program main !*****************************************************************************80 ! !! candy_count_test() tests candy_count(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 June 2024 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'candy_count_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test candy_count().' call candy_count_vector_test ( ) call candy_count_matrix_test ( ) call candy_count_box_test ( ) ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'candy_count_test():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop end subroutine candy_count_box_test ( ) !*****************************************************************************80 ! !! candy_count_box_test() tests candy_count_box(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 June 2024 ! ! Author: ! ! John Burkardt ! implicit none integer c integer, allocatable :: counts(:) integer i integer l integer m integer n write ( *, '(a)' ) '' write ( *, '(a)' ) 'candy_count_box_test():' write ( *, '(a)' ) ' candy_count_box() counts candy types in a 3D box.' write ( *, '(a)' ) ' There are LxMxN entries in the box A().' write ( *, '(a)' ) ' There are C candy types.' write ( *, '(a)' ) ' Candy types are assigned cyclically to matrix entries:' write ( *, '(a)' ) ' A(I,J,K) = mod ( i + j + k - 3, c ) + 1' write ( *, '(a)' ) ' Count the number of candies of each type.' ! ! Test 1 ! c = 4 l = 7 m = 10 n = 13 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Count using candy_count_box()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C L M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_box ( c, l, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, l, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) c = 4 l = 7 m = 10 n = 13 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Repeat calculation using candy_count_box_sum()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C L M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_box_sum ( c, l, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, l, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) ! ! Test 2 ! c = 5 l = 12 m = 13 n = 19 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Count using candy_count_box()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C L M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_box ( c, l, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, l, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) c = 5 l = 12 m = 13 n = 19 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Repeat calculation using candy_count_box_sum()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C L M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_box_sum ( c, l, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, l, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) return end subroutine candy_count_matrix_test ( ) !*****************************************************************************80 ! !! candy_count_matrix_test() tests candy_count_matrix(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 24 June 2024 ! ! Author: ! ! John Burkardt ! implicit none integer c integer, allocatable :: counts(:) integer i integer m integer n write ( *, '(a)' ) '' write ( *, '(a)' ) 'candy_count_matrix_test():' write ( *, '(a)' ) ' candy_count_matrix() counts candy types in a matrix.' write ( *, '(a)' ) ' There are MxN entries in the matrix A().' write ( *, '(a)' ) ' There are C candy types.' write ( *, '(a)' ) ' Candy types are assigned cyclically to matrix entries:' write ( *, '(a)' ) ' A(I,J) = mod ( i + j - 2, c ) + 1' write ( *, '(a)' ) ' Count the number of candies of each type.' ! ! Test 1 ! c = 4 m = 10 n = 13 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Count using candy_count_matrix()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_matrix ( c, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) c = 4 m = 10 n = 13 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Repeat calculation using candy_count_matrix_sum()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_matrix_sum ( c, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) ! ! Test 2 ! c = 5 m = 13 n = 19 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Count using candy_count_matrix()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_matrix ( c, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) c = 5 m = 13 n = 19 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Repeat calculation using candy_count_matrix_sum()' write ( *, '(a)' ) '' write ( *, '(a)', advance = 'no' ) ' C M N ' do i = 1, c write ( *, '(i4)', advance = 'no' ) i end do write ( *, '(a)' ) '' allocate ( counts(1:c) ) call candy_count_matrix_sum ( c, m, n, counts ) write ( *, '(2x,i2,2x,i2,2x,i2,2x)', advance = 'no' ) c, m, n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) return end subroutine candy_count_vector_test ( ) !*****************************************************************************80 ! !! candy_count_vector_test() tests candy_count_vector(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 23 June 2024 ! ! Author: ! ! John Burkardt ! implicit none integer c integer, allocatable :: counts(:) integer i integer n write ( *, '(a)' ) '' write ( *, '(a)' ) 'candy_count_vector_test():' write ( *, '(a)' ) ' candy_count_vector() counts candy types in a vector.' write ( *, '(a)' ) ' There are N entries in the vector A().' write ( *, '(a)' ) ' There are C candy types.' write ( *, '(a)' ) ' Candy types are assigned cyclically to vector entries:' write ( *, '(a)' ) ' A(I) = mod ( i - 1, c ) + 1' write ( *, '(a)' ) ' Count the number of candies of each type.' c = 4 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Count using candy_count_vector()' write ( *, '(a,i4)' ) ' Fix value of C = ', c write ( *, '(a)' ) ' Consider a range of values of N:' write ( *, '(a)' ) '' write ( *, '(a)' ) ' N #1 #2 #3 #4' write ( *, '(a)' ) '' do n = 3, 10 allocate ( counts(1:c) ) call candy_count_vector ( c, n, counts ) write ( *, '(2x,i2,2x)', advance = 'no' ) n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) end do c = 4 write ( *, '(a)' ) '' write ( *, '(a)' ) ' Repeat calculation, using candy_count_vector_sum()' write ( *, '(a,i4)' ) ' Fix value of C = ', c write ( *, '(a)' ) ' Consider a range of values of N:' write ( *, '(a)' ) '' write ( *, '(a)' ) ' N #1 #2 #3 #4' write ( *, '(a)' ) '' do n = 3, 10 allocate ( counts(1:c) ) call candy_count_vector_sum ( c, n, counts ) write ( *, '(2x,i2,2x)', advance = 'no' ) n do i = 1, c write ( *, '(i4)', advance = 'no' ) counts(i) end do write ( *, '(a)' ) '' deallocate ( counts ) end do return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 August 2021 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end