program main !*****************************************************************************80 ! !! midpoint_test() tests midpoint(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 November 2023 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) tspan(2) real ( kind = rk ) y0(2) call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'midpoint_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test midpoint().' tspan(1) = 0.0D+00 tspan(2) = 2.0D+00 call humps_exact ( 1, tspan(1), y0 ) n = 50 call humps_test ( tspan, y0, n ) tspan(1) = 0.0D+00 tspan(2) = 5.0D+00 y0(1) = 5000.0D+00 y0(2) = 100.0D+00 n = 200 call predator_prey_test ( tspan, y0, n ) tspan(1) = 0.0D+00 tspan(2) = 1.0D+00 y0(1) = 0.0D+00 n = 27 call stiff_test ( tspan, y0(1), n ) ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'midpoint_test():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop 0 end subroutine humps_test ( tspan, y0, n ) !*****************************************************************************80 ! !! humps_test() calls midpoint() for the humps problem. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 13 November 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N: the number of steps to take. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: m = 1 integer n character ( len = 255 ) command_filename integer command_unit character ( len = 255 ) data_filename integer data_unit character ( len = * ), parameter :: header = 'humps' external humps_deriv integer i real ( kind = rk8 ) t(n+1) real ( kind = rk8 ) tspan(2) real ( kind = rk8 ) y(n+1,1) real ( kind = rk8 ) y0(m) real ( kind = rk8 ) y2(n+1,1) write ( *, '(a)' ) '' write ( *, '(a)' ) 'humps_test():' call midpoint ( humps_deriv, tspan, y0, n, m, t, y ) call humps_exact ( n+1, t, y2 ) ! ! Create the data file. ! call get_unit ( data_unit ) data_filename = header // '_data.txt' open ( unit = data_unit, file = data_filename, status = 'replace' ) do i = 1, n + 1 write ( data_unit, '(3(2x,g14.6))' ) t(i), y(i,1), y2(i,1) end do close ( unit = data_unit ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' humps_test(): data stored in "' & // trim ( data_filename ) // '".' ! ! Create the command file. ! call get_unit ( command_unit ) command_filename = trim ( header ) // '_commands.txt' open ( unit = command_unit, file = command_filename, status = 'replace' ) write ( command_unit, '(a)' ) '# ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) '# Usage:' write ( command_unit, '(a)' ) '# gnuplot < ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) 'set term png' write ( command_unit, '(a)' ) 'set output "' // trim ( header ) // '.png"' write ( command_unit, '(a)' ) 'set xlabel "<-- T -->"' write ( command_unit, '(a)' ) 'set ylabel "<-- Y(T) -->"' write ( command_unit, '(a)' ) 'set title "midpoint(): Humps ODE"' write ( command_unit, '(a)' ) 'set grid' write ( command_unit, '(a)' ) 'set style data lines' write ( command_unit, '(a)' ) 'plot "' // trim ( data_filename ) // & '" using 1:2 with lines lw 3 lt rgb "red", \' write ( command_unit, '(a)' ) ' "' // trim ( data_filename ) // & '" using 1:3 with lines lw 3 lt rgb "blue"' write ( command_unit, '(a)' ) 'quit' close ( unit = command_unit ) write ( *, '(a)' ) ' humps_test(): plot commands stored in "' & // trim ( command_filename ) // '".' return end subroutine humps_deriv ( x, y, yp ) !*****************************************************************************80 ! !! humps_deriv() evaluates the right hand side of the humps ODE. ! ! Discussion: ! ! y = 1.0 / ( ( x - 0.3 )^2 + 0.01 ) ! + 1.0 / ( ( x - 0.9 )^2 + 0.04 ) ! - 6.0 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 17 November 2023 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk8 ) x, y(1): the argument. ! ! Output: ! ! real ( kind = rk8 ) yp(1): the value of the derivative at x. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) x real ( kind = rk8 ) y(1) real ( kind = rk8 ) yp(1) call r8_fake_use ( y(1) ) yp(1) = - 2.0D+00 * ( x - 0.3D+00 ) / ( ( x - 0.3D+00 )**2 + 0.01D+00 )**2 & - 2.0D+00 * ( x - 0.9D+00 ) / ( ( x - 0.9D+00 )**2 + 0.04D+00 )**2 return end subroutine humps_exact ( n, x, y ) !*****************************************************************************80 ! !! humps_exact() evaluates the humps function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer n: the number of evaluation points. ! ! real ( kind = rk8 ) x(n): the evaluation points. ! ! Output: ! ! real ( kind = rk8 ) y(n): the function values. ! implicit none integer, parameter :: rk8 = kind ( 1.0D+00 ) integer n real ( kind = rk8 ) x(n) real ( kind = rk8 ) y(n) write ( *, * ) 'x(1) = ', x(1) y = 1.0D+00 / ( ( x - 0.3D+00 )**2 + 0.01D+00 ) & + 1.0D+00 / ( ( x - 0.9D+00 )**2 + 0.04D+00 ) & - 6.0D+00 return end subroutine predator_prey_test ( tspan, y0, n ) !*****************************************************************************80 ! !! predator_prey_test(): predator-prey using midpoint(). ! ! Discussion: ! ! The physical system under consideration is a pair of animal populations. ! ! The PREY reproduce rapidly for each animal alive at the beginning of the ! year, two more will be born by the end of the year. The prey do not have ! a natural death rate instead, they only die by being eaten by the predator. ! Every prey animal has 1 chance in 1000 of being eaten in a given year by ! a given predator. ! ! The PREDATORS only die of starvation, but this happens very quickly. ! If unfed, a predator will tend to starve in about 1/10 of a year. ! On the other hand, the predator reproduction rate is dependent on ! eating prey, and the chances of this depend on the number of available prey. ! ! The resulting differential equations can be written: ! ! PREY(0) = 5000 ! PRED(0) = 100 ! ! d PREY / dT = 2 * PREY(T) - 0.001 * PREY(T) * PRED(T) ! d PRED / dT = - 10 * PRED(T) + 0.002 * PREY(T) * PRED(T) ! ! Here, the initial values (5000,100) are a somewhat arbitrary starting point. ! ! The pair of ordinary differential equations that result have an interesting ! behavior. For certain choices of the interaction coefficients (such as ! those given here), the populations of predator and prey will tend to ! a periodic oscillation. The two populations will be out of phase the number ! of prey will rise, then after a delay, the predators will rise as the prey ! begins to fall, causing the predator population to crash again. ! ! There is a conserved quantity, which here would be: ! E(r,f) = 0.002 r + 0.001 f - 10 ln(r) - 2 ln(f) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 February 2020 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! George Lindfield, John Penny, ! Numerical Methods Using MATLAB, ! Second Edition, ! Prentice Hall, 1999, ! ISBN: 0-13-012641-1, ! LC: QA297.P45. ! ! Input: ! ! real ( kind = rk ) tspan: contains [ T0, TMAX ], the initial and final ! times. A reasonable value might be [ 0, 5 ]. ! ! real ( kind = rk ) y0 = [ PREY, PRED ], the initial number of prey and ! predators. A reasonable value might be [ 5000, 100 ]. ! ! integer n: the number of time steps to take. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 2 integer n character ( len = 255 ) command_filename integer command_unit character ( len = 255 ) data_filename integer data_unit character ( len = * ), parameter :: header = 'predator_prey' integer i real ( kind = rk ) y0(m) real ( kind = rk ) y(n+1,m) external predator_prey_dydt real ( kind = rk ) t(n+1) real ( kind = rk ) tspan(2) write ( *, '(a)' ) '' write ( *, '(a)' ) 'predator_prey_test()' write ( *, '(a)' ) '' write ( *, '(a)' ) ' A pair of ordinary differential equations for a population' write ( *, '(a)' ) ' of predators and prey are solved using midpoint().' write ( *, '(a)' ) '' write ( *, '(a)' ) ' The exact solution shows periodic behavior, with a fixed' write ( *, '(a)' ) ' period and amplitude.' call midpoint ( predator_prey_dydt, tspan, y0, n, m, t, y ) ! ! Create the data file. ! call get_unit ( data_unit ) data_filename = header // '_data.txt' open ( unit = data_unit, file = data_filename, status = 'replace' ) do i = 1, n + 1 write ( data_unit, '(5(2x,g14.6))' ) t(i), y(i,1), y(i,2) end do close ( unit = data_unit ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' predator_prey_test: data stored in "' & // trim ( data_filename ) // '".' ! ! Create the command file. ! call get_unit ( command_unit ) command_filename = trim ( header ) // '_commands.txt' open ( unit = command_unit, file = command_filename, status = 'replace' ) write ( command_unit, '(a)' ) '# ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) '# Usage:' write ( command_unit, '(a)' ) '# gnuplot < ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) 'set term png' write ( command_unit, '(a)' ) 'set output "' // trim ( header ) // '.png"' write ( command_unit, '(a)' ) 'set xlabel "<-- Prey -->"' write ( command_unit, '(a)' ) 'set ylabel "<-- Predator -->"' write ( command_unit, '(a)' ) 'set title "predator prey ODE"' write ( command_unit, '(a)' ) 'set grid' write ( command_unit, '(a)' ) 'set style data lines' write ( command_unit, '(a)' ) 'plot "' // trim ( data_filename ) // & '" using 2:3 with lines lw 3' write ( command_unit, '(a)' ) 'quit' close ( unit = command_unit ) write ( *, '(a)' ) ' predator_prey_test: plot commands stored in "' & // trim ( command_filename ) // '".' return end subroutine predator_prey_dydt ( t, y, dydt ) !*****************************************************************************80 ! !! predator_prey_dydt() evaluates the right hand side of the system. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 22 February 2020 ! ! Author: ! ! John Burkardt ! ! Reference: ! ! George Lindfield, John Penny, ! Numerical Methods Using MATLAB, ! Second Edition, ! Prentice Hall, 1999, ! ISBN: 0-13-012641-1, ! LC: QA297.P45. ! ! Input: ! ! real ( kind = rk ) t: the current time. ! ! real ( kind = rk ) y(2): the current solution variables, rabbits and foxes. ! ! Output: ! ! real ( kind = rk ) dydt(2): the right hand side of the 2 ODE's. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) dydt(2) real ( kind = rk ) t real ( kind = rk ) y(2) call r8_fake_use ( t ) dydt(1) = 2.0 * y(1) - 0.001 * y(1) * y(2) dydt(2) = - 10.0 * y(2) + 0.002 * y(1) * y(2) return end subroutine stiff_test ( tspan, y0, n ) !*****************************************************************************80 ! !! stiff_test() uses the midpoint method on the stiff ODE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk ) TSPAN(2): the first and last times. ! ! real ( kind = rk ) Y0(1): the initial condition. ! ! integer N: the number of steps to take. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer, parameter :: m = 1 integer n integer, parameter :: n2 = 101 external stiff_dydt real ( kind = rk ) t1(n+1) real ( kind = rk ) t2(n2) real ( kind = rk ) tspan(2) real ( kind = rk ) y1(n+1) real ( kind = rk ) y0(1) real ( kind = rk ) y2(n2) write ( *, '(a)' ) '' write ( *, '(a)' ) 'stiff_test():' write ( *, '(a)' ) ' Solve stiff ODE using midpoint()' call midpoint ( stiff_dydt, tspan, y0, n, m, t1, y1 ) call r8vec_linspace ( n2, tspan(1), tspan(2), t2 ) call stiff_exact ( n2, t2, y2 ) call plot2 ( n+1, t1, y1, n2, t2, y2, 'stiff', & 'stiff (midpoint)' ) return end subroutine stiff_dydt ( t, y, dydt ) !*****************************************************************************80 ! !! stiff_dydt() evaluates the right hand side of the stiff ODE. ! ! Discussion: ! ! y' = 50 * ( cos(t) - y ) ! y(0) = 0 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk ) T, Y(1): the time and solution value. ! ! Output: ! ! real ( kind = rk ) DYDT(1): the derivative value. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) dydt(1) real ( kind = rk ) t real ( kind = rk ) y(1) dydt(1) = 50.0D+00 * ( cos ( t ) - y(1) ) return end subroutine stiff_exact ( n, t, y ) !*****************************************************************************80 ! !! stiff_exact() evaluates the exact solution of the stiff ODE. ! ! Discussion: ! ! y' = 50 * ( cos(t) - y ) ! y(0) = 0 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N: the number of values. ! ! real ( kind = rk ) T(N): the evaluation times. ! ! Output: ! ! real ( kind = rk ) Y(N): the exact solution values. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) t(n) real ( kind = rk ) y(n) y(1:n) = 50.0D+00 * ( sin ( t ) + 50.0D+00 * cos(t) & - 50.0D+00 * exp ( - 50.0D+00 * t ) ) / 2501.0D+00 return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! get_unit() returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is a value between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is a value between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 October 2008 ! ! Author: ! ! John Burkardt ! ! Output: ! ! integer IUNIT, the free unit number. ! implicit none integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine plot2 ( n1, t1, y1, n2, t2, y2, header, title ) !*****************************************************************************80 ! !! plot2() plots two curves together. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N1: the size of the first data set. ! ! real ( kind = rk ) T1(N1), Y1(N1), the first dataset. ! ! integer N2: the size of the second data set. ! ! real ( kind = rk ) T2(N2), Y2(N2), the secod dataset. ! ! character ( len = * ) HEADER: an identifier for the data. ! ! character ( len = * ) TITLE: a title to appear in the plot. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n1 integer n2 character ( len = 255 ) command_filename integer command_unit character ( len = 255 ) data1_filename character ( len = 255 ) data2_filename integer data_unit character ( len = * ) header integer i character ( len = * ) title real ( kind = rk ) t1(n1) real ( kind = rk ) t2(n2) real ( kind = rk ) y1(n1) real ( kind = rk ) y2(n2) ! ! Create the data files. ! call get_unit ( data_unit ) data1_filename = header // '_data1.txt' open ( unit = data_unit, file = data1_filename, status = 'replace' ) do i = 1, n1 write ( data_unit, '(5(2x,g14.6))' ) t1(i), y1(i) end do close ( unit = data_unit ) call get_unit ( data_unit ) data2_filename = header // '_data2.txt' open ( unit = data_unit, file = data2_filename, status = 'replace' ) do i = 1, n2 write ( data_unit, '(5(2x,g14.6))' ) t2(i), y2(i) end do close ( unit = data_unit ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' plot2: data stored in "' & // trim ( data1_filename ) // '" and "' // trim ( data2_filename ) // '".' ! ! Create the command file. ! call get_unit ( command_unit ) command_filename = trim ( header ) // '_commands.txt' open ( unit = command_unit, file = command_filename, status = 'replace' ) write ( command_unit, '(a)' ) '# ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) '# Usage:' write ( command_unit, '(a)' ) '# gnuplot < ' // trim ( command_filename ) write ( command_unit, '(a)' ) '#' write ( command_unit, '(a)' ) 'set term png' write ( command_unit, '(a)' ) 'set output "' // trim ( header ) // '.png"' write ( command_unit, '(a)' ) 'set xlabel "<-- T -->"' write ( command_unit, '(a)' ) 'set ylabel "<-- Y(T) -->"' write ( command_unit, '(a)' ) 'set title "' // trim ( title ) // '"' write ( command_unit, '(a)' ) 'set grid' write ( command_unit, '(a)' ) 'set style data lines' write ( command_unit, '(a)' ) 'plot "' // trim ( data1_filename ) // & '" using 1:2 with lines lw 3 lt rgb "red",\' write ( command_unit, '(a)' ) ' "' // trim ( data2_filename ) // & '" using 1:2 with lines lw 3 lt rgb "blue"' write ( command_unit, '(a)' ) 'quit' close ( unit = command_unit ) write ( *, '(a)' ) ' plot2: plot commands stored in "' & // trim ( command_filename ) // '".' return end subroutine r8_fake_use ( x ) !*****************************************************************************80 ! !! r8_fake_use() pretends to use a variable. ! ! Discussion: ! ! Some compilers will issue a warning if a variable is unused. ! Sometimes there's a good reason to include a variable in a program, ! but not to use it. Calling this function with that variable as ! the argument will shut the compiler up. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 April 2020 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real ( kind = rk ) X, the variable to be "used". ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) x if ( x /= x ) then write ( *, '(a)' ) ' r8_fake_use: variable is NAN.' end if return end subroutine r8vec_linspace ( n, a, b, x ) !*****************************************************************************80 ! !! r8vec_linspace() creates a vector of linearly spaced values. ! ! Discussion: ! ! An R8VEC is a vector of R8's. ! ! 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. ! ! In other words, the interval is divided into N-1 even subintervals, ! and the endpoints of intervals are used as the points. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 March 2011 ! ! Author: ! ! John Burkardt ! ! Input: ! ! integer N, the number of entries in the vector. ! ! real ( kind = rk ) A, B, the first and last entries. ! ! Output: ! ! real ( kind = rk ) X(N), a vector of linearly spaced data. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) integer n real ( kind = rk ) a real ( kind = rk ) b integer i real ( kind = rk ) x(n) if ( n == 1 ) then x(1) = ( a + b ) / 2.0D+00 else do i = 1, n x(i) = ( real ( n - i, kind = rk ) * a & + real ( i - 1, kind = rk ) * b ) & / real ( n - 1, kind = rk ) end do end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end