#! /usr/bin/env python3 # def sierpinski_carpet_chaos_test ( ): #*****************************************************************************80 # ## sierpinski_carpet_chaos_test() tests sierpinski_carpet_chaos(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 19 August 2025 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'sierpinski_carpet_chaos_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' sierpinski_carpet_chaos() uses an iterated map to plot' ) print ( ' the Sierpinski carpet.' ) n = 10000 print ( ' Apply the iteration map', n, 'times.' ) sierpinski_carpet_chaos ( n ) # # Terminate. # print ( '' ) print ( 'sierpinski_carpet_chaos_test():' ) print ( ' Normal end of execution.' ) return def sierpinski_carpet_chaos ( n ): #*****************************************************************************80 # ## sierpinski_carpet_chaos() draws the Sierpinski carpet using an iterated function system. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 19 August 2025 # # Author: # # John Burkardt. # # Reference: # # Scott Bailey, Theodore Kim, Robert Strichartz, # Inside the Levy dragon, # American Mathematical Monthly, # Volume 109, Number 8, October 2002, pages 689-703. # # Michael Barnsley, Alan Sloan, # A Better Way to Compress Images, # Byte Magazine, # Volume 13, Number 1, January 1988, pages 215-224. # # Michael Barnsley, # Fractals Everywhere, # Academic Press, 1988, # ISBN: 0120790696, # LC: QA614.86.B37. # # Michael Barnsley, Lyman Hurd, # Fractal Image Compression, # Peters, 1993, # ISBN: 1568810008, # LC: TA1632.B353 # # Alexander Dewdney, # Mathematical Recreations, # Scientific American, # Volume 262, Number 5, May 1990, pages 126-129. # # Bernt Wahl, Peter VanRoy, Michael Larsen, Eric Kampman, # Exploring Fractals on the Mac, # Addison Wesley, 1995, # ISBN: 0201626306, # LC: QA614.86.W34. # # Input: # # integer n: the number of iterations. # import matplotlib.pyplot as plt import numpy as np plt.clf ( ) # # Define the linear map. # A = np.array ( [ \ [ 0.333, 0.000 ], \ [ 0.000, 0.333 ] ] ) # # Define the translations. # b = np.array ( [ \ [ 0.000, 0.666 ], \ [ 0.333, 0.666 ], \ [ 0.666, 0.666 ], \ [ 0.000, 0.333 ], \ [ 0.666, 0.333 ], \ [ 0.000, 0.000 ], \ [ 0.333, 0.000 ], \ [ 0.666, 0.000 ] ] ) # # Random starting point in the unit square. # x = np.random.random ( size = 2 ) # # Iterate the map n times. # for _ in range ( n ): i = np.random.choice ( [ 0, 1, 2, 3, 4, 5, 6, 7 ] ) x = np.dot ( A, x ) + b[i,:] plt.plot ( x[0], x[1], 'bo', markersize = 1 ) plt.axis ( 'equal' ) filename = 'sierpinski_carpet_chaos.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) sierpinski_carpet_chaos_test ( ) timestamp ( )