28 September 2024 08:22:15 PM nint_exactness_mixed(): C++ version Investigate the polynomial exactness of a multidimensional quadrature rule for a region R = R1 x R2 x ... x RM. Individual rules may be for: Legendre: region: [-1,+1] weight: w(x)=1 rules: Gauss-Legendre, Clenshaw-Curtis, Fejer2, Gauss-Patterson Jacobi: region: [-1,+1] weight: w(x)=(1-x)^alpha (1+x)^beta rules: Gauss-Jacobi Laguerre: region: [0,+oo) weight: w(x)=exp(-x) rules: Gauss-Laguerre Generalized Laguerre: region: [0,+oo) weight: w(x)=x^alpha exp(-x) rules: Generalized Gauss-Laguerre Hermite: region: (-oo,+o) weight: w(x)=exp(-x*x) rules: Gauss-Hermite Generalized Hermite: region: (-oo,+oo) weight: w(x)=|x|^alpha exp(-x*x) rules: generalized Gauss-Hermite nint_exactness_mixed(): User input: Quadrature rule A file = "sparse_grid_mixed_d2_l2_ccxcc_a.txt". Quadrature rule B file = "sparse_grid_mixed_d2_l2_ccxcc_b.txt". Quadrature rule R file = "sparse_grid_mixed_d2_l2_ccxcc_r.txt". Quadrature rule W file = "sparse_grid_mixed_d2_l2_ccxcc_w.txt". Quadrature rule X file = "sparse_grid_mixed_d2_l2_ccxcc_x.txt". Maximum total degree to check = 7 Spatial dimension = 2 Number of points = 25 Analysis of integration region: 0 Gauss Legendre. 1 Gauss Legendre. Error Degree Exponents 2.22045e-16 0 0 0 5.55112e-17 1 1 0 1.11022e-16 1 0 1 3.33067e-16 2 2 0 0 2 1 1 4.996e-16 2 0 2 1.66533e-16 3 3 0 0 3 2 1 0 3 1 2 1.66533e-16 3 0 3 0 4 4 0 0 4 3 1 0 4 2 2 0 4 1 3 0 4 0 4 1.38778e-16 5 5 0 0 5 4 1 0 5 3 2 0 5 2 3 0 5 1 4 1.38778e-16 5 0 5 0.0666667 6 6 0 0 6 5 1 0.666667 6 4 2 0 6 3 3 0.666667 6 2 4 0 6 1 5 0.0666667 6 0 6 8.32667e-17 7 7 0 0 7 6 1 0 7 5 2 0 7 4 3 0 7 3 4 0 7 2 5 0 7 1 6 9.71445e-17 7 0 7 nint_exactness_mixed(): Normal end of execution. 28 September 2024 08:22:15 PM