# include "sandia_rules.hpp" # include "sgmg.hpp" # include # include # include # include int main ( ); void sgmg_index_tests ( double tol ); void sgmg_index_test ( int dim_num, int level_max_min, int level_max_max, int rule[], int growth[], int np[], double p[], void ( *gw_compute_points[] ) ( int order, int np, double p[], double w[] ), double tol ); typedef void ( *GWPointer ) ( int order, int np, double p[], double w[] ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SGMG_INDEX_PRB. // // Discussion: // // SGMG_INDEX_PRB tests SGMG_INDEX. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2009 // // Author: // // John Burkardt // // Reference: // // Fabio Nobile, Raul Tempone, Clayton Webster, // A Sparse Grid Stochastic Collocation Method for Partial Differential // Equations with Random Input Data, // SIAM Journal on Numerical Analysis, // Volume 46, Number 5, 2008, pages 2309-2345. // { double tol; webbur::timestamp ( ); std::cout << "\n"; std::cout << "SGMG_INDEX_PRB\n"; std::cout << " C++ version\n"; // // Compute the INDEX and ORDER arrays which describe, for a given abscissa // in a sparse grid, for each component of that abscissa, the index of the // 1D component as a member of a particular 1D quadrature rule of given ORDER. // sgmg_index_tests ( tol ); // // Terminate. // std::cout << "\n"; std::cout << "SGMG_INDEX_PRB\n"; std::cout << " Normal end of execution.\n"; std::cout << "\n"; webbur::timestamp ( ); return 0; } //****************************************************************************80 void sgmg_index_tests ( double tol ) //****************************************************************************80 // // Purpose: // // SGMG_INDEX_TESTS calls SGMG_INDEX_TEST. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double TOL, a tolerance for point equality. // A value of sqrt ( eps ) is reasonable, and will allow the code to // consolidate points which are equal, or very nearly so. A value of // -1.0, on the other hand, will force the code to use every point, // regardless of duplication. // { int dim_num; int *growth; GWPointer *gw_compute_points; int level_max_max; int level_max_min; int *np; int np_sum; int *order_1d; int order_nd; double *p; int *rule; std::cout << "\n"; std::cout << "SGMG_INDEX_TESTS\n"; std::cout << " Call SGMG_INDEX_TEST with various arguments.\n"; std::cout << "\n"; std::cout << " All tests will use a point equality tolerance of " << tol << "\n"; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 3; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::patterson_lookup_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 6; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 4; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 7; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::laguerre_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 1; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 1.5; rule = new int[dim_num]; rule[0] = 1; rule[1] = 8; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::gen_laguerre_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 2; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 0.5; p[1] = 1.5; rule = new int[dim_num]; rule[0] = 2; rule[1] = 9; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::fejer2_compute_points_np; gw_compute_points[1] = webbur::jacobi_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 2; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 1; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 2.0; rule = new int[dim_num]; rule[0] = 6; rule[1] = 10; growth = new int[dim_num]; growth[0] = 3; growth[1] = 4; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::gen_hermite_compute_points_np; gw_compute_points[1] = webbur::hermite_genz_keister_lookup_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; dim_num = 3; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[3] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 4; rule[2] = 5; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; growth[2] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_points[2] = webbur::hermite_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; // // Repeat, treating rules #2 and #3 as Golub Welsch rules. // dim_num = 3; level_max_min = 0; level_max_max = 2; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 1; rule[1] = 11; rule[2] = 11; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; growth[2] = 3; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_points[2] = webbur::hermite_compute_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; // // Dimension 2, Level 3, Slow Exponential Growth. // dim_num = 2; level_max_min = 3; level_max_max = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 3; rule[1] = 3; growth = new int[dim_num]; growth[0] = 4; growth[1] = 4; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::patterson_lookup_points_np; gw_compute_points[1] = webbur::patterson_lookup_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; // // Dimension 2, Level 3, Moderate Exponential Growth. // dim_num = 2; level_max_min = 3; level_max_max = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; rule = new int[dim_num]; rule[0] = 3; rule[1] = 3; growth = new int[dim_num]; growth[0] = 5; growth[1] = 5; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::patterson_lookup_points_np; gw_compute_points[1] = webbur::patterson_lookup_points_np; sgmg_index_test ( dim_num, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, tol ); delete [] growth; delete [] gw_compute_points; delete [] np; delete [] p; delete [] rule; return; } //***************************************************************************80 void sgmg_index_test ( int dim_num, int level_max_min, int level_max_max, int rule[], int growth[], int np[], double p[], void ( *gw_compute_points[] ) ( int order, int np, double p[], double w[] ), double tol ) //***************************************************************************80 // // Purpose: // // SGMG_INDEX_TEST tests SGMG_INDEX. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEVEL_MAX_MIN, LEVEL_MAX_MAX, the minimum and // maximum values of LEVEL_MAX. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested. // 2, "F2", Fejer Type 2, Open Fully Nested. // 3, "GP", Gauss Patterson, Open Fully Nested. // 4, "GL", Gauss Legendre, Open Weakly Nested. // 5, "GH", Gauss Hermite, Open Weakly Nested. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested. // 7, "LG", Gauss Laguerre, Open Non Nested. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested. // 9, "GJ", Gauss Jacobi, Open Non Nested. // 10, "HGK", Hermite Genz-Keister, Open Fully Nested. // 11, "UO", User supplied Open, presumably Non Nested. // 12, "UC", User supplied Closed, presumably Non Nested. // // Input, int GROWTH[DIM_NUM], the growth rule in each dimension. // 0, "DF", default growth associated with this quadrature rule; // 1, "SL", slow linear, L+1; // 2 "SO", slow linear odd, O=1+2((L+1)/2) // 3, "ML", moderate linear, 2L+1; // 4, "SE", slow exponential; // 5, "ME", moderate exponential; // 6, "FE", full exponential. // // Input, int NP[RULE_NUM], the number of parameters used by each rule. // // Input, double P[sum(NP[*])], the parameters needed by each rule. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int np, double p[], double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, double TOL, a tolerance for point equality. // { double alpha; double beta; int dim; int i; int level_max; int p_index; int point; int point_num; int point_total_num; int *sparse_index; int *sparse_order; int *sparse_unique_index; std::cout << "\n"; std::cout << "SGMG_INDEX_TEST\n"; std::cout << " SGMG_INDEX returns index and order vectors that\n"; std::cout << " identify each point in a multidimensional sparse grid \n"; std::cout << " with mixed factors.\n"; std::cout << "\n"; std::cout << " Each sparse grid is of spatial dimension DIM_NUM,\n"; std::cout << " and is made up of product grids of levels up to LEVEL_MAX.\n"; std::cout << "\n"; std::cout << " Dimension Rule Growth rate Parameters\n"; std::cout << "\n"; p_index = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( rule[dim] == 1 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 2 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 3 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 4 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 5 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 6 ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << "\n"; } else if ( rule[dim] == 7 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 8 ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << "\n"; } else if ( rule[dim] == 9 ) { alpha = p[p_index]; p_index = p_index + 1; beta = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << " " << std::setw(14) << beta << "\n"; } else if ( rule[dim] == 10 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 11 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim]; for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(14) << alpha; } std::cout << "\n"; } else if ( rule[dim] == 12 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim]; for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(14) << alpha; } std::cout << "\n"; } else { std::cerr << "\n"; std::cerr << "SGMG_INDEX_TEST - Fatal error!\n"; std::cerr << " Unexpected value of RULE = " << rule[dim] << "\n"; std::exit ( 1 ); } } for ( level_max = level_max_min; level_max <= level_max_max; level_max++ ) { point_total_num = webbur::sgmg_size_total ( dim_num, level_max, rule, growth ); point_num = webbur::sgmg_size ( dim_num, level_max, rule, np, p, gw_compute_points, tol, growth ); sparse_unique_index = new int[point_total_num]; webbur::sgmg_unique_index ( dim_num, level_max, rule, np, p, gw_compute_points, tol, point_num, point_total_num, growth, sparse_unique_index ); sparse_order = new int[dim_num*point_num]; sparse_index = new int[dim_num*point_num]; webbur::sgmg_index ( dim_num, level_max, rule, point_num, point_total_num, sparse_unique_index, growth, sparse_order, sparse_index ); std::cout << "\n"; std::cout << " For LEVEL_MAX = " << level_max << "\n"; std::cout << "\n"; for ( point = 0; point < point_num; point++ ) { std::cout << " " << std::setw(4) << point << " "; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(3) << sparse_index[dim+point*dim_num] << " /" << std::setw(3) << sparse_order[dim+point*dim_num]; } std::cout << "\n"; } delete [] sparse_index; delete [] sparse_order; delete [] sparse_unique_index; } return; }