N), the vector of pseudorandom values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) r(n) call random_number ( harvest = r(1:n) ) r(1:n) = a + ( b - a ) * r(1:n) return end subroutine r8vec_unit_sum ( n, a ) !*****************************************************************************80 ! !! R8VEC_UNIT_SUM normalizes an R8VEC to have unit sum. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input/output, real A(N), the vector to be normalized. On output, ! the entries of A should have unit sum. However, if the input vector ! has zero sum, the routine halts. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a(n) real ( kind = rk ) a_sum a_sum = sum ( a(1:n) ) if ( a_sum == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_UNIT_SUM - Fatal error!' write ( *, '(a)' ) ' The vector entries sum to 0.' stop 1 end if a(1:n) = a(1:n) / a_sum return end subroutine r8vec_variance ( n, x, variance ) !*****************************************************************************80 ! !! R8VEC_VARIANCE returns the variance of an R8VEC. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of entries in the vector. ! ! Input, real ( kind = rk ) X(N), the vector whose variance is desired. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the vector entries. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) mean real ( kind = rk ) variance real ( kind = rk ) x(n) call r8vec_mean ( n, x, mean ) variance = sum ( ( x(1:n) - mean ) ** 2 ) if ( 1 < n ) then variance = variance / real ( n - 1, kind = rk ) else variance = 0.0D+00 end if return end subroutine rayleigh_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! RAYLEIGH_CDF evaluates the Rayleigh CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! 0.0 <= X. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) x if ( x < 0.0D+00 ) then cdf = 0.0D+00 else cdf = 1.0D+00 - exp ( - x ** 2 / ( 2.0D+00 * a ** 2 ) ) end if return end subroutine rayleigh_cdf_inv ( cdf, a, x ) !*****************************************************************************80 ! !! RAYLEIGH_CDF_INV inverts the Rayleigh CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RAYLEIGH_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = sqrt ( - 2.0D+00 * a * a * log ( 1.0D+00 - cdf ) ) return end subroutine rayleigh_cdf_values ( n_data, sigma, x, fx ) !*****************************************************************************80 ! !! RAYLEIGH_CDF_VALUES returns some values of the Rayleigh CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = RayleighDistribution [ sigma ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) SIGMA, the shape parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 9 real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.8646647167633873D+00, & 0.9996645373720975D+00, & 0.9999999847700203D+00, & 0.999999999999987D+00, & 0.8646647167633873D+00, & 0.3934693402873666D+00, & 0.1992625970831920D+00, & 0.1175030974154046D+00, & 0.7688365361336422D-01 /) integer n_data real ( kind = rk ) sigma real ( kind = rk ), save, dimension ( n_max ) :: sigma_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 sigma = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else sigma = sigma_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function rayleigh_check ( a ) !*****************************************************************************80 ! !! RAYLEIGH_CHECK checks the parameter of the Rayleigh PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, logical RAYLEIGH_CHECK, is true if the parameter is legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical rayleigh_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RAYLEIGH_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.' rayleigh_check = .false. return end if rayleigh_check = .true. return end subroutine rayleigh_mean ( a, mean ) !*****************************************************************************80 ! !! RAYLEIGH_MEAN returns the mean of the Rayleigh PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 mean = a * sqrt ( 0.5D+00 * r8_pi ) return end subroutine rayleigh_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! RAYLEIGH_PDF evaluates the Rayleigh PDF. ! ! Discussion: ! ! PDF(A;X) = ( X / A^2 ) * EXP ( - X^2 / ( 2 * A^2 ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0 < A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 ) then pdf = 0.0D+00 else pdf = ( x / a ** 2 ) * exp ( - x ** 2 / ( 2.0D+00 * a ** 2 ) ) end if return end subroutine rayleigh_sample ( a, x ) !*****************************************************************************80 ! !! RAYLEIGH_SAMPLE samples the Rayleigh PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call rayleigh_cdf_inv ( cdf, a, x ) return end subroutine rayleigh_variance ( a, variance ) !*****************************************************************************80 ! !! RAYLEIGH_VARIANCE returns the variance of the Rayleigh PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameters of the PDF. ! 0.0 < A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = 2.0D+00 * a ** 2 * ( 1.0D+00 - 0.25D+00 * r8_pi ) return end subroutine reciprocal_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! RECIPROCAL_CDF evaluates the Reciprocal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then cdf = 0.0D+00 else if ( 0.0D+00 < x ) then cdf = log ( a / x ) / log ( a / b ) end if return end subroutine reciprocal_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! RECIPROCAL_CDF_INV inverts the Reciprocal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RECIPROCAL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = 0.0D+00 else if ( 0.0D+00 < cdf ) then x = b ** cdf / a ** ( cdf - 1.0D+00 ) end if return end function reciprocal_check ( a, b ) !*****************************************************************************80 ! !! RECIPROCAL_CHECK checks the parameters of the Reciprocal CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, logical RECIPROCAL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical reciprocal_check if ( a <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RECIPROCAL_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 0.0' reciprocal_check = .false. return end if if ( b < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RECIPROCAL_CHECK - Fatal error!' write ( *, '(a)' ) ' B < A' reciprocal_check = .false. return end if reciprocal_check = .true. return end subroutine reciprocal_mean ( a, b, mean ) !*****************************************************************************80 ! !! RECIPROCAL_MEAN returns the mean of the Reciprocal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = ( a - b ) / log ( a / b ) return end subroutine reciprocal_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! RECIPROCAL_PDF evaluates the Reciprocal PDF. ! ! Discussion: ! ! PDF(A,B;X) = 1.0D+00 / ( X * LOG ( B / A ) ) ! for 0.0D+00 <= X ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x <= 0.0D+00 ) then pdf = 0.0D+00 else if ( 0.0D+00 < x ) then pdf = 1.0D+00 / ( x * log ( b / a ) ) end if return end subroutine reciprocal_sample ( a, b, x ) !*****************************************************************************80 ! !! RECIPROCAL_SAMPLE samples the Reciprocal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) x = b ** cdf / a ** ( cdf - 1.0D+00 ) return end subroutine reciprocal_variance ( a, b, variance ) !*****************************************************************************80 ! !! RECIPROCAL_VARIANCE returns the variance of the Reciprocal PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < A <= B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) d real ( kind = rk ) variance d = log ( a / b ) variance = ( a - b )* ( a * ( d - 2.0D+00 ) & + b * ( d + 2.0D+00 ) ) / ( 2.0D+00 * d ** 2 ) return end subroutine ribesl ( x, alpha, nb, ize, b, ncalc ) !*****************************************************************************80 ! !! RIBESL calculates I Bessel function with non-integer orders. ! ! Discussion: ! ! This routine calculates Bessel functions I SUB(N+ALPHA) (X) ! for non-negative argument X, and non-negative order N+ALPHA, ! with or without exponential scaling. ! ! This program is based on a program written by David ! Sookne that computes values of the Bessel functions J or ! I of real argument and integer order. Modifications include ! the restriction of the computation to the I Bessel function ! of non-negative real argument, the extension of the computation ! to arbitrary positive order, the inclusion of optional ! exponential scaling, and the elimination of most underflow. ! ! In case of an error, NCALC will not equal NB, and not all I's are ! calculated to the desired accuracy. ! ! If NCALC < 0: An argument is out of range. For example, ! NB <= 0, IZE is not 1 or 2, or IZE = 1 and EXPARG <= ABS(X) ! In this case, the B-vector is not calculated, and NCALC is ! set to MIN(NB,0)-1 so that NCALC /= NB. ! ! If 0 < NCALC < NB, then not all requested function values could ! be calculated accurately. This usually occurs because NB is ! much larger than ABS(X). In this case, B(N) is calculated ! to the desired accuracy for N <= NCALC, but precision ! is lost for NCALC < N <= NB. If B(N) does not vanish ! for NCALC < N (because it is too small to be represented), ! and B(N)/B(NCALC) = 10 ^ (-K), then only the first NSIG-K ! significant figures of B(N) can be trusted. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 March 2007 ! ! Author: ! ! Original FORTRAN77 version by William Cody. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Frank Olver, David Sookne, ! A Note on Backward Recurrence Algorithms, ! Mathematics of Computation, ! Volume 26, 1972, pages 941-947. ! ! David Sookne, ! Bessel Functions of Real Argument and Integer Order, ! NBS Journal of Research B, ! Volume 77B, 1973, pages 125-132. ! ! William Cody, ! Algorithm 597: ! Sequence of Modified Bessel Functions of the First Kind, ! ACM Transactions of Mathematical Software, ! Volume 9, Number 2, June 1983, pages 242-245. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument for which the functions ! are to be calculated. ! ! Input, real ( kind = rk ) ALPHA,the fractional part of the order ! for which the functions are to be calculated. ! 0 <= ALPHA < 1.0. ! ! Input, integer NB, the number of functions to be calculated. ! The first function calculated is of order ALPHA, and the ! last is of order (NB - 1 + ALPHA). 1 <= NB. ! ! Input, integer IZE, scaling option. ! 1, unscaled I's are to calculated, ! 2, exponentially scaled I's are to be calculated. ! ! Output, real ( kind = rk ) B(NB), the values of the functions ! I(ALPHA,X) through I(NB-1+ALPHA,X), with scaling if requested. ! ! Output, integer NCALC, error indicator. ! If NCALC = NB, then all the requested values were calculated ! to the desired accuracy. ! ! Local Parameeters: ! ! BETA, the radix for the floating-point system. ! ! MINEXP, smallest representable power of BETA. ! ! MAXEXP, smallest power of BETA that overflows ! ! IT, number of bits in the mantissa of a working precision variable. ! ! NSIG, decimal significance desired. Should be set to ! INT(LOG10(2)*IT+1). Setting NSIG lower will result ! in decreased accuracy while setting NSIG higher will ! increase CPU time without increasing accuracy. The ! truncation error is limited to a relative error of ! T=.5*10^(-NSIG). ! ! ENTEN, 10.0^K, where K is the largest integer such that ! ENTEN is machine-representable in working precision ! ! ENSIG, 10.0^NSIG ! ! RTNSIG, 10.0^(-K) for the smallest integer K such that ! NSIG/4 <= K. ! ! ENMTEN, smallest ABS(X) such that X/4 does not underflow ! ! XLARGE, upper limit on the magnitude of X when IZE=2. Bear ! in mind that if ABS(X)=N, then at least N iterations ! of the backward recursion will be executed. The value ! of 10.0^4 is used on every machine. ! ! EXPARG, largest working precision argument that the library ! EXP routine can handle and upper limit on the ! magnitude of X when IZE=1; approximately log(BETA^MAXEXP). ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer nb real ( kind = rk ) alpha real ( kind = rk ) b(nb) real ( kind = rk ), parameter :: const = 1.585D+00 real ( kind = rk ) em real ( kind = rk ) empal real ( kind = rk ) emp2al real ( kind = rk ) en real ( kind = rk ), parameter :: enmten = 8.9D-308 real ( kind = rk ), parameter :: ensig = 1.0D+16 real ( kind = rk ), parameter :: enten = 1.0D+308 real ( kind = rk ), parameter :: exparg = 709.0D+00 logical flag real ( kind = rk ), parameter :: half = 0.5D+00 real ( kind = rk ) halfx integer ize integer k integer l integer magx integer n integer nbmx integer ncalc integer nend integer, parameter :: nsig = 16 integer nstart real ( kind = rk ), parameter :: one = 1.0D+00 real ( kind = rk ) p real ( kind = rk ) plast real ( kind = rk ) pold real ( kind = rk ) psave real ( kind = rk ) psavel real ( kind = rk ), parameter :: rtnsig = 1.0D-04 real ( kind = rk ) tempa real ( kind = rk ) tempb real ( kind = rk ) tempc real ( kind = rk ) test real ( kind = rk ) total real ( kind = rk ) tover real ( kind = rk ), parameter :: two = 2.0D+00 real ( kind = rk ) x real ( kind = rk ), parameter :: xlarge = 1.0D+04 real ( kind = rk ), parameter :: zero = 0.0D+00 ! ! Check for X, NB, OR IZE out of range. ! if ( nb <= 0 ) then ncalc = min ( nb, 0 ) - 1 return end if if ( x < 0.0D+00 ) then ncalc = min ( nb, 0 ) - 1 return end if if ( alpha < 0.0D+00 ) then ncalc = min ( nb, 0 ) - 1 return end if if ( 1.0D+00 <= alpha ) then ncalc = min ( nb, 0 ) - 1 return end if if ( ize == 1 .and. exparg < x ) then ncalc = min ( nb, 0 ) - 1 return end if if ( ize == 2 .and. xlarge < x ) then ncalc = min ( nb, 0 ) - 1 return end if ! ! Use 2-term ascending series for small X. ! ncalc = nb magx = int ( x ) ! ! Initialize the forward sweep, the P-sequence of Olver. ! if ( rtnsig <= x ) then nbmx = nb - magx n = magx + 1 en = real ( n + n, kind = rk ) + ( alpha + alpha ) plast = one p = en / x ! ! Calculate general significance test. ! test = ensig + ensig if ( 5 * nsig < 2 * magx ) then test = sqrt ( test * p ) else test = test / const**magx end if ! ! Calculate P-sequence until N = NB-1. Check for possible overflow. ! flag = .false. if ( 3 <= nbmx ) then tover = enten / ensig nstart = magx + 2 nend = nb - 1 do k = nstart, nend n = k en = en + two pold = plast plast = p p = en * plast / x + pold ! ! To avoid overflow, divide P-sequence by TOVER. Calculate ! P-sequence until 1 < ABS(P). ! if ( tover < p ) then tover = enten p = p / tover plast = plast / tover psave = p psavel = plast nstart = n + 1 do n = n + 1 en = en + two pold = plast plast = p p = en * plast / x + pold if ( 1.0D+00 < p ) then exit end if end do tempb = en / x ! ! Calculate backward test, and find NCALC, the highest N ! such that the test is passed. ! test = pold * plast / ensig test = test * ( half - half / ( tempb * tempb ) ) p = plast * tover n = n - 1 en = en - two nend = min ( nb, n ) ncalc = nend + 1 do l = nstart, nend pold = psavel psavel = psave psave = en * psavel / x + pold if ( test < psave * psavel ) then ncalc = l exit end if end do ncalc = ncalc - 1 flag = .true. exit end if end do if ( .not. flag ) then n = nend en = real ( n + n, kind = rk ) + ( alpha + alpha ) ! ! Calculate special significance test for 2 < NBMX. ! test = max ( test, sqrt ( plast * ensig ) * sqrt ( p + p ) ) end if end if ! ! Calculate P-sequence until significance test passed. ! if ( .not. flag ) then do n = n + 1 en = en + two pold = plast plast = p p = en * plast / x + pold if ( test <= p ) then exit end if end do end if ! ! Initialize the backward recursion and the normalization sum. ! n = n + 1 en = en + two tempb = zero tempa = one / p em = real ( n, kind = rk ) - one empal = em + alpha emp2al = ( em - one ) + ( alpha + alpha ) total = tempa * empal * emp2al / em nend = n - nb ! ! N < NB, so store B(N) and set higher orders to zero. ! if ( nend < 0 ) then b(n) = tempa nend = -nend do l = 1, nend b(n+l) = zero end do nend = n - 2 ! ! Calculate via difference equation and store B(N), until N = 2. ! if ( 0 < nend ) then do l = 1, nend n = n - 1 en = en - two b(n) = ( en * b(n+1) ) / x + b(n+2) em = em - one emp2al = emp2al - one if ( n == 2 ) then emp2al = one end if empal = empal - one total = ( total + b(n) * empal ) * emp2al / em end do end if ! ! Calculate B(1). ! b(1) = two * empal * b(2) / x + b(3) total = ( total + total ) + b(1) ! ! Recur backward via difference equation, calculating (but ! not storing) B(N), until N = NB. ! else if ( 0 < nend ) then do l = 1, nend n = n - 1 en = en - two tempc = tempb tempb = tempa tempa = ( en * tempb ) / x + tempc em = em - one emp2al = emp2al - one if ( n == 1 ) then exit end if if ( n == 2 ) then emp2al = one end if empal = empal - one total = ( total + tempa * empal ) * emp2al / em end do end if ! ! Store B(NB). ! b(n) = tempa if ( nb <= 1 ) then total = ( total + total ) + tempa ! ! Calculate and Store B(NB-1). ! else n = n - 1 en = en - two b(n) = ( en * tempa ) / x + tempb if ( 1 < n ) then em = em - one emp2al = emp2al - one if ( n == 2 ) then emp2al = one end if empal = empal - one total = ( total + b(n) * empal ) * emp2al / em nend = n - 2 ! ! Calculate via difference equation and store B(N), until N = 2. ! if ( 0 < nend ) then do l = 1, nend n = n - 1 en = en - two b(n) = ( en * b(n+1) ) / x + b(n+2) em = em - one emp2al = emp2al - one if ( n == 2 ) then emp2al = one end if empal = empal - one total = ( total + b(n) * empal ) * emp2al / em end do end if ! ! Calculate B(1). ! b(1) = two * empal * b(2) / x + b(3) end if total = ( total + total ) + b(1) end if end if ! ! Normalize. Divide all B(N) by TOTAL. ! if ( alpha /= zero ) then total = total * gamma ( one + alpha ) * ( x * half ) ** ( - alpha ) end if if ( ize == 1 ) then total = total * exp ( -x ) end if tempa = enmten if ( 1.0D+00 < total ) then tempa = tempa * total end if do n = 1, nb if ( b(n) < tempa ) then b(n) = zero end if b(n) = b(n) / total end do return ! ! Two-term ascending series for small X. ! else tempa = one empal = one + alpha halfx = zero if ( enmten < x ) then halfx = half * x end if if ( alpha /= zero ) then tempa = halfx ** alpha / gamma ( empal ) end if if ( ize == 2 ) then tempa = tempa * exp ( - x ) end if tempb = zero if ( one < x + one ) then tempb = halfx * halfx end if b(1) = tempa + tempa * tempb / empal if ( x /= zero .and. b(1) == zero ) then ncalc = 0 end if if ( 1 < nb ) then if ( x == zero ) then b(2:nb) = zero ! ! Calculate higher-order functions. ! else tempc = halfx tover = ( enmten + enmten ) / x if ( tempb /= zero ) then tover = enmten / tempb end if do n = 2, nb tempa = tempa / empal empal = empal + one tempa = tempa * tempc if ( tempa <= tover * empal ) then tempa = zero end if b(n) = tempa + tempa * tempb / empal if ( b(n) == zero .and. n < ncalc ) then ncalc = n - 1 end if end do end if end if end if return end subroutine runs_mean ( m, n, mean ) !*****************************************************************************80 ! !! RUNS_MEAN returns the mean of the Runs PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m real ( kind = rk ) mean integer n mean = real ( m + 2 * m * n + n, kind = rk ) & / real ( m + n, kind = rk ) return end subroutine runs_pdf ( m, n, r, pdf ) !*****************************************************************************80 ! !! RUNS_PDF evaluates the Runs PDF. ! ! Discussion: ! ! Suppose we have M symbols of one type and N of another, and we consider ! the various possible permutations of these symbols. ! ! Let "R" be the number of runs in a given permutation. By a "run", we ! mean a maximal sequence of identical symbols. Thus, for instance, ! the permutation ! ! ABBBAAAAAAAA ! ! has three runs. ! ! The probability that a permutation of M+N symbols, with M of one kind ! and N of another, will have exactly R runs is: ! ! PDF(M,N)(R) = 2 * C(M-1,R/2-1) * C(N-1,R/2-1) ! / C(M+N,N) for R even; ! ! = ( C(M-1,(R-1)/2) * C(N-1,(R-3)/2 ) ! + C(M-1,(R-3)/2) * C(N-1,(R-1)/2 ) ! ) / C(M+N,N) for R odd. ! ! The minimum number of runs is: ! ! 1 if M or N is 0, ! 2 otherwise. ! ! The maximum number of runs is: ! ! M + N, if M = N ! 2 * min ( M, N ) + 1 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 March 2016 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Kalimutha Krishnamoorthy, ! Handbook of Statistical Distributions with Applications, ! Chapman and Hall, 2006, ! ISBN: 1-58488-635-8, ! LC: QA273.6.K75. ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! ! Input, integer R, the number of runs. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer i4_choose integer m integer n real ( kind = rk ) pdf integer r if ( m < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RUN_PDF - Fatal error!' write ( *, '(a)' ) ' M must be at least 0.' write ( *, '(a,i8)' ) ' The input value of M = ', m stop 1 end if if ( n < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RUN_PDF - Fatal error!' write ( *, '(a)' ) ' N must be at least 0.' write ( *, '(a,i8)' ) ' The input value of N = ', n stop 1 end if if ( n + m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'RUN_PDF - Fatal error!' write ( *, '(a)' ) ' M+N must be at least 1.' write ( *, '(a,i8)' ) ' The input value of M+N = ', m + n stop 1 end if ! ! If all the symbols are of one type, there is always 1 run. ! if ( m == 0 .or. n == 0 ) then if ( r == 1 ) then pdf = 1.0D+00 else pdf = 0.0D+00 end if return end if ! ! Take care of extreme values of R. ! if ( r < 2 .or. m + n < r ) then pdf = 0.0D+00 return end if ! ! The normal cases. ! if ( mod ( r, 2 ) == 0 ) then pdf = real ( 2 * i4_choose ( m - 1, ( r / 2 ) - 1 ) & * i4_choose ( n - 1, ( r / 2 ) - 1 ), kind = rk ) & / real ( i4_choose ( m + n, n ), kind = rk ) else pdf = real ( i4_choose ( m - 1, ( r - 1 ) / 2 ) & * i4_choose ( n - 1, ( r - 3 ) / 2 ) & + i4_choose ( m - 1, ( r - 3 ) / 2 ) & * i4_choose ( n - 1, ( r - 1 ) / 2 ), kind = rk ) & / real ( i4_choose ( m + n, n ), kind = rk ) end if return end subroutine runs_sample ( m, n, r ) !*****************************************************************************80 ! !! RUNS_SAMPLE samples the Runs PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! ! Output, integer R, the number of runs. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m+n) integer r call runs_simulate ( m, n, a ) call i4vec_run_count ( m + n, a, r ) return end subroutine runs_simulate ( m, n, a ) !*****************************************************************************80 ! !! RUNS_SIMULATE simulates a case governed by the Runs PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! ! Output, integer A(M+N), a sequence of M 0's and N 1's chosen ! uniformly at random. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n integer a(m+n) integer i integer i4_uniform_ab integer j integer k a(1:m) = 0 a(m+1:m+n) = 1 do i = 1, m + n - 1 j = i4_uniform_ab ( i, m + n ) k = a(i) a(i) = a(j) a(j) = k end do return end subroutine runs_variance ( m, n, variance ) !*****************************************************************************80 ! !! RUNS_VARIANCE returns the variance of the Runs PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the parameters of the PDF. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer m integer n real ( kind = rk ) variance variance = real ( 2 * m * n * ( 2 * m * n - m - n ), kind = rk ) & / real ( ( m + n ) * ( m + n ) * ( m + n - 1 ), kind = rk ) return end function sech ( x ) !*****************************************************************************80 ! !! SECH returns the hyperbolic secant. ! ! Discussion: ! ! SECH ( X ) = 1.0D+00 / COSH ( X ) = 2.0D+00 / ( EXP ( X ) + EXP ( - X ) ) ! ! SECH is not a built-in function in FORTRAN, and occasionally it ! is handier, or more concise, to be able to refer to it directly ! rather than through its definition in terms of the sine function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument. ! ! Output, real ( kind = rk ) SECH, the hyperbolic secant of X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) sech real ( kind = rk ) x sech = 1.0D+00 / cosh ( x ) return end subroutine sech_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! SECH_CDF evaluates the Hyperbolic Secant CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b cdf = 2.0D+00 * atan ( exp ( y ) ) / r8_pi return end subroutine sech_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! SECH_CDF_INV inverts the Hyperbolic Secant CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SECH_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = - huge ( x ) else if ( cdf < 1.0D+00 ) then x = a + b * log ( tan ( 0.5D+00 * r8_pi * cdf ) ) else if ( 1.0D+00 == cdf ) then x = huge ( x ) end if return end function sech_check ( a, b ) !*****************************************************************************80 ! !! SECH_CHECK checks the parameters of the Hyperbolic Secant CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, logical SECH_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical sech_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SECH_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.0' sech_check = .false. return end if sech_check = .true. return end subroutine sech_mean ( a, b, mean ) !*****************************************************************************80 ! !! SECH_MEAN returns the mean of the Hyperbolic Secant PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine sech_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! SECH_PDF evaluates the Hypebolic Secant PDF. ! ! Discussion: ! ! PDF(A,B;X) = sech ( ( X - A ) / B ) / ( PI * B ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) sech real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b pdf = sech ( y ) / ( r8_pi * b ) return end subroutine sech_sample ( a, b, x ) !*****************************************************************************80 ! !! SECH_SAMPLE samples the Hyperbolic Secant PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x call random_number ( harvest = cdf ) x = a + b * log ( tan ( 0.5D+00 * r8_pi * cdf ) ) return end subroutine sech_variance ( a, b, variance ) !*****************************************************************************80 ! !! SECH_VARIANCE returns the variance of the Hyperbolic Secant PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 January 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) variance variance = 0.25D+00 * ( r8_pi * b ) ** 2 return end subroutine semicircular_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! SEMICIRCULAR_CDF evaluates the Semicircular CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y if ( x <= a - b ) then cdf = 0.0D+00 else if ( x <= a + b ) then y = ( x - a ) / b cdf = 0.5D+00 + ( y * sqrt ( 1.0D+00 - y ** 2 ) + asin ( y ) ) / r8_pi else if ( a + b < x ) then cdf = 1.0D+00 end if return end subroutine semicircular_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! SEMICIRCULAR_CDF_INV inverts the Semicircular CDF. ! ! Discussion: ! ! A simple bisection method is used on the interval [ A - B, A + B ]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: tol = 0.0001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SEMICIRCULAR_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = a - b return else if ( 1.0D+00 == cdf ) then x = a + b return end if x1 = a - b cdf1 = 0.0D+00 x2 = a + b cdf2 = 1.0D+00 ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call semicircular_cdf ( x3, a, b, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SEMICIRCULAR_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end function semicircular_check ( a, b ) !*****************************************************************************80 ! !! SEMICIRCULAR_CHECK checks the parameters of the Semicircular CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameter of the PDF. ! 0.0 < B. ! ! Output, logical SEMICIRCULAR_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical semicircular_check if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SEMICIRCULAR_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.0' semicircular_check = .false. return end if semicircular_check = .true. return end subroutine semicircular_mean ( a, b, mean ) !*****************************************************************************80 ! !! SEMICIRCULAR_MEAN returns the mean of the Semicircular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = a return end subroutine semicircular_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! SEMICIRCULAR_PDF evaluates the Semicircular PDF. ! ! Discussion: ! ! PDF(A,B;X) = ( 2 / ( B * PI ) ) * SQRT ( 1 - ( ( X - A ) / B )^2 ) ! for A - B <= X <= A + B ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y if ( x < a - b ) then pdf = 0.0D+00 else if ( x <= a + b ) then y = ( x - a ) / b pdf = 2.0D+00 / ( b * r8_pi ) * sqrt ( 1.0D+00 - y ** 2 ) else if ( a + b < x ) then pdf = 0.0D+00 end if return end subroutine semicircular_sample ( a, b, x ) !*****************************************************************************80 ! !! SEMICIRCULAR_SAMPLE samples the Semicircular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) angle real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) radius real ( kind = rk ) x call random_number ( harvest = radius ) radius = b * sqrt ( radius ) call random_number ( harvest = angle ) angle = r8_pi * angle x = a + radius * cos ( angle ) return end subroutine semicircular_variance ( a, b, variance ) !*****************************************************************************80 ! !! SEMICIRCULAR_VARIANCE returns the variance of the Semicircular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 30 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance call r8_fake_use ( a ) variance = b * b / 4.0D+00 return end function sin_power_int ( a, b, n ) !*****************************************************************************80 ! !! SIN_POWER_INT evaluates the sine power integral. ! ! Discussion: ! ! The function is defined by ! ! SIN_POWER_INT(A,B,N) = Integral ( A <= T <= B ) ( sin ( t ))^n dt ! ! The algorithm uses the following fact: ! ! Integral sin^n ( t ) = (1/n) * ( ! sin^(n-1)(t) * cos(t) + ( n-1 ) * Integral sin^(n-2) ( t ) dt ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters ! ! Input, real ( kind = rk ) A, B, the limits of integration. ! ! Input, integer N, the power of the sine function. ! ! Output, real ( kind = rk ) SIN_POWER_INT, the value of the integral. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) ca real ( kind = rk ) cb integer m integer mlo integer n real ( kind = rk ) sa real ( kind = rk ) sb real ( kind = rk ) sin_power_int real ( kind = rk ) value if ( n < 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'SIN_POWER_INT - Fatal error!' write ( *, '(a)' ) ' Power N < 0.' value = 0.0D+00 stop 1 end if sa = sin ( a ) sb = sin ( b ) ca = cos ( a ) cb = cos ( b ) if ( mod ( n, 2 ) == 0 ) then value = b - a mlo = 2 else value = ca - cb mlo = 3 end if do m = mlo, n, 2 value = ( real ( m - 1, kind = rk ) * value & + sa ** ( m - 1 ) * ca - sb ** ( m - 1 ) * cb ) & / real ( m, kind = rk ) end do sin_power_int = value return end function sphere_unit_area_nd ( dim_num ) !*****************************************************************************80 ! !! SPHERE_UNIT_AREA_ND computes the surface area of a unit sphere in ND. ! ! Discussion: ! ! The unit sphere in ND satisfies: ! ! sum ( 1 <= I <= DIM_NUM ) X(I) * X(I) = 1 ! ! Results for the first few values of N are: ! ! DIM_NUM Area ! ! 2 2 * PI ! 3 4 * PI ! 4 ( 2 / 1) * PI^2 ! 5 ( 8 / 3) * PI^2 ! 6 ( 1 / 1) * PI^3 ! 7 (16 / 15) * PI^3 ! 8 ( 1 / 3) * PI^4 ! 9 (32 / 105) * PI^4 ! 10 ( 1 / 12) * PI^5 ! ! For the unit sphere, Area(DIM_NUM) = DIM_NUM * Volume(DIM_NUM) ! ! Sphere_Unit_Area ( DIM_NUM ) = 2 * PI^(DIM_NUM/2) / Gamma ( DIM_NUM / 2 ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 September 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer DIM_NUM, the dimension of the space. ! ! Output, real ( kind = rk ) SPHERE_UNIT_AREA_ND, the area of the sphere. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) area integer dim_num integer i integer m real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) sphere_unit_area_nd if ( mod ( dim_num, 2 ) == 0 ) then m = dim_num / 2 area = 2.0D+00 * ( r8_pi ) ** m do i = 1, m - 1 area = area / real ( i, kind = rk ) end do else m = ( dim_num - 1 ) / 2 area = ( r8_pi ) ** m * 2.0D+00 ** dim_num do i = m + 1, 2 * m area = area / real ( i, kind = rk ) end do end if sphere_unit_area_nd = area return end function stirling2_number ( n, k ) !*****************************************************************************80 ! !! stirling2_number() computes a Stirling number S2(N,K) of the second kind. ! ! Discussion: ! ! S2(N,M) represents the number of distinct partitions of N elements ! into M nonempty sets. For a fixed N, the sum of the Stirling ! numbers S2(N,M) is represented by B(N), called "Bell's number", ! and represents the number of distinct partitions of N elements. ! ! For example, with 4 objects, there are: ! ! 1 partition into 1 set: ! ! (A,B,C,D) ! ! 7 partitions into 2 sets: ! ! (A,B,C) (D) ! (A,B,D) (C) ! (A,C,D) (B) ! (A) (B,C,D) ! (A,B) (C,D) ! (A,C) (B,D) ! (A,D) (B,C) ! ! 6 partitions into 3 sets: ! ! (A,B) (C) (D) ! (A) (B,C) (D) ! (A) (B) (C,D) ! (A,C) (B) (D) ! (A,D) (B) (C) ! (A) (B,D) (C) ! ! 1 partition into 4 sets: ! ! (A) (B) (C) (D) ! ! So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. ! ! The Stirling numbers of the second kind S(N,1:N) are the coefficients of ! the Bell polynomial B(N,X): ! ! B(0,X) = 1 ! B(N,X) = sum ( 1 <= M <= N ) S(N,M) * X^M ! ! First terms: ! ! N/M: 1 2 3 4 5 6 7 8 ! ! 1 1 0 0 0 0 0 0 0 ! 2 1 1 0 0 0 0 0 0 ! 3 1 3 1 0 0 0 0 0 ! 4 1 7 6 1 0 0 0 0 ! 5 1 15 25 10 1 0 0 0 ! 6 1 31 90 65 15 1 0 0 ! 7 1 63 301 350 140 21 1 0 ! 8 1 127 966 1701 1050 266 28 1 ! ! Recursion: ! ! S2(N,1) = 1 for all N. ! S2(I,I) = 1 for all I. ! S2(I,J) = 0 if I < J. ! ! S2(N,M) = M * S2(N-1,M) + S2(N-1,M-1) ! ! Properties: ! ! sum ( 1 <= K <= M ) S2(I,K) * S1(K,J) = Delta(I,J) ! ! X^N = sum ( 0 <= K <= N ) S2(N,K) X_K ! where X_K is the falling factorial function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 July 2022 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N, the number of rows of the table. ! ! integer K, the number of columns of the table. ! ! Output: ! ! integer stirling2_number, the Stirling number of the second kind. ! implicit none integer i integer i4_choose integer i4_factorial integer i4_mop integer k integer n integer s2 integer stirling2_number s2 = 0 do i = 0, k s2 = s2 + i4_mop ( i ) * i4_choose ( k, i ) * ( k - i ) ** n end do s2 = s2 / i4_factorial ( k ) stirling2_number = s2 return end subroutine student_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! STUDENT_CDF evaluates the central Student T CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) beta_inc real ( kind = rk ) c real ( kind = rk ) c2 real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b a2 = 0.5D+00 * c b2 = 0.5D+00 c2 = c / ( c + y * y ) if ( y <= 0.0D+00 ) then cdf = 0.5D+00 * beta_inc ( a2, b2, c2 ) else cdf = 1.0D+00 - 0.5D+00 * beta_inc ( a2, b2, c2 ) end if return end subroutine student_cdf_values ( n_data, c, x, fx ) !*****************************************************************************80 ! !! STUDENT_CDF_VALUES returns some values of the Student CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = StudentTDistribution [ c ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 13 real ( kind = rk ) c real ( kind = rk ), save, dimension ( n_max ) :: c_vec = (/ & 1.0D+00, 2.0D+00, 3.0D+00, 4.0D+00, & 5.0D+00, 2.0D+00, 5.0D+00, 2.0D+00, & 5.0D+00, 2.0D+00, 3.0D+00, 4.0D+00, & 5.0D+00 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.6000231200328521D+00, & 0.6001080279134390D+00, & 0.6001150934648930D+00, & 0.6000995134721354D+00, & 0.5999341989834830D+00, & 0.7498859393137811D+00, & 0.7500879487671045D+00, & 0.9500004222186464D+00, & 0.9499969138365968D+00, & 0.9900012348724744D+00, & 0.9900017619355059D+00, & 0.9900004567580596D+00, & 0.9900007637471291D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.325D+00, & 0.289D+00, & 0.277D+00, & 0.271D+00, & 0.267D+00, & 0.816D+00, & 0.727D+00, & 2.920D+00, & 2.015D+00, & 6.965D+00, & 4.541D+00, & 3.747D+00, & 3.365D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 c = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else c = c_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function student_check ( a, b, c ) !*****************************************************************************80 ! !! STUDENT_CHECK checks the parameter of the central Student T CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical student_check call r8_fake_use ( a ) if ( b == 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'STUDENT_CHECK - Fatal error!' write ( *, '(a)' ) ' B must be nonzero.' student_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'STUDENT_CHECK - Fatal error!' write ( *, '(a)' ) ' C must be greater than 0.' student_check = .false. return end if student_check = .true. return end subroutine student_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! STUDENT_MEAN returns the mean of the central Student T PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = a call r8_fake_use ( b ) call r8_fake_use ( c ) return end subroutine student_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! STUDENT_PDF evaluates the central Student T PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = Gamma ( (C+1)/2 ) / ! ( Gamma ( C / 2 ) * Sqrt ( PI * C ) ! * ( 1 + ((X-A)/B)^2/C )^(C + 1/2 ) ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x real ( kind = rk ) y y = ( x - a ) / b pdf = gamma ( 0.5D+00 * ( c + 1.0D+00 ) ) / ( sqrt ( r8_pi * c ) & * gamma ( 0.5D+00 * c ) & * sqrt ( ( 1.0D+00 + y * y / c ) ** ( 2 * c + 1.0D+00 ) ) ) return end subroutine student_sample ( a, b, c, x ) !*****************************************************************************80 ! !! STUDENT_SAMPLE samples the central Student T PDF. ! ! Discussion: ! ! For the sampling algorithm, it is necessary that 2 < C. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) a2 real ( kind = rk ) b real ( kind = rk ) b2 real ( kind = rk ) c real ( kind = rk ) x real ( kind = rk ) x2 real ( kind = rk ) x3 if ( c < 3.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'STUDENT_SAMPLE - Fatal error!' write ( *, '(a)' ) ' Sampling fails for C <= 2.' return end if a2 = 0.0D+00 b2 = c / ( c - 2 ) call normal_sample ( a2, b2, x2 ) call chi_square_sample ( c, x3 ) x3 = x3 * c / ( c - 2.0D+00 ) x = a + b * x2 * sqrt ( c ) / x3 return end subroutine student_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! STUDENT_VARIANCE returns the variance of the central Student T PDF. ! ! Discussion: ! ! The variance is not defined unless 2 < C. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 November 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, shape parameters of the PDF, ! used to transform the argument X to a shifted and scaled ! value Y = ( X - A ) / B. It is required that B be nonzero. ! For the standard distribution, A = 0 and B = 1. ! ! Input, real ( kind = rk ) C, is usually called the number of ! degrees of freedom of the distribution. C is typically an ! integer, but that is not essential. It is required that ! C be strictly positive. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance call r8_fake_use ( a ) if ( c <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'STUDENT_VARIANCE - Fatal error!' write ( *, '(a)' ) ' Variance not defined for C <= 2.' stop 1 end if variance = b * b * c / ( c - 2.0D+00 ) return end subroutine student_noncentral_cdf ( x, idf, d, cdf ) !*****************************************************************************80 ! !! STUDENT_NONCENTRAL_CDF evaluates the noncentral Student T CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! Original FORTRAN77 version by B E Cooper. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! BE Cooper, ! Algorithm AS 5: ! The Integral of the Non-Central T-Distribution, ! Applied Statistics, ! Volume 17, 1968, page 193. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, integer IDF, the number of degrees of freedom. ! ! Input, real ( kind = rk ) D, the noncentrality parameter. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a integer, parameter :: a_max = 100 real ( kind = rk ) ak real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) d real ( kind = rk ) drb real ( kind = rk ), parameter :: emin = 12.5D+00 real ( kind = rk ) f real ( kind = rk ) fk real ( kind = rk ) fmkm1 real ( kind = rk ) fmkm2 integer idf integer k real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) sum2 real ( kind = rk ) temp real ( kind = rk ) tfn real ( kind = rk ) x f = real ( idf, kind = rk ) if ( idf == 1 ) then a = x / sqrt ( f ) b = f / ( f + x ** 2 ) drb = d * sqrt ( b ) call normal_01_cdf ( drb, cdf2 ) cdf = 1.0D+00 - cdf2 + 2.0D+00 * tfn ( drb, a ) else if ( idf <= a_max ) then a = x / sqrt ( f ) b = f / ( f + x * x ) drb = d * sqrt ( b ) sum2 = 0.0D+00 fmkm2 = 0.0D+00 if ( abs ( drb ) < emin ) then call normal_01_cdf ( a * drb, cdf2 ) fmkm2 = a * sqrt ( b ) * exp ( - 0.5D+00 * drb ** 2 ) * cdf2 & / sqrt ( 2.0D+00 * r8_pi ) end if fmkm1 = b * d * a * fmkm2 if ( abs ( d ) < emin ) then fmkm1 = fmkm1 + 0.5D+00 * b * a * exp ( - 0.5D+00 * d ** 2 ) / r8_pi end if if ( mod ( idf, 2 ) == 0 ) then sum2 = fmkm2 else sum2 = fmkm1 end if ak = 1.0D+00 do k = 2, idf - 2, 2 fk = real ( k, kind = rk ) fmkm2 = b * ( d * a * ak * fmkm1 + fmkm2 ) * ( fk - 1.0D+00 ) / fk ak = 1.0D+00 / ( ak * ( fk - 1.0D+00 ) ) fmkm1 = b * ( d * a * ak * fmkm2 + fmkm1 ) * fk / ( fk + 1.0D+00 ) if ( mod ( idf, 2 ) == 0 ) then sum2 = sum2 + fmkm2 else sum2 = sum2 + fmkm1 end if ak = 1.0D+00 / ( ak * fk ) end do if ( mod ( idf, 2 ) == 0 ) then call normal_01_cdf ( d, cdf2 ) cdf = 1.0D+00 - cdf2 + sum2 * sqrt ( 2.0D+00 * r8_pi ) else call normal_01_cdf ( drb, cdf2 ) cdf = 1.0D+00 - cdf2 + 2.0D+00 * ( sum2 + tfn ( drb, a ) ) end if ! ! Normal approximation. ! else a = sqrt ( 0.5D+00 * f ) * exp ( lgamma ( 0.5D+00 * ( f - 1.0D+00 ) ) & - lgamma ( 0.5D+00 * f ) ) * d temp = ( x - a ) & / sqrt ( f * ( 1.0D+00 + d ** 2 ) / ( f - 2.0D+00 ) - a ** 2 ) call normal_01_cdf ( temp, cdf2 ) cdf = cdf2 end if return end subroutine student_noncentral_cdf_values ( n_data, df, lambda, x, fx ) !*****************************************************************************80 ! !! STUDENT_NONCENTRAL_CDF_VALUES returns values of the noncentral Student CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = NoncentralStudentTDistribution [ df, lambda ] ! CDF [ dist, x ] ! ! Mathematica seems to have some difficulty computing this function ! to the desired number of digits. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 September 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, integer DF, real ( kind = rk ) LAMBDA, the parameters ! of the function. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 30 integer df integer, save, dimension ( n_max ) :: df_vec = (/ & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 15, 20, 25, & 1, 2, 3, & 10, 10, 10, & 10, 10, 10, & 10, 10, 10 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.8975836176504333D+00, & 0.9522670169D+00, & 0.9711655571887813D+00, & 0.8231218864D+00, & 0.9049021510D+00, & 0.9363471834D+00, & 0.7301025986D+00, & 0.8335594263D+00, & 0.8774010255D+00, & 0.5248571617D+00, & 0.6293856597D+00, & 0.6800271741D+00, & 0.20590131975D+00, & 0.2112148916D+00, & 0.2074730718D+00, & 0.9981130072D+00, & 0.9994873850D+00, & 0.9998391562D+00, & 0.168610566972D+00, & 0.16967950985D+00, & 0.1701041003D+00, & 0.9247683363D+00, & 0.7483139269D+00, & 0.4659802096D+00, & 0.9761872541D+00, & 0.8979689357D+00, & 0.7181904627D+00, & 0.9923658945D+00, & 0.9610341649D+00, & 0.8688007350D+00 /) real ( kind = rk ) lambda real ( kind = rk ), save, dimension ( n_max ) :: lambda_vec = (/ & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 4.0D+00, & 4.0D+00, & 4.0D+00, & 7.0D+00, & 7.0D+00, & 7.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 15.00D+00, & 15.00D+00, & 15.00D+00, & 0.05D+00, & 0.05D+00, & 0.05D+00, & 4.00D+00, & 4.00D+00, & 4.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 6.00D+00, & 6.00D+00, & 6.00D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 df = 0 lambda = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else df = df_vec(n_data) lambda = lambda_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function tfn ( h, a ) !*****************************************************************************80 ! !! TFN calculates the T function of Owen. ! ! Discussion: ! ! Owen's T function is useful for computation of the bivariate normal ! distribution and the distribution of a skewed normal distribution. ! ! Although it was originally formulated in terms of the bivariate ! normal function, the function can be defined more directly as ! ! T(H,A) = 1 / ( 2 * pi ) * ! Integral ( 0 <= X <= A ) e^( -H^2 * (1+X^2) / 2 ) / (1+X^2) dX ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 10 December 2004 ! ! Author: ! ! Original FORTRAN77 version by J C Young, C E Minder. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Donald Owen, ! Tables for computing the bivariate normal distribution, ! Annals of Mathematical Statistics, ! Volume 27, pages 1075-1090, 1956. ! ! JC Young, CE Minder, ! Algorithm AS 76, ! An Algorithm Useful in Calculating Non-Central T and ! Bivariate Normal Distributions, ! Applied Statistics, ! Volume 23, Number 3, 1974, pages 455-457. ! ! Parameters: ! ! Input, real ( kind = rk ) H, A, the arguments of the T function. ! ! Output, real ( kind = rk ) TFN, the value of the T function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: ngauss = 10 real ( kind = rk ) a real ( kind = rk ) as real ( kind = rk ) h real ( kind = rk ) h1 real ( kind = rk ) h2 real ( kind = rk ) hs integer i real ( kind = rk ) rt real ( kind = rk ) tfn real ( kind = rk ), parameter :: two_pi_inverse = 0.1591549430918953D+00 real ( kind = rk ), parameter :: tv1 = 1.0D-35 real ( kind = rk ), parameter :: tv2 = 15.0D+00 real ( kind = rk ), parameter :: tv3 = 15.0D+00 real ( kind = rk ), parameter :: tv4 = 1.0D-05 real ( kind = rk ), parameter, dimension ( ngauss ) :: weight = (/ & 0.666713443086881375935688098933D-01, & 0.149451349150580593145776339658D+00, & 0.219086362515982043995534934228D+00, & 0.269266719309996355091226921569D+00, & 0.295524224714752870173892994651D+00, & 0.295524224714752870173892994651D+00, & 0.269266719309996355091226921569D+00, & 0.219086362515982043995534934228D+00, & 0.149451349150580593145776339658D+00, & 0.666713443086881375935688098933D-01 /) real ( kind = rk ) x real ( kind = rk ), parameter, dimension ( ngauss ) :: xtab = (/ & -0.973906528517171720077964012084D+00, & -0.865063366688984510732096688423D+00, & -0.679409568299024406234327365115D+00, & -0.433395394129247190799265943166D+00, & -0.148874338981631210884826001130D+00, & 0.148874338981631210884826001130D+00, & 0.433395394129247190799265943166D+00, & 0.679409568299024406234327365115D+00, & 0.865063366688984510732096688423D+00, & 0.973906528517171720077964012084D+00 /) ! ! Test for H near zero. ! if ( abs ( h ) < tv1 ) then tfn = atan ( a ) * two_pi_inverse ! ! Test for large values of abs(H). ! else if ( tv2 < abs ( h ) ) then tfn = 0.0D+00 ! ! Test for A near zero. ! else if ( abs ( a ) < tv1 ) then tfn = 0.0D+00 ! ! Test whether abs(A) is so large that it must be truncated. ! If so, the truncated value of A is H2. ! else hs = - 0.5D+00 * h * h h2 = a as = a * a ! ! Computation of truncation point by Newton iteration. ! if ( tv3 <= log ( 1.0D+00 + as ) - hs * as ) then h1 = 0.5D+00 * a as = 0.25D+00 * as do rt = as + 1.0D+00 h2 = h1 + ( hs * as + tv3 - log ( rt ) ) & / ( 2.0D+00 * h1 * ( 1.0D+00 / rt - hs ) ) as = h2 * h2 if ( abs ( h2 - h1 ) < tv4 ) then exit end if h1 = h2 end do end if ! ! Gaussian quadrature on the interval [0,H2]. ! rt = 0.0D+00 do i = 1, ngauss x = 0.5D+00 * h2 * ( xtab(i) + 1.0D+00 ) rt = rt + weight(i) * exp ( hs * ( 1.0D+00 + x * x ) ) & / ( 1.0D+00 + x * x ) end do tfn = rt * ( 0.5D+00 * h2 ) * two_pi_inverse end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! None ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end subroutine triangle_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! TRIANGLE_CDF evaluates the Triangle CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else if ( x <= b ) then if ( a == b ) then cdf = 0.0D+00 else cdf = ( x - a ) * ( x - a ) / ( b - a ) / ( c - a ) end if else if ( x <= c ) then cdf = ( b - a ) / ( c - a ) & + ( 2.0D+00 * c - b - x ) * ( x - b ) / ( c - b ) / ( c - a ) else cdf = 1.0D+00 end if return end subroutine triangle_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! TRIANGLE_CDF_INV inverts the Triangle CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) cdf_mid real ( kind = rk ) d real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGLE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if d = 2.0D+00 / ( c - a ) cdf_mid = 0.5D+00 * d * ( b - a ) if ( cdf <= cdf_mid ) then x = a + sqrt ( cdf * ( b - a ) * ( c - a ) ) else x = c - sqrt ( ( c - b ) * ( ( c - b ) - ( cdf - cdf_mid ) * ( c - a ) ) ) end if return end function triangle_check ( a, b, c ) !*****************************************************************************80 ! !! TRIANGLE_CHECK checks the parameters of the Triangle CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, logical TRIANGLE_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical triangle_check if ( b < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGLE_CHECK - Fatal error!' write ( *, '(a)' ) ' B < A.' triangle_check = .false. return end if if ( c < b ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGLE_CHECK - Fatal error!' write ( *, '(a)' ) ' C < B.' triangle_check = .false. return end if if ( a == c ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGLE_CHECK - Fatal error!' write ( *, '(a)' ) ' A == C.' triangle_check = .false. return end if triangle_check = .true. return end subroutine triangle_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! TRIANGLE_MEAN returns the mean of the Triangle PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the discrete uniform PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = a + ( c + b - 2.0D+00 * a ) / 3.0D+00 return end subroutine triangle_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! TRIANGLE_PDF evaluates the Triangle PDF. ! ! Discussion: ! ! Given points A <= B <= C, the probability is 0 to the left of A, ! rises linearly to a maximum of 2/(C-A) at B, drops linearly to zero ! at C, and is zero for all values greater than C. ! ! PDF(A,B,C;X) ! = 2 * ( X - A ) / ( B - A ) / ( C - A ) for A <= X <= B ! = 2 * ( C - X ) / ( C - B ) / ( C - A ) for B <= X <= C. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x if ( x <= a ) then pdf = 0.0D+00 else if ( x <= b ) then if ( a == b ) then pdf = 0.0D+00 else pdf = 2.0D+00 * ( x - a ) / ( b - a ) / ( c - a ) end if else if ( x <= c ) then if ( b == c ) then pdf = 0.0D+00 else pdf = 2.0D+00 * ( c - x ) / ( c - b ) / ( c - a ) end if else pdf = 0.0D+00 end if return end subroutine triangle_sample ( a, b, c, x ) !*****************************************************************************80 ! !! TRIANGLE_SAMPLE samples the Triangle PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call triangle_cdf_inv ( cdf, a, b, c, x ) return end subroutine triangle_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! TRIANGLE_VARIANCE returns the variance of the Triangle PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! A <= B <= C and A < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) variance variance = ( ( c - a ) * ( c - a ) & - ( c - a ) * ( b - a ) & + ( b - a ) * ( b - a ) ) / 18.0D+00 return end subroutine triangular_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! TRIANGULAR_CDF evaluates the Triangular CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x <= a ) then cdf = 0.0D+00 else if ( x <= 0.5D+00 * ( a + b ) ) then cdf = 2.0D+00 * ( x ** 2 - 2.0D+00 * a * x + a ** 2 ) / ( b - a ) ** 2 else if ( x <= b ) then cdf = 0.5D+00 + ( - 2.0D+00 * x ** 2 + 4.0D+00 * b * x + 0.5D+00 * a ** 2 & - a * b - 1.5D+00 * b ** 2 ) / ( b - a ) ** 2 else cdf = 1.0D+00 end if return end subroutine triangular_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! TRIANGULAR_CDF_INV inverts the Triangular CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULAR_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf <= 0.5D+00 ) then x = a + 0.5D+00 * ( b - a ) * sqrt ( 2.0D+00 * cdf ) else x = b - 0.5D+00 * ( b - a ) * sqrt ( 2.0D+00 * ( 1.0D+00 - cdf ) ) end if return end function triangular_check ( a, b ) !*****************************************************************************80 ! !! TRIANGULAR_CHECK checks the parameters of the Triangular CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, logical TRIANGULAR_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical triangular_check if ( b <= a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIANGULAR_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= A.' triangular_check = .false. return end if triangular_check = .true. return end subroutine triangular_mean ( a, b, mean ) !*****************************************************************************80 ! !! TRIANGULAR_MEAN returns the mean of the Triangular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = 0.5D+00 * ( a + b ) return end subroutine triangular_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! TRIANGULAR_PDF evaluates the Triangular PDF. ! ! Discussion: ! ! PDF(A,B;X) = 4 * ( X - A ) / ( B - A )^2 for A <= X <= (A+B)/2 ! = 4 * ( B - X ) / ( B - A )^2 for (A+B)/2 <= X <= B. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x <= a ) then pdf = 0.0D+00 else if ( x <= 0.5D+00 * ( a + b ) ) then pdf = 4.0D+00 * ( x - a ) / ( b - a ) ** 2 else if ( x <= b ) then pdf = 4.0D+00 * ( b - x ) / ( b - a ) ** 2 else pdf = 0.0D+00 end if return end subroutine triangular_sample ( a, b, x ) !*****************************************************************************80 ! !! TRIANGULAR_SAMPLE samples the Triangular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call triangular_cdf_inv ( cdf, a, b, x ) return end subroutine triangular_variance ( a, b, variance ) !*****************************************************************************80 ! !! TRIANGULAR_VARIANCE returns the variance of the Triangular PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = ( b - a ) ** 2 / 24.0D+00 return end function trigamma ( x ) !*****************************************************************************80 ! !! TRIGAMMA calculates the TriGamma function. ! ! Discussion: ! ! TriGamma(x) = d^2 log ( Gamma ( x ) ) / dx^2. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2000 ! ! Author: ! ! FORTRAN77 original version by B Schneider ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! BE Schneider, ! Algorithm AS 121: ! Trigamma Function, ! Applied Statistics, ! Volume 27, Number 1, page 97-99, 1978. ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the trigamma function. ! 0 < X. ! ! Output, real ( kind = rk ) TRIGAMMA, the value of the ! trigamma function at X. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), parameter :: a = 0.0001D+00 real ( kind = rk ), parameter :: b = 5.0D+00 real ( kind = rk ), parameter :: b2 = 1.0D+00 / 6.0D+00 real ( kind = rk ), parameter :: b4 = - 1.0D+00 / 30.0D+00 real ( kind = rk ), parameter :: b6 = 1.0D+00 / 42.0D+00 real ( kind = rk ), parameter :: b8 = - 1.0D+00 / 30.0D+00 real ( kind = rk ) trigamma real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) z ! ! 1): If X is not positive, fail. ! if ( x <= 0.0D+00 ) then trigamma = 0.0D+00 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TRIGAMMA - Fatal error!' write ( *, '(a)' ) ' X <= 0.' stop 1 ! ! 2): If X is smaller than A, use a small value approximation. ! else if ( x <= a ) then trigamma = 1.0D+00 / x ** 2 ! ! 3): Otherwise, increase the argument to B <= ( X + I ). ! else z = x trigamma = 0.0D+00 do while ( z < b ) trigamma = trigamma + 1.0D+00 / z ** 2 z = z + 1.0D+00 end do ! ! ...and then apply an asymptotic formula. ! y = 1.0D+00 / z ** 2 trigamma = trigamma + 0.5D+00 * & y + ( 1.0D+00 & + y * ( b2 & + y * ( b4 & + y * ( b6 & + y * b8 )))) / z end if return end subroutine uniform_01_cdf ( x, cdf ) !*****************************************************************************80 ! !! UNIFORM_01_CDF evaluates the Uniform 01 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x if ( x < 0.0D+00 ) then cdf = 0.0D+00 else if ( 1.0D+00 < x ) then cdf = 1.0D+00 else cdf = x end if return end subroutine uniform_01_cdf_inv ( cdf, x ) !*****************************************************************************80 ! !! UNIFORM_01_CDF_INV inverts the Uniform 01 CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'UNIFORM_01_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = cdf return end subroutine uniform_01_mean ( mean ) !*****************************************************************************80 ! !! UNIFORM_01_MEAN returns the mean of the Uniform 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) mean mean = 0.5D+00 return end subroutine uniform_01_order_sample ( n, x ) !*****************************************************************************80 ! !! UNIFORM_01_ORDER_SAMPLE samples the Uniform 01 Order PDF. ! ! Discussion: ! ! In effect, this routine simply generates N samples of the ! Uniform 01 PDF; but it generates them in order. (Actually, ! it generates them in descending order, but stores them in ! the array in ascending order). This saves the work of ! sorting the results. Moreover, if the order statistics ! for another PDF are desired, and the inverse CDF is available, ! then the desired values may be generated, presorted, by ! calling this routine and using the results as input to the ! inverse CDF routine. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 168. ! ! Parameters: ! ! Input, integer N, the number of elements in the sample. ! ! Output, real ( kind = rk ) X(N), N samples of the Uniform 01 PDF, in ! ascending order. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i real ( kind = rk ) u real ( kind = rk ) v real ( kind = rk ) x(n) v = 1.0D+00 do i = n, 1, -1 call random_number ( harvest = u ) v = v * u ** ( 1.0D+00 / real ( i, kind = rk ) ) x(i) = v end do return end subroutine uniform_01_pdf ( x, pdf ) !*****************************************************************************80 ! !! UNIFORM_01_PDF evaluates the Uniform 01 PDF. ! ! Discussion: ! ! PDF(X) = 1 for 0 <= X <= 1 ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! 0.0 <= X <= 1.0. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) pdf real ( kind = rk ) x if ( x < 0.0D+00 .or. 1.0D+00 < x ) then pdf = 0.0D+00 else pdf = 1.0D+00 end if return end function uniform_01_sample ( ) !*****************************************************************************80 ! !! UNIFORM_01_SAMPLE is a portable random number generator. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 February 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) UNIFORM_01_SAMPLE, a random value between 0 ! and 1. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) r real ( kind = rk ) uniform_01_sample call random_number ( harvest = r ) uniform_01_sample = r return end subroutine uniform_01_variance ( variance ) !*****************************************************************************80 ! !! UNIFORM_01_VARIANCE returns the variance of the Uniform 01 PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) variance variance = 1.0D+00 / 12.0D+00 return end subroutine uniform_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! UNIFORM_CDF evaluates the Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( x < a ) then cdf = 0.0D+00 else if ( b < x ) then cdf = 1.0D+00 else cdf = ( x - a ) / ( b - a ) end if return end subroutine uniform_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! UNIFORM_CDF_INV inverts the Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'UNIFORM_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a + ( b - a ) * cdf return end function uniform_check ( a, b ) !*****************************************************************************80 ! !! UNIFORM_CHECK checks the parameters of the Uniform CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, logical UNIFORM_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical uniform_check if ( b <= a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'UNIFORM_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= A.' uniform_check = .false. return end if uniform_check = .true. return end subroutine uniform_mean ( a, b, mean ) !*****************************************************************************80 ! !! UNIFORM_MEAN returns the mean of the Uniform PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean mean = 0.5D+00 * ( a + b ) return end subroutine uniform_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! UNIFORM_PDF evaluates the Uniform PDF. ! ! Discussion: ! ! The Uniform PDF is also known as the "Rectangular" or "de Moivre" PDF. ! ! PDF(A,B;X) = 1 / ( B - A ) for A <= X <= B ! = 0 otherwise ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf real ( kind = rk ) x if ( x < a .or. b < x ) then pdf = 0.0D+00 else pdf = 1.0D+00 / ( b - a ) end if return end subroutine uniform_sample ( a, b, x ) !*****************************************************************************80 ! !! UNIFORM_SAMPLE samples the Uniform PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call uniform_cdf_inv ( cdf, a, b, x ) return end subroutine uniform_variance ( a, b, variance ) !*****************************************************************************80 ! !! UNIFORM_VARIANCE returns the variance of the Uniform PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! A < B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) variance variance = ( b - a ) ** 2 / 12.0D+00 return end subroutine uniform_discrete_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_CDF evaluates the Uniform Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b real ( kind = rk ) cdf integer x if ( x < a ) then cdf = 0.0D+00 else if ( b < x ) then cdf = 1.0D+00 else cdf = real ( x + 1 - a, kind = rk ) / real ( b + 1 - a, kind = rk ) end if return end subroutine uniform_discrete_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_CDF_INV inverts the Uniform Discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, integer X, the smallest argument whose CDF is greater ! than or equal to CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a real ( kind = rk ) a2 integer b real ( kind = rk ) b2 real ( kind = rk ) cdf integer x real ( kind = rk ) x2 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'UNIFORM_DISCRETE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if a2 = real ( a, kind = rk ) - 0.5D+00 b2 = real ( b, kind = rk ) + 0.5D+00 x2 = a + cdf * ( b2 - a2 ) x = nint ( x2 ) x = max ( x, a ) x = min ( x, b ) return end function uniform_discrete_check ( a, b ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_CHECK checks the parameters of the Uniform discrete CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, logical UNIFORM_DISCRETE_CHECK, is true if the parameters ! are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b logical uniform_discrete_check if ( b < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'UNIFORM_DISCRETE_CHECK - Fatal error!' write ( *, '(a)' ) ' B < A.' uniform_discrete_check = .false. return end if uniform_discrete_check = .true. return end subroutine uniform_discrete_mean ( a, b, mean ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_MEAN returns the mean of the Uniform discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b real ( kind = rk ) mean mean = 0.5D+00 * real ( a + b, kind = rk ) return end subroutine uniform_discrete_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_PDF evaluates the Uniform discrete PDF. ! ! Discussion: ! ! The Uniform Discrete PDF is also known as the "Rectangular" ! Discrete PDF. ! ! PDF(A,B;X) = 1 / ( B + 1 - A ) for A <= X <= B. ! ! The parameters define the interval of integers ! for which the PDF is nonzero. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b real ( kind = rk ) pdf integer x if ( x < a .or. b < x ) then pdf = 0.0D+00 else pdf = 1.0D+00 / real ( b + 1 - a, kind = rk ) end if return end subroutine uniform_discrete_sample ( a, b, x ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_SAMPLE samples the Uniform discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call uniform_discrete_cdf_inv ( cdf, a, b, x ) return end subroutine uniform_discrete_variance ( a, b, variance ) !*****************************************************************************80 ! !! UNIFORM_DISCRETE_VARIANCE returns the variance of the Uniform discrete PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 January 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer A, B, the parameters of the PDF. ! A <= B. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer a integer b real ( kind = rk ) variance variance = real ( ( b + 1 - a ) ** 2 - 1, kind = rk ) / 12.0D+00 return end subroutine uniform_nsphere_sample ( n, x ) !*****************************************************************************80 ! !! UNIFORM_NSPHERE_SAMPLE samples the Uniform Unit Sphere PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 December 2001 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 168. ! ! Parameters: ! ! Input, integer N, the dimension of the sphere. ! ! Output, real ( kind = rk ) X(N), a point on the unit N sphere, chosen ! with a uniform probability. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n integer i real ( kind = rk ) x(n) do i = 1, n call normal_01_sample ( x(i) ) end do x(1:n) = x(1:n) / sqrt ( sum ( x(1:n) ** 2 ) ) return end subroutine von_mises_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! VON_MISES_CDF evaluates the von Mises CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 September 2005 ! ! Author: ! ! Original FORTRAN77 version by Geoffrey Hill. ! FORTRAN90 version by John Burkardt ! ! Reference: ! ! Geoffrey Hill, ! Algorithm 518, ! Incomplete Bessel Function I0: The von Mises Distribution, ! ACM Transactions on Mathematical Software, ! Volume 3, Number 3, September 1977, pages 279-284. ! ! Kanti Mardia, Peter Jupp, ! Directional Statistics, ! Wiley, 2000, ! QA276.M335 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! A - PI <= X <= A + PI. ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ), parameter :: a1 = 12.0D+00 real ( kind = rk ), parameter :: a2 = 0.8D+00 real ( kind = rk ), parameter :: a3 = 8.0D+00 real ( kind = rk ), parameter :: a4 = 1.0D+00 real ( kind = rk ) arg real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ), parameter :: c1 = 56.0D+00 real ( kind = rk ) cdf real ( kind = rk ), parameter :: ck = 10.5D+00 real ( kind = rk ) cn real ( kind = rk ) erfx integer ip integer n real ( kind = rk ) p real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r real ( kind = rk ) r8_error_f real ( kind = rk ) s real ( kind = rk ) sn real ( kind = rk ) u real ( kind = rk ) v real ( kind = rk ) x real ( kind = rk ) y real ( kind = rk ) z ! ! We expect -PI <= X - A <= PI. ! if ( x - a <= - r8_pi ) then cdf = 0.0D+00 return end if if ( r8_pi <= x - a ) then cdf = 1.0D+00 return end if ! ! Convert the angle (X - A) modulo 2 PI to the range ( 0, 2 * PI ). ! z = b u = mod ( x - a + r8_pi, 2.0D+00 * r8_pi ) if ( u < 0.0D+00 ) then u = u + 2.0D+00 * r8_pi end if y = u - r8_pi ! ! For small B, sum IP terms by backwards recursion. ! if ( z <= ck ) then v = 0.0D+00 if ( 0.0D+00 < z ) then ip = int ( z * a2 - a3 / ( z + a4 ) + a1 ) p = real ( ip, kind = rk ) s = sin ( y ) c = cos ( y ) y = p * y sn = sin ( y ) cn = cos ( y ) r = 0.0D+00 z = 2.0D+00 / z do n = 2, ip p = p - 1.0D+00 y = sn sn = sn * c - cn * s cn = cn * c + y * s r = 1.0D+00 / ( p * z + r ) v = ( sn / p + v ) * r end do end if cdf = ( u * 0.5D+00 + v ) / r8_pi ! ! For large B, compute the normal approximation and left tail. ! else c = 24.0D+00 * z v = c - c1 r = sqrt ( ( 54.0D+00 / ( 347.0D+00 / v + 26.0D+00 - c ) - 6.0D+00 + c ) & / 12.0D+00 ) z = sin ( 0.5D+00 * y ) * r s = 2.0D+00 * z ** 2 v = v - s + 3.0D+00 y = ( c - s - s - 16.0D+00 ) / 3.0D+00 y = ( ( s + 1.75D+00 ) * s + 83.5D+00 ) / v - y arg = z * ( 1.0D+00 - s / y ** 2 ) erfx = r8_error_f ( arg ) cdf = 0.5D+00 * erfx + 0.5D+00 end if cdf = max ( cdf, 0.0D+00 ) cdf = min ( cdf, 1.0D+00 ) return end subroutine von_mises_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! VON_MISES_CDF_INV inverts the von Mises CDF. ! ! Discussion: ! ! A simple bisection method is used on the interval [ A - PI, A + PI ]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! A - PI <= X <= A + PI. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf real ( kind = rk ) cdf1 real ( kind = rk ) cdf2 real ( kind = rk ) cdf3 integer it integer, parameter :: it_max = 100 real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ), parameter :: tol = 0.000001D+00 real ( kind = rk ) x real ( kind = rk ) x1 real ( kind = rk ) x2 real ( kind = rk ) x3 if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VON_MISES_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if if ( cdf == 0.0D+00 ) then x = a - r8_pi return else if ( 1.0D+00 == cdf ) then x = a + r8_pi return end if x1 = a - r8_pi cdf1 = 0.0D+00 x2 = a + r8_pi cdf2 = 1.0D+00 ! ! Now use bisection. ! it = 0 do it = it + 1 x3 = 0.5D+00 * ( x1 + x2 ) call von_mises_cdf ( x3, a, b, cdf3 ) if ( abs ( cdf3 - cdf ) < tol ) then x = x3 exit end if if ( it_max < it ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VON_MISES_CDF_INV - Fatal error!' write ( *, '(a)' ) ' Iteration limit exceeded.' stop 1 end if if ( sign ( 1.0D+00, cdf3 - cdf ) == sign ( 1.0D+00, cdf1 - cdf ) ) then x1 = x3 cdf1 = cdf3 else x2 = x3 cdf2 = cdf3 end if end do return end subroutine von_mises_cdf_values ( n_data, a, b, x, fx ) !*****************************************************************************80 ! !! VON_MISES_CDF_VALUES returns some values of the von Mises CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Kanti Mardia, Peter Jupp, ! Directional Statistics, ! Wiley, 2000, ! QA276.M335 ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Output, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 23 real ( kind = rk ) a real ( kind = rk ), save, dimension ( n_max ) :: a_vec = (/ & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.1D+01, & -0.2D+01, & -0.1D+01, & 0.0D+01, & 0.1D+01, & 0.2D+01, & 0.3D+01, & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.0D+00 /) real ( kind = rk ) b real ( kind = rk ), save, dimension ( n_max ) :: b_vec = (/ & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.1D+01, & 0.2D+01, & 0.2D+01, & 0.2D+01, & 0.2D+01, & 0.2D+01, & 0.2D+01, & 0.3D+01, & 0.3D+01, & 0.3D+01, & 0.3D+01, & 0.3D+01, & 0.3D+01, & 0.0D+00, & 0.1D+01, & 0.2D+01, & 0.3D+01, & 0.4D+01, & 0.5D+01 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.2535089956281180D-01, & 0.1097539041177346D+00, & 0.5000000000000000D+00, & 0.8043381312498558D+00, & 0.9417460124555197D+00, & 0.5000000000000000D+00, & 0.6018204118446155D+00, & 0.6959356933122230D+00, & 0.7765935901304593D+00, & 0.8410725934916615D+00, & 0.8895777369550366D+00, & 0.9960322705517925D+00, & 0.9404336090170247D+00, & 0.5000000000000000D+00, & 0.5956639098297530D-01, & 0.3967729448207649D-02, & 0.2321953958111930D-03, & 0.6250000000000000D+00, & 0.7438406999109122D+00, & 0.8369224904294019D+00, & 0.8941711407897124D+00, & 0.9291058600568743D+00, & 0.9514289900655436D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & -0.2617993977991494D+01, & -0.1570796326794897D+01, & 0.0000000000000000D+00, & 0.1047197551196598D+01, & 0.2094395102393195D+01, & 0.1000000000000000D+01, & 0.1200000000000000D+01, & 0.1400000000000000D+01, & 0.1600000000000000D+01, & 0.1800000000000000D+01, & 0.2000000000000000D+01, & 0.0000000000000000D+00, & 0.0000000000000000D+00, & 0.0000000000000000D+00, & 0.0000000000000000D+00, & 0.0000000000000000D+00, & 0.0000000000000000D+00, & 0.7853981633974483D+00, & 0.7853981633974483D+00, & 0.7853981633974483D+00, & 0.7853981633974483D+00, & 0.7853981633974483D+00, & 0.7853981633974483D+00 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 a = 0.0D+00 b = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else a = a_vec(n_data) b = b_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function von_mises_check ( a, b ) !*****************************************************************************80 ! !! VON_MISES_CHECK checks the parameters of the von Mises PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, logical VON_MISES_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 logical von_mises_check if ( a < - r8_pi .or. r8_pi < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VON_MISES_CHECK - Fatal error!' write ( *, '(a)' ) ' A < -PI or PI < A.' von_mises_check = .false. return end if if ( b < 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VON_MISES_CHECK - Fatal error!' write ( *, '(a)' ) ' B < 0.0' von_mises_check = .false. return end if von_mises_check = .true. return end subroutine von_mises_circular_variance ( a, b, circular_variance ) !*****************************************************************************80 ! !! VON_MISES_CIRCULAR_VARIANCE: circular variance of the von Mises PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) CIRCULAR_VARIANCE, the circular variance ! of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) bessel_i0 real ( kind = rk ) bessel_i1 real ( kind = rk ) circular_variance call r8_fake_use ( a ) circular_variance = 1.0D+00 - bessel_i1 ( b ) / bessel_i0 ( b ) return end subroutine von_mises_mean ( a, b, mean ) !*****************************************************************************80 ! !! VON_MISES_MEAN returns the mean of the von Mises PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) mean call r8_fake_use ( b ) mean = a return end subroutine von_mises_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! VON_MISES_PDF evaluates the von Mises PDF. ! ! Discussion: ! ! PDF(A,B;X) = EXP ( B * COS ( X - A ) ) / ( 2 * PI * I0(B) ) ! ! where: ! ! I0(*) is the modified Bessel function of the first ! kind of order 0. ! ! The von Mises distribution for points on the unit circle is ! analogous to the normal distribution of points on a line. ! The variable X is interpreted as a deviation from the angle A, ! with B controlling the amount of dispersion. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 October 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Jerry Banks, editor, ! Handbook of Simulation, ! Engineering and Management Press Books, 1998, page 160. ! ! Donald Best, Nicholas Fisher, ! Efficient Simulation of the von Mises Distribution, ! Applied Statistics, ! Volume 28, Number 2, pages 152-157. ! ! Merran Evans, Nicholas Hastings, Brian Peacock, ! Statistical Distributions, ! Wiley, 2000, ! LC: QA273.6.E92, pages 189-191. ! ! Kanti Mardia, Peter Jupp, ! Directional Statistics, ! Wiley, 2000, ! LC: QA276.M335 ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A - PI <= X <= A + PI. ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) bessel_i0 real ( kind = rk ) pdf real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) x if ( x < a - r8_pi ) then pdf = 0.0D+00 else if ( x <= a + r8_pi ) then pdf = exp ( b * cos ( x - a ) ) / ( 2.0D+00 * r8_pi * bessel_i0 ( b ) ) else pdf = 0.0D+00 end if return end subroutine von_mises_sample ( a, b, x ) !*****************************************************************************80 ! !! VON_MISES_SAMPLE samples the von Mises PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Donald Best, Nicholas Fisher, ! Efficient Simulation of the von Mises Distribution, ! Applied Statistics, ! Volume 28, Number 2, pages 152-157. ! ! Parameters: ! ! Input, real ( kind = rk ) A, a parameter of the PDF. ! A is the preferred direction, in radians. ! -PI <= A <= PI. ! ! Input, real ( kind = rk ) B, a parameter of the PDF. ! B measures the "concentration" of the distribution around the ! angle A. B = 0 corresponds to a uniform distribution ! (no concentration). Higher values of B cause greater concentration ! of probability near A. ! 0.0 <= B. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) f real ( kind = rk ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk ) r real ( kind = rk ) rho real ( kind = rk ) tau real ( kind = rk ) u1 real ( kind = rk ) u2 real ( kind = rk ) u3 real ( kind = rk ) x real ( kind = rk ) z tau = 1.0D+00 + sqrt ( 1.0D+00 + 4.0D+00 * b * b ) rho = ( tau - sqrt ( 2.0D+00 * tau ) ) / ( 2.0D+00 * b ) r = ( 1.0D+00 + rho ** 2 ) / ( 2.0D+00 * rho ) do call random_number ( harvest = u1 ) z = cos ( r8_pi * u1 ) f = ( 1.0D+00 + r * z ) / ( r + z ) c = b * ( r - f ) call random_number ( harvest = u2 ) if ( u2 < c * ( 2.0D+00 - c ) ) then exit end if if ( c <= log ( c / u2 ) + 1.0D+00 ) then exit end if end do call random_number ( harvest = u3 ) x = a + sign ( 1.0D+00, u3 - 0.5D+00 ) * acos ( f ) return end subroutine weibull_cdf ( x, a, b, c, cdf ) !*****************************************************************************80 ! !! WEIBULL_CDF evaluates the Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the CDF. ! A <= X. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x real ( kind = rk ) y if ( x < a ) then cdf = 0.0D+00 else y = ( x - a ) / b cdf = 1.0D+00 - 1.0D+00 / exp ( y**c ) end if return end subroutine weibull_cdf_inv ( cdf, a, b, c, x ) !*****************************************************************************80 ! !! WEIBULL_CDF_INV inverts the Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 < CDF < 1.0. ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, the corresponding argument of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = a + b * ( - log ( 1.0D+00 - cdf ) ) ** ( 1.0D+00 / c ) return end subroutine weibull_cdf_values ( n_data, alpha, beta, x, fx ) !*****************************************************************************80 ! !! WEIBULL_CDF_VALUES returns some values of the Weibull CDF. ! ! Discussion: ! ! In Mathematica, the function can be evaluated by: ! ! Needs["Statistics`ContinuousDistributions`"] ! dist = WeibullDistribution [ alpha, beta ] ! CDF [ dist, x ] ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 August 2004 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Milton Abramowitz, Irene Stegun, ! Handbook of Mathematical Functions, ! National Bureau of Standards, 1964, ! LC: QA47.A34, ! ISBN: 0-486-61272-4. ! ! Stephen Wolfram, ! The Mathematica Book, ! Fourth Edition, ! Wolfram Media / Cambridge University Press, 1999. ! ! Parameters: ! ! Input/output, integer N_DATA. The user sets N_DATA to 0 ! before the first call. On each call, the routine increments N_DATA by 1, ! and returns the corresponding data; when there is no more data, the ! output value of N_DATA will be 0 again. ! ! Output, real ( kind = rk ) ALPHA, the first parameter of the distribution. ! ! Output, real ( kind = rk ) BETA, the second parameter of the distribution. ! ! Output, real ( kind = rk ) X, the argument of the function. ! ! Output, real ( kind = rk ) FX, the value of the function. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: n_max = 12 real ( kind = rk ) alpha real ( kind = rk ), save, dimension ( n_max ) :: alpha_vec = (/ & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01 /) real ( kind = rk ) beta real ( kind = rk ), save, dimension ( n_max ) :: beta_vec = (/ & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.5000000000000000D+00, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.5000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01 /) real ( kind = rk ) fx real ( kind = rk ), save, dimension ( n_max ) :: fx_vec = (/ & 0.8646647167633873D+00, & 0.9816843611112658D+00, & 0.9975212478233336D+00, & 0.9996645373720975D+00, & 0.6321205588285577D+00, & 0.4865828809674080D+00, & 0.3934693402873666D+00, & 0.3296799539643607D+00, & 0.8946007754381357D+00, & 0.9657818816883340D+00, & 0.9936702845725143D+00, & 0.9994964109502630D+00 /) integer n_data real ( kind = rk ) x real ( kind = rk ), save, dimension ( n_max ) :: x_vec = (/ & 0.1000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.4000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.2000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01, & 0.3000000000000000D+01 /) if ( n_data < 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max < n_data ) then n_data = 0 alpha = 0.0D+00 beta = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else alpha = alpha_vec(n_data) beta = beta_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end function weibull_check ( a, b, c ) !*****************************************************************************80 ! !! WEIBULL_CHECK checks the parameters of the Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, logical WEIBULL_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c logical weibull_check call r8_fake_use ( a ) if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' weibull_check = .false. return end if if ( c <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_CHECK - Fatal error!' write ( *, '(a)' ) ' C <= 0.' weibull_check = .false. return end if weibull_check = .true. return end subroutine weibull_mean ( a, b, c, mean ) !*****************************************************************************80 ! !! WEIBULL_MEAN returns the mean of the Weibull PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) mean mean = b * gamma ( ( c + 1.0D+00 ) / c ) + a return end subroutine weibull_pdf ( x, a, b, c, pdf ) !*****************************************************************************80 ! !! WEIBULL_PDF evaluates the Weibull PDF. ! ! Discussion: ! ! PDF(A,B,C;X) = ( C / B ) * ( ( X - A ) / B )^( C - 1 ) ! * EXP ( - ( ( X - A ) / B )^C ). ! ! The Weibull PDF is also known as the Frechet PDF. ! ! WEIBULL_PDF(A,B,1;X) is the Exponential PDF. ! ! WEIBULL_PDF(0,1,2;X) is the Rayleigh PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) X, the argument of the PDF. ! A <= X ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) pdf real ( kind = rk ) x real ( kind = rk ) y if ( x < a ) then pdf = 0.0D+00 else y = ( x - a ) / b pdf = ( c / b ) * y ** ( c - 1.0D+00 ) / exp ( y ** c ) end if return end subroutine weibull_sample ( a, b, c, x ) !*****************************************************************************80 ! !! WEIBULL_SAMPLE samples the Weibull PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) x call random_number ( harvest = cdf ) call weibull_cdf_inv ( cdf, a, b, c, x ) return end subroutine weibull_variance ( a, b, c, variance ) !*****************************************************************************80 ! !! WEIBULL_VARIANCE returns the variance of the Weibull PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 16 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, C, the parameters of the PDF. ! 0.0 < B, ! 0.0 < C. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) c real ( kind = rk ) g1 real ( kind = rk ) g2 real ( kind = rk ) variance call r8_fake_use ( a ) g1 = gamma ( ( c + 2.0D+00 ) / c ) g2 = gamma ( ( c + 1.0D+00 ) / c ) variance = b * b * ( g1 - g2 * g2 ) return end subroutine weibull_discrete_cdf ( x, a, b, cdf ) !*****************************************************************************80 ! !! WEIBULL_DISCRETE_CDF evaluates the Discrete Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the CDF. ! 0 <= X. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A <= 1.0D+00, ! 0.0 < B. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer x if ( x < 0 ) then cdf = 0.0D+00 else cdf = 1.0D+00 - ( 1.0D+00 - a ) ** ( ( x + 1 ) ** b ) end if return end subroutine weibull_discrete_cdf_inv ( cdf, a, b, x ) !*****************************************************************************80 ! !! WEIBULL_DISCRETE_CDF_INV inverts the Discrete Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 October 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! 0.0 <= CDF <= 1.0. ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A <= 1.0D+00, ! 0.0 < B. ! ! Output, integer X, the corresponding argument. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer r8_ceiling integer x if ( cdf < 0.0D+00 .or. 1.0D+00 < cdf ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_DISCRETE_CDF_INV - Fatal error!' write ( *, '(a)' ) ' CDF < 0 or 1 < CDF.' stop 1 end if x = r8_ceiling ( ( log ( 1.0D+00 - cdf ) / log ( 1.0D+00 - a ) ) & ** ( 1.0D+00 / b ) - 1.0D+00 ) return end function weibull_discrete_check ( a, b ) !*****************************************************************************80 ! !! WEIBULL_DISCRETE_CHECK checks the parameters of the discrete Weibull CDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 08 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A <= 1.0D+00, ! 0.0 < B. ! ! Output, logical WEIBULL_DISCRETE_CHECK, is true if the parameters ! are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b logical weibull_discrete_check if ( a < 0.0D+00 .or. 1.0D+00 < a ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_DISCRETE_CHECK - Fatal error!' write ( *, '(a)' ) ' A < 0 or 1 < A.' weibull_discrete_check = .false. return end if if ( b <= 0.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEIBULL_DISCRETE_CHECK - Fatal error!' write ( *, '(a)' ) ' B <= 0.' weibull_discrete_check = .false. return end if weibull_discrete_check = .true. return end subroutine weibull_discrete_pdf ( x, a, b, pdf ) !*****************************************************************************80 ! !! WEIBULL_DISCRETE_PDF evaluates the discrete Weibull PDF. ! ! Discussion: ! ! PDF(A,B;X) = ( 1 - A )^X^B - ( 1 - A )^(X+1)^B. ! ! WEIBULL_DISCRETE_PDF(A,1;X) = GEOMETRIC_PDF(A;X) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 February 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 0 <= X ! ! Input, real ( kind = rk ) A, B, the parameters that define the PDF. ! 0 <= A <= 1, ! 0 < B. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) pdf integer x if ( x < 0 ) then pdf = 0.0D+00 else pdf = ( 1.0D+00 - a ) ** ( x ** b ) - ( 1.0D+00 - a ) ** ( ( x + 1 ) ** b ) end if return end subroutine weibull_discrete_sample ( a, b, x ) !*****************************************************************************80 ! !! WEIBULL_DISCRETE_SAMPLE samples the discrete Weibull PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, B, the parameters of the PDF. ! 0.0 <= A <= 1.0D+00, ! 0.0 < B. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b real ( kind = rk ) cdf integer x call random_number ( harvest = cdf ) call weibull_discrete_cdf_inv ( cdf, a, b, x ) return end subroutine zipf_cdf ( x, a, cdf ) !*****************************************************************************80 ! !! ZIPF_CDF evaluates the Zipf CDF. ! ! Discussion: ! ! Simple summation is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 December 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 1 <= N ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, real ( kind = rk ) CDF, the value of the CDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ), save :: asave = 0.0D+00 real ( kind = rk ), save :: c = 0.0D+00 real ( kind = rk ) cdf real ( kind = rk ) pdf real ( kind = rk ) r8_zeta integer x integer y if ( x < 1 ) then cdf = 0.0D+00 else if ( a /= asave ) then c = r8_zeta ( a ) asave = a end if cdf = 0.0D+00 do y = 1, x pdf = ( 1.0D+00 / real ( y, kind = rk ) ** a ) / c cdf = cdf + pdf end do end if return end subroutine zipf_cdf_inv ( a, cdf, x ) !*****************************************************************************80 ! !! ZIPF_CDF_INV inverts the Zipf CDF. ! ! Discussion: ! ! Simple summation is used. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 March 2016 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) CDF, the value of the CDF. ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0 < A. ! ! Output, integer X, the argument such that ! CDF(X-1) < CDF <= CDF(X) ! 1 <= X <= 1000 ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) c real ( kind = rk ) cdf real ( kind = rk ) cdf2 real ( kind = rk ) pdf real ( kind = rk ) r8_zeta integer x integer y if ( cdf <= 0.0 ) then x = 1 else c = r8_zeta ( a ) cdf2 = 0.0D+00 x = 1000 do y = 1, 1000 pdf = ( 1.0D+00 / y ** a ) / c cdf2 = cdf2 + pdf if ( cdf <= cdf2 ) then x = y exit end if end do end if return end function zipf_check ( a ) !*****************************************************************************80 ! !! ZIPF_CHECK checks the parameter of the Zipf PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, logical ZIPF_CHECK, is true if the parameters are legal. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a logical zipf_check if ( a <= 1.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ZIPF_CHECK - Fatal error!' write ( *, '(a)' ) ' A <= 1.' zipf_check = .false. return end if zipf_check = .true. return end subroutine zipf_mean ( a, mean ) !*****************************************************************************80 ! !! ZIPF_MEAN returns the mean of the Zipf PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, real ( kind = rk ) MEAN, the mean of the PDF. ! The mean is only defined for 2 < A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean real ( kind = rk ) r8_zeta if ( a <= 2.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ZIPF_MEAN - Fatal error!' write ( *, '(a)' ) ' No mean defined for A <= 2.' stop 1 end if mean = r8_zeta ( a - 1.0D+00 ) / r8_zeta ( a ) return end subroutine zipf_pdf ( x, a, pdf ) !*****************************************************************************80 ! !! ZIPF_PDF evaluates the Zipf PDF. ! ! Discussion: ! ! PDF(A;X) = ( 1 / X^A ) / C ! ! where the normalizing constant is chosen so that ! ! C = Sum ( 1 <= I < Infinity ) 1 / I^A. ! ! From observation, the frequency of different words in long ! sequences of text seems to follow the Zipf PDF, with ! parameter A slightly greater than 1. The Zipf PDF is sometimes ! known as the "discrete Pareto" PDF. ! ! Lotka's law is a version of the Zipf PDF in which A is 2 or approximately ! 2. Lotka's law describes the frequency of publications by authors in a ! given field, and estimates that the number of authors with X papers is ! about 1/X^A of the number of authors with 1 paper. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Alfred Lotka, ! The frequency distribution of scientific productivity, ! Journal of the Washington Academy of Sciences, ! Volume 16, Number 12, 1926, pages 317-324. ! ! Parameters: ! ! Input, integer X, the argument of the PDF. ! 1 <= N ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, real ( kind = rk ) PDF, the value of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ), save :: asave = 0.0D+00 real ( kind = rk ), save :: c = 0.0D+00 real ( kind = rk ) pdf real ( kind = rk ) r8_zeta integer x if ( x < 1 ) then pdf = 0.0D+00 else if ( a /= asave ) then c = r8_zeta ( a ) asave = a end if pdf = ( 1.0D+00 / real ( x, kind = rk ) ** a ) / c end if return end subroutine zipf_sample ( a, x ) !*****************************************************************************80 ! !! ZIPF_SAMPLE samples the Zipf PDF. ! ! Discussion: ! ! I am concerned that there may be a discrepancy in the results ! of this routine, which do not seem to have the predicted variances. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 1999 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! Luc Devroye, ! Non-Uniform Random Variate Generation, ! Springer Verlag, 1986, pages 550-551. ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, integer X, a sample of the PDF. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) b integer i4_huge real ( kind = rk ) t real ( kind = rk ) test real ( kind = rk ) u real ( kind = rk ) v real ( kind = rk ) w integer x test = real ( i4_huge ( ), kind = rk ) b = 2.0D+00 ** ( a - 1.0D+00 ) do call random_number ( harvest = u ) call random_number ( harvest = v ) w = aint ( 1.0D+00 / u ** ( 1.0D+00 / ( a - 1.0D+00 ) ) ) ! ! Very small values of U can cause W to be very large, ! bigger than the largest integer... ! if ( test < w ) then cycle end if t = ( ( w + 1.0D+00 ) / w ) ** ( a - 1.0D+00 ) if ( v * w * ( t - 1.0D+00 ) * b <= t * ( b - 1.0D+00 ) ) then exit end if end do x = int ( w ) return end subroutine zipf_variance ( a, variance ) !*****************************************************************************80 ! !! ZIPF_VARIANCE returns the variance of the Zipf PDF. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, real ( kind = rk ) A, the parameter of the PDF. ! 1.0D+00 < A. ! ! Output, real ( kind = rk ) VARIANCE, the variance of the PDF. ! The variance is only defined for 3 < A. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) a real ( kind = rk ) mean real ( kind = rk ) r8_zeta real ( kind = rk ) variance if ( a <= 3.0D+00 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ZIPF_VARIANCE - Fatal error!' write ( *, '(a)' ) ' No variance defined for A <= 3.0.' stop 1 end if call zipf_mean ( a, mean ) variance = r8_zeta ( a - 2.0D+00 ) / r8_zeta ( a ) - mean * mean return end