29 November 2025 9:44:19.119 PM fem2d_poisson_cg() FORTRAN90 version: Solve the Poisson equation using sparse storage and a conjugate gradient solver. Solution of the Poisson equation in an arbitrary region in 2 dimensions. - DEL H(x,y) DEL U(x,y) + K(x,y) * U(x,y) = F(x,y) in the region U(x,y) = G(x,y) on the boundary. The finite element method is used, with triangular elements, which must be a 3 node linear triangle. Node file is "ell_nodes.txt". Element file is "ell_elements.txt". Number of nodes = 65 First 10 nodes Row 1 2 Col 1 0.00000 0.00000 2 0.00000 0.500000 3 0.500000 0.00000 4 0.00000 1.00000 5 0.500000 0.500000 6 1.00000 0.00000 7 0.00000 1.50000 8 0.500000 1.00000 9 1.00000 0.500000 10 1.50000 0.00000 Element order = 3 Number of elements = 96 First 10 elements Row 1 2 3 Col 1 1 3 2 2 6 5 3 3 4 2 5 4 3 5 2 5 23 22 10 6 21 9 22 7 6 10 9 8 22 9 10 9 19 7 20 10 4 8 7 Quadrature order = 3 Number of nonzero coefficients NZ_NUM = 385 Step Residual 1 39.3312 2 23.1596 3 10.7601 4 6.12728 5 3.47712 6 1.65520 7 0.592650 8 0.162597 9 0.693399E-01 10 0.241027E-01 11 0.609233E-02 12 0.162877E-02 13 0.299049E-03 14 0.670415E-04 15 0.438113E-05 Number of iterations was 15 Estimated error is 0.744849E-07 Part of the solution vector U: 1 0.0000000 2 0.25000000 3 0.25000000 4 1.0000000 5 0.48493558 6 1.0000000 7 2.2500000 8 1.2289069 9 1.2289069 10 2.2500000 fem2d_poisson_cg(): Wrote an ASCII file "ell_values.txt" of the form U ( X(I), Y(I) ) which can be used for plotting. fem2d_poisson_cg(): Normal end of execution. 29 November 2025 9:44:19.122 PM