
SENSITIVITY ANALYSES AND COMPUTATIONAL SHAPE
OPTIMIZATION FOR INCOMPRESSIBLE FLOWS

John Burkardt

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mathematics

Max D. Gunzburger, Chair
John A. Burns
Eugene M. Cliff

Terry L. Herdman
Janet S. Peterson

May 1995
Blacksburg, Virginia

Keywords: Optimization, Fluid Flow
Copyright 1995, John Burkardt

ABSTRACT

We consider the optimization of a cost functional defined for a fluid flowing through a
channel. Parameters control the shape of an obstruction in the flow, and the strength of
the inflow. The problem is discretized using finite elements. Optimization algorithms are
considered which use either finite differences or sensitivities to estimate the gradient of the
cost functional. Problems of scaling, local minimization, and cost functional regularization
are considered. Methods of improving the efficiency of the algorithm are proposed.

1

ACKNOWLEDGEMENTS

I am grateful for the support of the Air Force Office of Scientific Research, through contracts

93-1-0061, 93-1-0280 and F49620-92-J-0261, which allowed me to carry out the research

reported in this document.

I wish to thank the following persons:

• Avner Friedman of the IMA in Minneapolis, and Ken Bowers and John Lund of the

Mathematics Department of the University of Montana, who sponsored conferences at

which some of the ideas in this thesis were presented.

• My colleague Jeff Borggaard, for numerous informal discussions on the role and mean-

ing of sensitivities, programming problems, scientific visualization, and the subtleties

of LATEX and psfig.

• Rossi Karamikhova, who shares the agony of preparing a dissertation, for her encour-

agement at several crucial moments.

Thanks are also due to my committee members, John Burns, Gene Cliff, and Terry Herdman,

who welcomed me back into graduate school and, with various kindnesses, encouraged me

to continue.

I express warm gratitude to Max Gunzburger, my adviser, who waited patiently as I pro-

gressed at my own, belabored speed, always prepared to consider any difficulties I had run

into and offer help and insight.

2

I offer special thanks to Janet Peterson, who convinced me, despite my great misgivings,

to return to graduate school and finish my degree. She went out of her way to ensure my

admission, despite numerous lost documents; she guided my choice of classes; she urged me

to begin writing as early as possible, and read several drafts; and she simply never doubted

that I was going to finish.

Finally, I wish to thank my mother and father, who always believed in the value of learning,

who were patiently supportive through my prolonged and discursive education, and who are

possibly more excited about my degree than if they had gotten one themselves.

3

DEDICATION

My sister Barbara was born when I was 11, and she spent most of her early years riding

on my shoulders. When our family moved across the country in a trailer, it was because of

her that I got to sleep in the lowest, biggest bed (and it was over me that she had to crawl

when she managed to fall out of that bed). When she got too big to carry on my shoulders,

I used to swing her around, first by her arms, and then by her legs, and I only remember

dropping her once. When I went to high school, she used to wait for me by the front door in

the afternoon. When I went off to college, I left her on her own, but she turned out pretty

well anyway. Now that she works at Hershey, she’s taking care of me with regular shipments

of chocolate.

In honor of our long happy years together, this thesis is dedicated to my dear sister Barbara.

4

Contents

1 THE FOREBODY SIMULATOR PROBLEM 1

1.1 Introduction . 1

1.2 The Physical Problem: A Forebody Simulator 2

1.3 An Abstract Model of the Forebody Simulator 3

2 A PARAMETERIZED CLASS OF FLOW PROBLEMS 7

2.1 Introduction . 7

2.2 How the Parameters Enter the Problem . 7

2.3 The Reynolds Number . 10

2.4 Specifying the Inflow Function . 11

2.5 Specifying the Bump Shape . 12

2.6 Example: A Five Parameter Problem . 13

3 CONTINUOUS FLUID FLOW EQUATIONS 16

3.1 Introduction . 16

3.2 The Navier Stokes Equations . 17

5

3.3 Poiseuille Flow . 20

3.4 Picard Iteration for the Continuous Navier Stokes Equations 21

3.5 Newton’s Method for the Continuous Navier Stokes Equations 24

4 DISCRETE FLUID FLOW EQUATIONS 29

4.1 Introduction . 29

4.2 Derivation of the Finite Element Equations 30

4.3 Representation of the Solution . 31

4.4 Discretizing the Geometry . 32

4.5 Choosing a Master Element . 33

4.6 Constructing Basis Functions . 36

4.7 Discretizing the Navier Stokes Equations . 38

4.8 Discretizing the Boundary Conditions . 41

4.9 Estimating the Solution at Nearby Parameters 43

4.10 Picard Iteration Applied to the Discrete Problem 44

4.11 The Newton Method Applied to the Discrete Problem 46

4.12 The Approximation of the Continuous Problem 49

5 STATE SENSITIVITIES WITH RESPECT TO A PARAMETER 53

5.1 Introduction . 53

5.2 Questions About the Solutions of Parameterized Problems 54

6

5.3 The Sensitivity of a Continuous Solution . 56

5.4 The Sensitivity of a Discrete Solution . 58

5.5 The Discretized Sensitivity of a Solution . 62

5.6 Example: An Explicit Parameter in a Linear ODE 64

5.7 Sensitivities for Geometric Parameters . 66

6 SENSITIVITIES FOR AN EXPLICIT PARAMETER 68

6.1 Introduction . 68

6.2 Re-Sensitivity Equations . 69

6.3 λ-Sensitivity Equations . 72

6.4 Discretization and Differentiation May Commute 73

6.5 Exact Example: Poiseuille Sensitivities . 76

6.6 Computational Example: Flow Past a Bump 77

6.7 Comparison of Sensitivities with Finite Difference Estimates 79

7 SENSITIVITIES FOR AN IMPLICIT PARAMETER 81

7.1 Introduction . 81

7.2 The Continuous α-Sensitivity Equations . 82

7.3 The Discrete α-Sensitivity Equations . 87

7.4 The Discretized α-Sensitivity Equations . 90

7.5 Exact Example: Shape Sensitivity of Poiseuille Flow 91

7

7.6 Computational Example: Flow Past a Bump 94

7.7 Comparison of Finite Differences and Discretized Sensitivities 95

8 FINITE DIFFERENCE ESTIMATES OF SENSITIVITIES 97

8.1 Introduction . 97

8.2 Finite Coefficient Differences and Finite Physical Differences 98

8.3 Differencing with Respect to Geometric Parameters 101

8.4 Finite Differences for a Discretized Problem 105

8.5 Sensitivity Approximation with Decreasing h 109

9 OPTIMIZATION AND THE COST FUNCTIONAL 113

9.1 Introduction . 113

9.2 Local Minimizers in Computational Optimization 114

9.3 The Optimization Algorithm . 117

9.4 Defining a Cost Functional . 119

9.5 The Role of the Cost Functional in Optimization 121

9.6 The Cost Functional as a Function of the Problem Parameters 122

9.7 Computing the Gradient of the Cost Functional 123

9.8 The Formula for the Hessian . 126

9.9 Optimization With Approximate Gradients 127

9.10 Example: A Cost Functional Using Horizontal Velocities Only 128

8

9.11 Regularization of Cost Functionals . 131

10 A POORLY SCALED OPTIMIZATION 133

10.1 Introduction . 133

10.2 A Poor Optimization Using Discretized Sensitivities 133

10.3 Approximating the Cost Gradient with Finite Differences 138

10.4 Approximating the Sensitivities with Finite Differences 139

10.5 Investigating the Poor Convergence . 141

11 A DISCRETIZED SENSITIVITY FAILURE 145

11.1 Introduction . 145

11.2 A Stalled Optimization . 146

11.3 Checking the Results Along a Line . 148

11.4 Checking the Results in a Plane . 151

12 A LOCAL MINIMIZER 159

12.1 Introduction . 159

12.2 Optimization Using Finite Difference Gradients 160

12.3 Checking for Local Minimization . 162

12.4 The Possibility of Spurious Solutions . 166

13 OPTIMIZATION WITH A PENALTY FUNCTIONAL 169

9

13.1 Introduction . 169

13.2 Regularizing the Cost Functional . 170

13.3 Reaching the Global Minimizer . 173

14 FLOWS AT HIGHER REYNOLDS NUMBERS 176

14.1 Introduction . 176

14.2 “Local” Influences Become Global . 176

14.3 Getting a Starting Point . 180

15 APPROXIMATING NONFEASIBLE TARGETS 182

15.1 Introduction . 182

15.2 Example 1: Differing One-Parameter Bump Shapes 183

15.3 Example 2: Differing Three-Parameter Bump Shapes 185

15.4 Example 3: Three-Parameter Inflows . 191

16 EFFICIENT SOLUTION OF THE OPTIMIZATION PROBLEM 196

16.1 Introduction . 196

16.2 A Standard Test Problem and Algorithm . 197

16.3 Expensive Computational Tasks . 198

16.4 A Comparison of Algorithms at Re = 1 . 200

16.5 A Comparison of Algorithms at Re = 100 203

16.6 Appropriate Newton Tolerances . 204

10

17 THE COMPUTATIONAL ALGORITHM 209

17.1 Introduction . 209

17.2 Black Box Versus One-Shot Methods . 209

17.3 Black Box Flow Optimization Algorithm . 210

17.4 User Input . 212

17.4.1 Physical Problem Input . 212

17.4.2 Discretization Input . 213

17.4.3 Cost Functional Input . 214

17.4.4 Initial Parameter Input . 214

17.4.5 Simple and Newton Iteration Input 215

17.4.6 Cost Gradient Input . 215

17.4.7 Optimization Input . 216

17.5 Algorithm Details . 216

17.6 Computational Optimization . 219

18 SUMMARY AND CONCLUSIONS 222

11

List of Figures

1.1 An engine and forebody simulator, in a wind tunnel. 3

1.2 An abstract model of the forebody simulator problem. 5

2.1 An inflow specified with eight parameters. 11

2.2 A bump specified with two parameters. 12

2.3 The flow problem (λ, α1, α2, α3, Re) = (1.0, 1.0, 0.5, 1.5, 10.0). 13

2.4 The velocity solution for the five parameter problem. 14

2.5 Contours of the pressure solution for the five parameter problem. 14

3.1 Velocity vectors and pressure contour lines for Poiseuille flow. 21

4.1 Decomposition of a flow region into nodes. 33

4.2 A Taylor Hood element. 34

4.3 Decomposition of a flow region into elements. 36

6.1 Discrete velocity sensitivity with respect to the inflow parameter λ. 77

6.2 Discrete velocity sensitivity with respect to the Re parameter. 78

12

7.1 Estimating the solution at a moving point. 85

7.2 How an integral changes when the integrand and region both vary. 88

7.3 Discretized velocity α-sensitivity. 94

8.1 Discretized α-sensitivity nodal values. 100

8.2 The corresponding α-finite difference nodal values. 101

8.3 Adjusted finite difference α-sensitivity nodal values. 108

8.4 Discretized sensitivity/adjusted finite coefficient difference discrepancies. . . 111

10.1 The flow region and velocity field for the target parameters. 134

10.2 The bump and velocity field for the target parameters. 136

10.3 The computed bump and velocity field using discretized sensitivities. 137

10.4 The computed bump and velocity field using a finite difference cost gradient. 140

10.5 The bump and velocity using finite differences for sensitivities. 142

10.6 Discretized velocity α2-sensitivity field. 143

11.1 The target flow region, velocity field, and profile line. 146

11.2 The flow produced with discretized sensitivities. 148

11.3 Values of J h
2 (β(S)) along a line. 149

11.4 Values of (∇J2)h(β(S)) ∗ dS along a line. 150

11.5 A contour map of the cost functional J h
2 in a plane. 152

11.6 J h
2 gradient directions by discretized sensitivities. 154

13

11.7 J h
2 gradient directions by finite difference sensitivities. 155

11.8 Comparison of J h
2 gradient directions. 156

12.1 The local optimizing flow. 161

12.2 Values of J h
2 on a line between the local and global minimizers. 163

12.3 Contours of J h
2 on a plane containing the two minimizers. 164

12.4 Contours and normalized gradients of J h
2 . 165

12.5 The flow for h = 0.166. 167

12.6 The flow for h = 0.125. 168

13.1 Contours for cost functional J h
3 with ε = 0.0002. 172

13.2 Values of J h
2 during the optimization of J h

3 175

14.1 Velocity sensitivities for Re = 1. 178

14.2 Velocity sensitivities for Re = 10. 178

14.3 Velocity sensitivities for Re = 100. 179

14.4 Velocity sensitivities for Re = 500. 179

14.5 Velocity sensitivities for Re = 1000. 179

15.1 Example 1: The target flow. 184

15.2 Example 1: The optimizing flow. 185

15.3 Example 1: Comparison of target and achieved flows. 186

15.4 Example 2: The target flow. 187

14

15.5 Example 2: The optimizing flow. 187

15.6 Example 2: Comparison of the target and minimizing flows. 189

15.7 Example 2: Comparison of the target and linear interpolant flows. 190

15.8 Example 3: The “artificial” flow. 192

15.9 Example 3: The optimizing flow, near the profile line. 193

15.10Example 3: The optimizing inflow (includes outflow!). 194

15.11Example 3: The match between target and desired flows. 195

16.1 CPU time as a function of Newton tolerance, Re = 1. 207

15

List of Tables

6.1 Finite difference check of λ-sensitivities. 79

6.2 Finite difference check of Re-sensitivities. 79

7.1 Finite difference check of discretized α-sensitivities. 95

8.1 Finite coefficient differences versus discretized α-sensitivities. 110

9.1 Cost gradients via discretized sensitivities and finite differences. 130

10.1 Optimization results for J h
1 , using discretized sensitivities. 135

10.2 Results for J h
1 , using finite cost gradient differences. 139

10.3 Results for J h
1 , using finite coefficient differences. 141

11.1 Optimization results for J h
2 . 147

11.2 Values of J h
2 along a line in parameter space. 158

12.1 Results for J h
2 , using finite difference gradients. 160

12.2 Investigating the local minimizer with finer meshes. 167

16

13.1 Optimization results on J h
3 for various values of ε. 171

13.2 Results at the end of each stage of the three-stage optimization. 174

13.3 Results at the end of each stage of the two-stage optimization. 175

15.1 Example 1: Optimization results. 184

15.2 Example 2: Optimization results. 188

15.3 Example 3: Optimization results. 191

16.1 Matrix work required for various values of h. 199

16.2 Work carried out for various algorithms, Re = 1. 201

16.3 Work carried out for various algorithms, Re = 100. 203

16.4 Work carried out for various Newton tolerances, Re = 1. 206

16.5 Work carried out for various Newton tolerances, Re = 100. 208

17

Chapter 1

THE FOREBODY SIMULATOR
PROBLEM

1.1 Introduction

In this chapter, we introduce an engineering problem that is an inspiration for our mathe-

matical work. The forebody simulator problem seeks a simple obstacle that can be placed in

a small wind tunnel so as to disturb the air flow in the same way that a given aircraft would.

Engineers can seek answers to this question by experiment and measurement. But new and

general insights may be found by applying mathematical analysis to this problem. For a

mathematician, the first step in studying a physical problem involves creating a model, that

is, an abstract version of the problem that is simple enough to analyze, but which retains

the important features of the original.

The modeling process begins with questions about how the geometry of the physical problem

will be simplified and represented in the abstract problem. For the forebody simulator

problem, we will replace the complicated three-dimensional geometry of the wind tunnel by

a simple two-dimensional channel. The obstacle to be placed in the flow will be represented

by a mathematical curve, which itself will be describable by just a few numbers. After we

1

have specified the geometry of our abstract problem, we will be ready for the question of

how to determine the behavior of the fluid as it moves inside the region.

1.2 The Physical Problem: A Forebody Simulator

A motivating problem for this work comes from the field of aircraft engine development.

Before attaching an experimental engine to an aircraft and testing it in flight, it is vital to

gain some idea of how the engine will perform, by placing it in a wind tunnel and subjecting

it to a variety of wind conditions. Wind tunnels cannot be built large enough to hold an

entire aircraft, but for studies of engine performance, it is enough if the wind tunnel can hold

the “forebody”, that is, the portion of the aircraft up to and including the engine. However,

there are aircraft so large that even the forebody cannot fit into a wind tunnel.

Out of this necessity, engineers have designed forebody simulators, which are typically short,

stubby shapes that fit within the wind tunnel and roughly reproduce the flow disturbances

of the larger forebody. The design of these simulators is generally done by trial and error.

A mockup is constructed out of plywood or steel, attached to the engine and placed in the

wind tunnel, as shown in Figure 1.1. Measurements of the flow going into the engine are

compared with rough data for the true forebody. If these measurements are found to be close

enough, then the wind tunnel tests of the engine may proceed. Otherwise, a new mockup

is designed, with modifications made according to the intuition of the engineers as to what

would reduce the discrepancies with the desired flow profile.

Naturally, this method of designing a forebody simulator is crude, tedious, and expensive.

Engine designers want to build and test their preliminary forebody simulators on a computer.

However, while there is much experience with computing the behavior of air flow in a given,

fixed region, it is a much more difficult matter to attempt to analyze the flow over every

2

Figure 1.1: An engine and forebody simulator, in a wind tunnel.

possible region, in order to find the design with the best properties.

We will be particularly interested in considering the difficulties and problems that can occur

in the various stages of modeling this problem, discretizing it, and constructing a suitable

computational algorithm for its solution.

A complete description of the forebody simulator problem is available in Huddleston [18]

and in Borggaard, Burns, Cliff and Gunzburger [2].

1.3 An Abstract Model of the Forebody Simulator

We don’t want to try to solve the engineer’s original problem. We are interested in making a

much simplified version that can be formulated mathematically, and solved computationally.

We hope that we retain enough of the “interesting” features so that our results are still

applicable.

We simplify the geometry of the problem by moving to two dimensions. We replace the

complicated structure of the wind tunnel by a simple channel with parallel sides. We assume

3

that there is a small bump or obstruction placed somewhere along the bottom of the channel.

The shape and size of this bump will be determined by the values of a few numbers, which

we will call “bump parameters”. In particular, if the bump parameters are all zero, there

will be no bump.

As for the fluid flowing in this channel, we will assume that it is incompressible, has a nonzero

viscosity, and flows in a steady fashion.

We must now consider the boundary conditions for this flow, that is, its behavior along the

walls and openings of the flow region. The top and bottom of the channel will be impermeable

walls. Immediately next to walls, there is no fluid motion at all. We will assume that the

fluid enters the region on the left hand side, and that the fluid velocities along this boundary

are completely specified by some “inflow function”. This inflow function, in turn, should be

describable by the values of a few “inflow parameters”. Again, we assume the convention

that if all the inflow parameters are zero, no fluid enters the region. The right side of the

region, where the flow exits, is called the “outflow” side. For mathematical reasons, we

will need to assume that the flow has “settled down” at this point, which will allow us to

specify that the vertical velocity is zero, and the horizontal velocity does not change along

the horizontal direction. The simplified model of our problem is shown in Figure 1.2.

We haven’t specified the number of bump and inflow parameters, their values, or the exact

nature of their influence on the bump shape and inflow function. In fact, we intend to leave

these quantities unspecified for now. Our original problem required us to find the shape,

from among all possible shapes, which had the best behavior. In our framework, instead of

considering all possible shapes, we restrict ourselves to some particular space or family of

parameterizable curves to represent our bump. Any curve which is an element of this space

may then be specified by giving the values for the bump parameters.

4

Figure 1.2: An abstract model of the forebody simulator problem.

Once we have chosen values for the bump and inflow parameters (and for the Reynolds

number, to be discussed in the next chapter), the flow problem is fully described. As long as

the inflow velocities are not too large relative to the size of the region and the fluid viscosity,

there will be exactly one corresponding flow solution, that is, just one way that the fluid will

move through the region.

This solution can be represented by horizontal and vertical velocities u and v, and a pressure

p. These quantities are called the “state variables”. For our problem, we expect these

quantities to vary continuously, and in fact, differentiably with position throughout the flow

region. Because we have specified steady flow, however, the flow quantities will not depend

on time.

In the interior of the region, usually right behind the bump, we will place a “profile line”,

along which we will assume that measurements of all the flow quantities can be made. This

profile line corresponds to the engine inlet in the original free jet problem. We may assume

that we have been given a set of ideal or “target” values for the flow variables along this

line, and that we are seeking a flow whose measurements along the profile line reproduce, or

5

approximate, those target measurements.

The total discrepancy between the target measurements and the measurements correspond-

ing to any particular bump will be summarized in a single number which is called the “cost

functional”. In particular, if we are able to achieve a perfect match, the corresponding cost

would be zero. We can thus describe our effort more abstractly, as seeking to minimize the

cost functional, given that we are allowed to vary the parameters.

Our method of producing the flow which best matches the given profile will be contained

in a separate optimization algorithm. We will give this algorithm an initial guess for the

best set of parameters, and it will give us a new set of parameters to investigate. The

algorithm then expects us to evaluate the cost for the fluid flow that corresponds to this

set of parameters. The optimization algorithm will usually also need derivative information

about the cost functional, that is, information about the partial derivatives of the cost with

respect to the parameters. We will see that producing such information accurately and

efficiently is a difficult task.

In order to evaluate the cost, of course, we must solve the fluid flow problem determined by

the given parameters. It should be clear, then, that we will need to be able to solve many

fluid flow problems. In fact, we will find that the underlying fluid flow solutions are the

overwhelming expense of our algorithm.

We shall now consider the form of the equations involved in the fluid flow problem, and

practical methods of representing and solving such a problem.

6

Chapter 2

A PARAMETERIZED CLASS OF
FLOW PROBLEMS

2.1 Introduction

In our research, we will look at a range of flow problems. These problems will have a great

deal in common, and will differ only in a few small ways. In this chapter, we will define

precisely how we generate the different problems, and how we can specify a few numbers

that will completely describe any particular flow problem we are interested in.

This specification will consist of giving the number and values of a set of flow parameters,

which will in turn control the Reynolds number, the inflow strength, and the shape of an

obstructing bump. After describing how each of these parameters enters the problem, we

finish by displaying a sample problem.

2.2 How the Parameters Enter the Problem

We begin by specifying the parts of our flow problem that will never change. Our flow

region, which we will symbolize by Ω, will be a rectangular channel, with opposite corners

at (0, 0) and (xmax, ymax). A bump of an unspecified shape lies along the bottom of this

7

channel, extending from (1, 0) to (3, 0). Over this range, the height of the bump is given by

y = Bump(x, α), where the Bump function has a simple form that depends on one or more

parameters that we call α. We prefer to think that the Bump function is always nonnegative,

but this is not essential to our work. In fact, it will be more convenient to allow Bump to

take on negative values as well. In such a case, negative values of α would mean that our

region would actually be enlarged, as the bottom of the channel is “hollowed out”.

The boundary of our flow region, which we may symbolize by Γ, is simply the top, bottom,

left and right extremities. The bottom extremity is not rectilinear, since it includes the

surface of the bump. The left extremity may be called the inflow boundary, and the right

extremity the outflow boundary.

The boundary conditions on u and v, the horizontal and vertical components of the velocity

function, and on p, the pressure, will have the general form:

• v(x, y) = 0 on the boundary;

• u(0, y) = Inflow(y, λ) where the Inflow function depends on one or more parameters

λ, as discussed in Section 2.4;

• u(x, y) = 0 on the upper and lower walls and the surface of the bump;

• ∂u

∂n
(xmax, y) = 0;

• p(xmax, ymax) = 0.

Finally, the fluid flowing in the channel has a positive kinematic viscosity ν which we have

not yet specified. For convenience, instead of specifying ν, we will specify Re which we

take to be 1/ν, and which, if the equations are appropriately nondimensionalized, we may

call the Reynolds number. Specifying a particular positive value of Re is then equivalent to

specifying ν.

8

We should note that a more common definition for the Reynolds number, at least among

experimentalists, involves the ratio:

Re ≡ ρvl

µ
(2.1)

where ρ is a typical density, v a typical velocity, l a typical length, and µ the absolute

viscosity. Our kinematic viscosity ν is equal to
µ

ρ
. Since the velocity does not appear in

our version of the Reynolds number, if we wish to translate our results in terms of the

experimentalist Reynolds number, we must assume that a velocity on the order of 1 is a

“typical velocity”.

If we agree that all our flow problems will have these characteristics, then to completely

specify a particular problem, we simply need to specify the value of Re, the number of

parameters λ and α that we will use, the values of those parameters, and their meanings,

that is, how the parameters are used to determine the Bump and Inflow functions.

Typically, when we wish to define a particular class of problems, we will specify a form for

the Bump and Inflow functions, and the number of parameters to use for each; but we are

not yet ready to specify fixed numerical values of λ, α and Re.

For the moment, we will assume that our choice of values for these parameters is uncon-

strained; that is, any set of parameter values is worth considering, in the sense that it

corresponds to a physically meaningful problem. Generally, this sweeping assumption is not

strictly true. We won’t want negative Reynolds numbers, or bumps that protrude through

the top of the region, or inflow functions that actually flow out! However, we will proceed

as though these undesirable situations are unlikely to crop up in any of our problems.

As long as a choice of parameter values represents a legitimate problem, that is, a problem

for which a physically sensible flow solution can be computed, then we call the values a

feasible set of parameter values (meaning that it results in a meaningful flow) and we call

9

the corresponding flow solution a feasible flow solution (meaning that it is the result of a

particular choice of parameter values).

By using parameters, we have (partially) discretized the specification of the problem. Instead

of considering absolutely arbitrary bump and inflow shapes, we only consider various numbers

as possible values for the bump and inflow parameters. Instead of ranging over function

spaces, we range over Rn. This makes it easy to define a particular problem, and search

among a family of related problems.

We will now briefly discuss the meaning of the three different sets of parameters.

2.3 The Reynolds Number

The Reynolds number Re will appear in the Navier Stokes equations, which determine the

fluid flow in our region. These equations will not be discussed until Chapter 3, but we wish

to comment here on the role that the Reynolds number plays as a parameter.

The Navier Stokes equations involve a balance between “diffusion” and “convection” terms.

The diffusion terms are linear and, by themselves, would tend to produce a simple flow.

The convection terms are nonlinear, harder to solve, and introduce complications into the

flow. The Reynolds number multiplies the convection terms, and hence controls the relative

strength of this disruptive nonlinear influence.

In a diffusion-dominated flow, disturbances tend to die out, dampened by the fluid viscosity.

Imagine, for instance, how the behavior of ripples in a pond would change if we replaced the

water by cold maple syrup. Such a “thick” fluid tends to move in a very smooth and stable

way, changing only slightly in response to small changes in local conditions, the boundary

conditions, or the shape of the region.

10

Figure 2.1: An inflow specified with eight parameters.

As Re increases, the convection terms dominate the flow. Now the flow field may change

greatly over a small spatial region. The flow field solution is much more sensitive to changes

in the problem conditions. Because of these facts, high Reynolds number flow problems are

intrinsically harder to solve accurately.

We will not be solving the Navier Stokes equations directly, but the discretized version that

we will end up working with inherits many of these characteristics. In particular, we will

find that solutions to the discretized problem get very hard to compute for large values of

Re. In some cases, we will only be able to find such a solution by solving a series of problems

at lower values of Re, building up to a solution at the desired value of Re.

2.4 Specifying the Inflow Function

The next item to consider is the Inflow function, which specifies the boundary condition to

be applied to the horizontal velocity u along the left opening of the channel. While, in a real

situation, there might be almost any sort of inflow data, we will want to set up a scheme

where just a few numbers, represented by λ, are enough to specify the value of the inflow

11

Figure 2.2: A bump specified with two parameters.

data at every point along the opening.

A natural way to do this is to let the values of λ represent the value of the inflow data

at regularly spaced points along the opening, and then “fill in” the behavior of the func-

tion at other points in some simple way. While a wide variety of polynomials or piecewise

polynomials may be used for this purpose, we will generally use cubic splines [9].

In Figure 2.1 we give an example of an inflow function which has been constructed by

specifying eight desired values, which are listed in the figure. The intermediate behavior of

the function is entirely determined by this data, and by the condition that the function be

zero at both endpoints.

2.5 Specifying the Bump Shape

It remains for us to show how the height of the bump is to be described, that is, the form of

the function y = Bump(x, α). The fact that we require the bump height y to be an explicit

function of x means we have ruled out bumps which “fold over” or otherwise violate the

requirement that the bump height be parameterizable in terms of x.

We represent the bump height by setting it to zero at its endpoints, and specifying its

value at regularly spaced points in between. We symbolize this set of values by α. We

then construct the appropriate interpolating function so that we can produce values of the

12

Figure 2.3: The flow problem (λ, α1, α2, α3, Re) = (1.0, 1.0, 0.5, 1.5, 10.0).
The flow region actually extends further to the right.

bump at any point over the interval defined by its endpoints. Usually we will take this

interpolating function to be a cubic spline, although we may also choose piecewise linear

or piecewise quadratic functions. In Figure 2.2 we show the generation of a typical bump

shape, requiring the specification of two parameters, where interpolation by a cubic spline

was used.

2.6 Example: A Five Parameter Problem

Now that we have detailed how any particular problem can be specified by giving the value of

Re, and the number and values of the parameters α and λ, we will show a specific example.

The inflow boundary condition will be described by a single value λ = 1.0, the bump by

the three values, α = (1.0, 0.5, 1.5), and the Reynolds number will be set to 10, so that the

problem data can be summarized as:

(λ, α1, α2, α3, Re) = (1.0, 1.0, 0.5, 1.5, 10.0). (2.2)

A schematic diagram of the corresponding problem is displayed in Figure 2.3.

13

Figure 2.4: The velocity solution for the five parameter problem.

Figure 2.5: Contours of the pressure solution for the five parameter problem.

14

Once we have defined the problem, the Navier Stokes equations, which we discuss shortly,

will determine the behavior of the fluid at any point within the flow region. To emphasize this

point, Figures 2.4 and 2.5 display the velocity and pressure solution fields of an approximate

solution of the Navier Stokes equations, for the data we have just discussed. From the plots,

the influence of the bump on the flow should be quite clear.

Now that we understand how the parameters will define the problem, it is time to turn to

the question of how the problem can be solved, that is, how we can come up with values of

the velocity and pressure that satisfy the boundary conditions and the physical laws that

govern fluid behavior. To begin, we will look at the differential equations that describe the

behavior of an incompressible viscous fluid.

15

Chapter 3

CONTINUOUS FLUID FLOW
EQUATIONS

3.1 Introduction

In this chapter, we describe the Navier Stokes equations. These equations constrain, and

generally determine, the behavior of the fluid flow in a given problem. In particular, they

apply to the parameterized class of flow problems discussed in Chapter 2.

We examine the solution of a special example of our flow problems, called Poiseuille flow,

which is useful in checking the correctness of the computational algorithms, and in under-

standing the behavior of flow solutions to problems with no bump, or with relatively low

inflow velocity conditions.

We note that most flow problems are very difficult to solve. We then discuss Newton’s

method, which shows us how to turn a hard, nonlinear problem, into an easier sequence of

linear problems.

16

3.2 The Navier Stokes Equations

The steady incompressible flow of a viscous fluid in a two dimensional region may be com-

pletely described by three functions of position: the horizontal velocity u(x, y), vertical

velocity v(x, y), and pressure p(x, y). The quantities u and v are really vector components

of a single physical velocity which we may alternately write as u.

We may refer to these functions as the flow field solution. They are an example of a set of

state variables, that is, information which completely describes the state of some physical

system.

Because they represent the behavior of a physical fluid, the functions u, v, and p obey

certain physical laws. Given our assumptions about the problem, we will find it appropri-

ate to assume that these flow functions satisfy the Navier Stokes equations for stationary

incompressible viscous flow at every point (x, y) within the flow region Ω.

A compact vector form of these equations may be written as:

−∆u +Re(u · ∇u +∇p) = 0 (3.1)

∇ · u = 0 (3.2)

while we will prefer the verbose, but more readily grasped scalar version of the equations:

−(
∂2u

∂x2
+
∂2u

∂y2
) +Re(u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
) = 0 (3.3)

−(
∂2v

∂x2
+
∂2v

∂y2
) +Re(u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
) = 0 (3.4)

∂u

∂x
+
∂v

∂y
= 0 (3.5)

Because they constrain the behavior of state variables, these equations may be referred to

as the state equations. The first pair of equations are sometimes referred to as the equations

17

of motion or the horizontal and vertical momentum equations. The last equation is the

continuity or incompressibility equation. The quantity Re is the Reynolds number.

While the Navier Stokes equations constrain the behavior of the fluid within the flow region, a

flow problem is only completely described when the Reynolds number and certain information

about the flow along the boundary is given as well. In Chapter 2 we discussed the sort of

boundary information that would be supplied for our problems, and we will assume that the

boundary information and the value of Re necessary to complete the problem have all been

specified.

We have said that the Navier Stokes equations constrain any flow solution. That is, if there

is a solution to the given problem, then it must satisfy the Navier Stokes equations. However,

we are interested in knowing more about the behavior of possible solutions. Our questions

include existence, uniqueness, and continuous dependence on data, or more precisely:

• Is there always at least one solution to a given problem?

• Is the solution to a given problem unique?

• Does the solution depend continuously, or even differentiably, on the boundary data

and the Reynolds number?

For arbitrary boundary data, we cannot guarantee anything. Only if the boundary data

satisfy certain “consistency” requirements, and if the region itself is bounded with a “rea-

sonably smooth” boundary, can we guarantee the existence of at least one flow solution for

any positive Reynolds number. It is easy to see that some constraints must be placed on

boundary conditions. Otherwise, for instance, we could specify that fluid enter the region

from all sides, an impossibility for incompressible flow.

If, furthermore, the Reynolds number is sufficiently small, then we can also guarantee that

18

there is just one such flow solution.

Once the Reynolds number reaches a certain critical value, then uniqueness can no longer

be guaranteed. If we consider the graph of the flow solution versus Reynolds number, then

the graph may split or bifurcate into two or more distinct solution branches once a critical

Reynolds value is reached. Such splitting can recur at certain higher Reynolds numbers as

well.

However, below the first critical Reynolds value, and on any single solution branch, the flow

solution will be continuously differentiable in terms of the Reynolds number.

For a summary of what is known about existence, uniqueness, and continuous dependence

on the Reynolds number and boundary conditions, see Ladyzhenskaya [21] or Temam [25].

We will not delve further into these questions of existence and uniqueness. Instead, we will

assume that when we pose one of our flow problems, there will be, at least locally, exactly one

flow solution, which will depend smoothly on each of the problem parameters. We still face

the daunting problem of producing that solution. To get an explicit formula for a solution to

one of our problems requires the solution of a set of nonlinear partial differential equations.

Even for the simple problems we will consider, there is no known method of producing such

a solution. When faced with a general problem, then, we will find that we must turn to

approximate methods in order to produce any useful information about a solution.

Before considering such methods, we turn to a special problem, for which an exact solution

of the Navier Stokes equations is known.

19

3.3 Poiseuille Flow

Consider a horizontal channel (with no obstruction) of constant height ymax, and length

xmax. Suppose that an incompressible, viscous fluid moves through the channel in accordance

with the steady Navier Stokes equations. Suppose that the boundary conditions imposed on

the flow are:

v(x, y) = 0 along the boundary;

u(0, y) = λy(ymax− y) along the inflow boundary;

u(x, y) = 0 along the upper and lower walls;

∂u

∂n
(xmax, y) = 0 along the outflow boundary;

p(xmax, ymax) = 0.

Then the Navier Stokes equations and boundary conditions are exactly satisfied by the

following set of state variable functions:

u(x, y) = λy(ymax− y) (3.6)

v(x, y) = 0 (3.7)

p(x, y) = 2λ(xmax− x)/Re. (3.8)

This exact solution can be used as a very basic test of the computational correctness of our

approximate Navier Stokes solver. The solution also makes it easy to compute the explicit

form of the associated cost function, and gradients of the cost function with respect to the

parameters λ and Re, and to compare them to the results arrived at by computation. Finally,

at least for small values of Re and the inflow, we can introduce a small bump into the channel

and still have the flow tend to return to the Poiseuille solution a short distance downstream

from the bump.

20

Figure 3.1: Velocity vectors and pressure contour lines for Poiseuille flow.

In some ways, the Poiseuille solution is not an ideal example. It’s much too simple. It is

very carefully constructed so that the nonlinear terms in the Navier Stokes equation exactly

cancel out. This means that we will not see some of the nonlinear behavior that makes a

general fluid flow problem so hard to solve.

3.4 Picard Iteration for the Continuous Navier Stokes

Equations

Since there are no practical direct methods of solving the Navier Stokes equations over an ar-

bitrary region, we need to consider methods of computing approximate solutions. While even-

tually we will turn to methods of discretization, we first consider several iterative schemes,

which work directly with the original, continuous problem.

The primary appeal of these iterative schemes is that they replace a hard problem (solving a

system of nonlinear partial differential equations) by a sequence of somewhat easier problems

(solving a system of linear partial differential equations). While it is still beyond our abilities

21

to solve even the linearized system, the ideas we discuss will help us to see how to handle

similar problems when we finally move to the discretized case.

The first method we will discuss is known as simple iteration or Picard iteration. The idea

is that we can try to solve the problem

F (X) = 0, (3.9)

by “splitting” F into a form such as:

F (X) = X −G(X), (3.10)

or, in general, finding a “splitting” function H(X, Y) so that:

F (X) = H(X,X). (3.11)

Picard iteration would then consist of picking a starting point X0 and solving the sequence

of (generally implicit) problems:

H(Xn+1, Xn) = 0. (3.12)

In many cases, if the decomposition that defines a Picard iteration is chosen properly, the

iteration will converge for a wide range of starting guesses X0, although convergence might

be quite slow.

To apply Picard iteration to our flow problem, let us assume that we have a starting estimate

(u0, v0, p0) of the solution, which can be any functions of (x, y) defined over Ω, and which

need not satisfy the boundary conditions.

We now rewrite the Navier Stokes equations and the boundary conditions so that all terms

appear on the left hand side only, so that formally we have reproduced the generic nonlinear

system F (X) = 0. For our problem, this would result in the system of equations:

−(
∂2u

∂x2
+
∂2u

∂y2
) +Re(u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
) = 0 (3.13)

22

−(
∂2v

∂x2
+
∂2v

∂y2
) +Re(u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
) = 0 (3.14)

∂u

∂x
+
∂v

∂y
= 0 (3.15)

v(xΓ, yΓ) = 0 (3.16)

u(0, y)− Inflow(y, λ) = 0 (3.17)

u(xwall, ywall) = 0 (3.18)

∂u

∂n
(xmax, y) = 0 (3.19)

p(xmax, ymax) = 0 (3.20)

Here, the equation

v(xΓ, yΓ) = 0 (3.21)

is meant to assert that the vertical velocity v is zero at every point (x, y) that lies on the

flow region boundary Γ. A similar symbolism is used to assert the conditions that apply just

on the upper and lower walls.

Our decomposition of F (X) into H(Xn+1, Xn) will simply involve replacing each nonlinear

term by a term that is linear in the “new” variables. Rather than subscripting our state

variables, we will use the symbols uold, vold and pold to refer to the data at the old point.

Then our equations become:

−(
∂2u

∂x2
+
∂2u

∂y2
) +Re(uold

∂u

∂x
+ vold

∂u

∂y
+
∂p

∂x
) = 0 (3.22)

−(
∂2v

∂x2
+
∂2v

∂y2
) +Re(uold

∂v

∂x
+ vold

∂v

∂y
+
∂p

∂y
) = 0 (3.23)

∂u

∂x
+
∂v

∂y
= 0 (3.24)

v(xΓ, yΓ) = 0 (3.25)

u(0, y)− Inflow(y, λ) = 0 (3.26)

u(xwall, ywall) = 0 (3.27)

23

∂u

∂n
(xmax, y) = 0 (3.28)

p(xmax, ymax) = 0 (3.29)

By linearizing four terms in our equations, we have come up with a linear system of partial

differential equations, which are presumably easier to solve repeatedly than our original

nonlinear system.

We will now discuss Newton’s method for solving our nonlinear system. We will see that

Newton’s method converges faster, but only if the initial guess is close enough to the correct

answer. This will mean that our best method will be a hybrid of Picard iteration, to move

from an arbitrary starting point close to the correct solution, and Newton’s method, which

will rapidly finish the iteration once we are near enough.

3.5 Newton’s Method for the Continuous Navier Stokes

Equations

Newton’s method for solving a system of nonlinear equations F (X) = 0 assumes that we have

an approximate solution X0 and a linearized operator FP (X) which allows us to approximate

the behavior of the function F around any point X as:

F (X) = F (X0) + FP (X0) (X −X0) +O((X −X0)2). (3.30)

If F (X) is a single algebraic equation, then FP (X) is simply the usual derivative function.

If F (X) is a system of algebraic equations, then FP (X) is the Jacobian matrix. For our

problem, however, F (X) is not a function of a few real numbers, but of several real val-

ued functions. The computation and use of the linearization operator FP will be more

complicated than in the discrete case, but the idea will still be the same.

Now if we drop the error term in Equation (3.30) and replace F (X) by 0, we may solve for

24

X, and arrive at the Newton estimate for the root:

X1 = X0 − FP−1(X0) F (X0). (3.31)

If our initial approximation is close to the correct answer X∗, and if the differential operator

FP is continuous and invertible at X∗, then we may expect that repeated application of this

operation will produce a sequence of points {Xk} which converge to X∗. We defer a detailed

consideration of the convergence of Newton’s method to the next chapter, when we discuss

the discrete case that we will actually need to solve.

To apply Newton’s method to our flow problem, let us assume that we have a starting

estimate (u0, v0, p0) of the solution, which can be any functions of (x, y) defined over Ω, and

which need not satisfy the boundary conditions. This estimate might, in fact, be the output

of the Picard iteration.

We now rewrite the Navier Stokes equations and the boundary conditions so that all terms

appear on the left hand side only, as in Equations (3.13) through (3.20), so that formally we

have reproduced the generic Newton system F (X) = 0.

We may then symbolize the left hand side of these equations as F (u, v, p) and our search for

a solution of the original problem can be represented as seeking functions (u, v, p) so that:

F (u, v, p) = 0. (3.32)

Now we need to compute the linearization operator FP associated with our nonlinear func-

tion. If our variables were simple algebraic quantities, then we would simply take the usual

partial derivative
∂

∂u
. A term like u2 would result in a derivative term of 2u. However,

our variables are functions and it is not immediately clear how to differentiate equations

involving spatial derivatives of these functions, such as u
∂u

∂x
. A naive guess for the partial

derivative might be the meaningless result ∗∂u
∂x

+ u
∂∗
∂x

.

25

What’s wrong with this result does suggest the proper approach, however. Where we placed

a “*” in the above expression, we actually need something to operate on. Suppose we try

to compute something like the differential instead of the derivative of our function? For an

algebraic system, we would merely be computing a result like 2u du, where the du seems to

add little. But for our situation, the equivalent of the du will supply the missing operand.

Since the arguments of our functions aren’t scalars, but are themselves functions, we must

proceed carefully. In order to use a difference quotient approach, we will need to have a

family of perturbations parameterized by a scalar ε. So we first consider some arbitrary set

of perturbation functions, which we will call ũ, ṽ and p̃. We will then evaluate the function

F at the family of “nearby” points (u0 + εũ, v0 + εṽ, p0 + εp̃) and use a difference quotient to

analyze the behavior of F as ε→ 0.

Our difference quotient will have the form:

FP (u0, v0, p0)(ũ, ṽ, p̃) = lim
ε→0

F (u0 + εũ, v0 + εṽ, p0 + εp̃)− F (u0, v0, p0)

ε
. (3.33)

If this limit exists, we will have found what is called the Gateaux derivative of F , which is

a sort of directional derivative in abstract spaces. The derivation of the Gateaux derivative

requires that we pick a particular direction or perturbation. If in fact the result is independent

of the direction chosen, then we have actually found the Frechet derivative. The defining

property of the Frechet derivative FP(x)(h) is that

lim
‖h‖→0

‖F (x+ h)− F (x)− FP (x)(h)‖
‖h‖

= 0. (3.34)

If we carry out the limit operation, the resulting operator FP (u0, v0, p0)(ũ, ṽ, p̃) has the

following form:

−(
∂2ũ

∂x2
+
∂2ũ

∂y2
) +Re (ũ

∂u0

∂x
+ u0

∂ũ

∂x
+ ṽ

∂u0

∂y
+ v0

∂ũ

∂y
+
∂p̃

∂x
) (3.35)

26

−(
∂2ṽ

∂x2
+
∂2ṽ

∂y2
) +Re (ũ

∂v0

∂x
+ u0

∂ṽ

∂x
+ ṽ

∂v0

∂y
+ v0

∂ṽ

∂y
+
∂p̃

∂y
) (3.36)

∂ũ

∂x
+
∂ṽ

∂y
(3.37)

ṽ(xΓ, yΓ) (3.38)

ũ(0, y) (3.39)

ũ(xwall, ywall) (3.40)

∂ũ

∂n
(xmax, y) (3.41)

p̃(xmax, ymax) (3.42)

Once we have the local linearization FP , we can write the desired estimate for the behavior

of F :

F (u0 + εũ, v0 + εṽ, p0 + εp̃)

= F (u0, v0, p0) + ε FP (u0, v0, p0) (ũ, ṽ, p̃) +O(ε2). (3.43)

Now we are ready to apply Newton’s method to our problem. We evaluate the Navier Stokes

function at our starting point, and because our starting point is not a root of F , we get a

nonzero right hand side:

F (u0, v0, p0) 6= 0. (3.44)

How could we get an improved estimate of a root of F? Suppose we drop the ε2 term in the

estimate of the behavior of F , assuming that its behavior can be entirely described by the

linear part. Then, if there’s a nearby point (u0 + εũ, v0 + εṽ, p0 + εp̃), at which F is zero, we

must have:

0 = F ((u0 + εũ, v0 + εṽ, p0 + εp̃) (3.45)

= F (u0, v0, p0) + ε FP (u0, v0, p0) (ũ, ṽ, p̃), (3.46)

27

so, in other words, it must be true that

εFP (u0, v0, p0)(ũ, ṽ, p̃) = −F (u0, v0, p0). (3.47)

If we can solve this equation, then we produce an improved estimate of the root:

(u1, v1, p1) = (u0 + εũ, v0 + εṽ, p0 + εp̃). (3.48)

If we find that the function value at this new point is still unacceptably large, we may repeat

the refinement process, linearizing around our current estimate and solving the resulting

equations for the increments.

The heart of Newton’s method is the equation for the increments. We should not be deluded

by its simple form. For our case, this equation is actually a system of linear partial differential

equations, which are by no means easy to solve. The important point to note here is that

we know we can’t solve the original problem, F (u, v, p) = 0, involving a system of nonlinear

partial differential equations. Newton’s method has offered us a way to get a good estimate

of the solution to that problem, if we are willing to solve a series of related, linear problems.

The equations for the Newton increments to the Navier Stokes solution are related to the

Oseen equations [22], which prescribe the behavior of a small perturbation flow (u, v, p) that

can be added to a pre-existing flow (uold, vold, pold):

−(
∂2u

∂x2
+
∂2u

∂y2
) +Re (u

∂uold
∂x

+ uold
∂u

∂x
+ v

∂uold
∂y

+ vold
∂u

∂y
+
∂p

∂x
) = 0 (3.49)

−(
∂2v

∂x2
+
∂2v

∂y2
) +Re (u

∂vold
∂x

+ uold
∂v

∂x
+ v

∂vold
∂y

+ vold
∂v

∂y
+
∂p

∂y
) = 0 (3.50)

∂u

∂x
+
∂v

∂y
= 0 (3.51)

We will see the Oseen equations again, when we consider sensitivities.

28

Chapter 4

DISCRETE FLUID FLOW
EQUATIONS

4.1 Introduction

We began the process of analysing our problem by discretizing the flow region and the

boundary conditions, that is, making them describable in terms of the values of a few pa-

rameters. But while we have discretized our problem, the answers to that problem, that

is, the solutions of the continuous Navier Stokes equations, discussed in Chapter 3, are still

general functions u(x, y), v(x, y) and p(x, y). Except for very special cases, these answers

are essentially only describable by giving their values at every point in the flow region, and

this is not something that is computable.

We now consider how we discretize our flow equations and their solutions, so that an answer

is describable in terms of the values of a finite number of coefficients, and these coefficients

can be determined by solving a finite number of equations. Of course, we need to do this

in such a way that the answers to the discretized equations can be expected to approximate

the answers to the continuous equations.

The closeness of the approximation is dependent on a discretization parameter h. We con-

29

sider constraints on the choice of a class of approximating finite element spaces which will

guarantee that as h→ 0, the approximate solutions converge to the continuous solution. We

then choose the approximating spaces associated with the Taylor Hood element.

We then consider the actual form of the finite element equations that replace the original

continuous state equations. These will compose a nonlinear algebraic system of considerable

dimension. We solve these nonlinear equations using Newton’s method, or a hybrid approach

involving Picard iteration followed by Newton’s method.

Finally, we quote results about the approximation error between the solutions of the contin-

uous and discrete problems. These results assure us that, for small enough h, the results of

the discrete problem give good estimates of the behavior of the continuous problem.

4.2 Derivation of the Finite Element Equations

In general, there are no methods of producing the exact solution functions u, v and p for

the continuous Navier Stokes problem. The Poiseuille flow problem was a very special case

that allowed us to get an exact solution. However, even that simple problem would become

insoluble if the form of the inflow were changed, the walls were made irregular in any way,

or a small obstacle were placed in the flow.

We want to look at a wide number of Navier Stokes problems, and we need a way of solving

them all. Since we can’t solve the continuous problem, we now consider the construction of

a discrete version of the continuous problem, using the finite element method. We expect

that the solution of the discrete problem will approximate the solution of the continuous

problem. Given sufficient computational resources, this approximation can be improved as

much as desired. The discrete problem can be solved in a straightforward way for the variety

of region shapes, boundary conditions, and Reynolds numbers we are interested in.

30

4.3 Representation of the Solution

We begin the derivation of the finite element equations by making an assumption about

the form of the solution functions. For clarity, where a solution to the original, continuous

problem is symbolized as (u, v, p), we will symbolize a solution to the approximating problem

as (uh, vh, ph). The solution functions for the original continuous problem might have a very

elaborate form, but for the approximate problem, we will immediately assume that solutions

are constructed using simple linear combinations of a finite set of basis functions to be

selected beforehand.

Since uh and vh are really coordinate projections of a two-dimensional velocity vector, there

are good physical reasons to use the same set of basis functions for both. We represent

a typical velocity basis function as wi(x, y). For technical reasons the pressure cannot be

represented with the same set of basis functions, but must use a different set, a typical

element of which we will write as qi(x, y). The pressure basis functions must be chosen in a

way that is compatible with the velocity basis functions. We will not explicitly choose the

basis functions yet. If we assume that there are Nw velocity basis functions, and Nq pressure

basis functions, we may now write out the finite element representations of the discretized

solutions:

uh(x, y) =
Nw∑
i=1

uhi wi(x, y) (4.1)

vh(x, y) =
Nw∑
i=1

vhi wi(x, y) (4.2)

ph(x, y) =
Nq∑
i=1

phi qi(x, y) (4.3)

The symbol uh is used here in two ways: as the name of the solution function, uh(x, y), and

as the name of an entry uhi of the coefficient vector. No confusion should arise from this

ambiguity, if it is understood that the function and the coefficient vector represent the same

31

information.

The assumption that we can represent solutions of the discretized problem by a linear com-

bination of basis functions makes the discretized problem much simpler than the continuous

one. To define the solutions (uh, vh, ph), we simply have to determine the 2Nw + Nq coeffi-

cients of the basis functions, rather than determining the value at every point (x, y) of three

almost arbitrary functions (u, v, p).

4.4 Discretizing the Geometry

We must now produce a set of appropriate basis functions for the problem. To do so, we

will first produce a set of nodes, that is, special points in the region Ω and on the boundary

Γ. We will actually have two sets of nodes, pressure nodes and velocity nodes. However, for

the method we will use, the pressure nodes will simply be a subset of the velocity nodes.

Much thought can go into the choice of the number and location of the nodes. We will

make some very simple choices. We will march along the horizontal axis of the channel,

taking equally spaced steps. At each step, including the inflow and outflow boundaries, we

will place a column of nodes. The nodes in a particular column will be equally spaced in

the vertical direction. We require the first node in a column to lie on the bottom wall or

bump, and the last node to lie on the upper wall. Each column will have the same number

of nodes, but if the column is above the bump, then the vertical spacing between the nodes

will be changed from the spacing used in the rectangular portion of the channel. With an

eye on future needs, we will require that there be an odd number of rows and columns in

both directions. For convenience, we will also assume that there is some numbering of the

nodes, which we will call the global node ordering.

The maximum spacing between nodes will have a certain effect on the accuracy of the

32

Figure 4.1: Decomposition of a flow region into nodes.

computational results. The value of the discretization parameter h can be taken to be the

larger of the two spacings in the rectangular region of the channel, that is, the horizontal

and vertical node spacings.

A typical decomposition into nodes is shown in Figure 4.1.

4.5 Choosing a Master Element

In order to generate the basis functions, we are now going to use the nodes to decompose the

flow region into a set of separate patches of area, called elements. Each element will have

the same general structure, and will be defined by listing the nodes that make it up.

There are many choices for elements, but for a particular physical problem, only some ele-

ments may be appropriate. Essentially because of the way the the Navier Stokes equations

involve two types of state variables, the velocities and pressures, the finite element formula-

tion results in a problem of mixed type. This in turn implies that the usual finite element

convergence results will not apply unless the basis functions (or equivalently, the approxi-

33

Figure 4.2: A Taylor Hood element.
All nodes have an associated velocity. Nodes 1, 2 and 3

have an associated pressure as well.

mating spaces) for velocities and pressures are chosen in a suitable, compatible way. The

main constraint on this choice is known as the inf-sup or Ladyzhenskaya-Babuska-Brezzi

condition. Verification that a particular set of basis functions satisfy this condition is not

trivial. We will use the Taylor Hood element, whose approximating spaces for velocities and

pressure have been shown to satisfy the inf-sup condition. For details, refer to Girault and

Raviart [13].

Geometrically, the Taylor Hood element TH has the shape of a triangle, outlined by three

corner nodes and three midside nodes. We will use the special coordinate system (ξ, η) when

referring to points in this element. The (ξ, η) coordinates of the corner nodes 1, 2 and 3 are

then (0,0), (1,1) and (1,0). All six nodes will be associated with velocity, but only the corner

nodes will be associated with pressure.

Details about the construction of the associated basis functions will be discussed in the next

section. For the moment, we confine ourselves to certain geometrical issues.

It’s easy to see that we can completely cover the rectangular portion of the flow region with

34

copies of the Taylor Hood element, with no overlap. The area over the bump, however,

might seem to present us with a problem. On the lower boundary of this area we have the

curved surface of the bump. Above the bump, the rectilinear spacing of nodes is disrupted,

so that the three nodes needed to form the horizontal side of a Taylor Hood element will not

generally lie on a straight line.

We may deal with this more challenging geometry by using the standard technique of isopara-

metric mapping, which allows us to produce smoothly curved images of the Taylor Hood

element that fit the local geometry. A simple mapping technique allows us to make the

appropriate adjustments for computing basis functions and spatial derivatives on such an

isoparametric element.

We are now prepared to produce a triangulation, that is, a decomposition of the original flow

region into elements with disjoint interiors. We consider each element in the triangulation

to be the image of the master element. If we call the i-th element in the triangulation Ωi,

then we can actually construct a differentiable mapping

φi : TH → Ωi, (4.4)

which maps any point (ξ, η) ∈ TH to a unique point (x, y) ∈ Ωi, and so that every point of

Ωi is the image of some point (x, y). Hence, there is also an inverse map:

φ−1
i : Ωi → TH. (4.5)

This mapping is completely determined by specifying the correspondence between the 6

nodes in the Taylor Hood element and the 6 nodes in the image. Each node in an element

is the image of a node in TH; the local node index of a node in Ωi is the label for the node’s

preimage in TH. A typical triangulation of a flow region, including isoparametric elements

above the bump, is displayed in Figure 4.3.

35

Figure 4.3: Decomposition of a flow region into elements.
These elements are built from the nodes shown in Figure 4.1.

The triangulation of the region in Figure 4.3 is built out of multiple copies of the Taylor Hood

element, though some of them may have been curved or stretched a bit by an isoparametric

mapping. Because we have decomposed the large, complicated geometry into multiple copies

of a single, simple element, and because we know how these simple shapes build the flow

region, we can proceed to construct the basis functions for the single master element, and

our work will then naturally apply to all the images of that element.

4.6 Constructing Basis Functions

We are now prepared to construct the basis functions that will be used to represent the

solution functions. The basis functions will be divided into two families, with wi(x, y) used

for velocities and qi(x, y) for pressures. We will first consider the velocity basis functions.

Each velocity basis function will be associated with a particular velocity node. These nodes

will have several special properties. First, at any velocity node, the associated velocity basis

function will have the value 1, while all other velocity basis functions will be zero there.

36

Secondly, if some function gh(x, y) is a linear combination of the velocity basis functions,

then we can determine the coefficient ghi associated with the velocity node i by evaluating

gh at that node. In other words, the finite element coefficients for gh are its values at the

associated nodes.

Let i be the global number of any velocity node, and wi(x, y) the associated velocity basis

function. At any point (x, y) outside of the flow region Ω, we let wi(x, y) = 0. Any point

(x, y) within the flow region must lie in some element Ωj. If node i does not lie on the

boundary of element Ωj, then again wi(x, y) is zero. We are left with the case where node i

lies on the the boundary of Ωj. In this case, we refer to the local node number l(i) of node

i in Ωj. We then consider the unique quadratic polynomial ŵi(ξ, η) defined on the Taylor

Hood element TH, which has the value 1 at node l(i) and 0 at the five other velocity nodes.

We then define

wi(x, y) = ŵi(φ
−1(x, y)). (4.6)

This slightly cumbersome definition allows us to consider both nonisoparametric and isopara-

metric cases together. The “preimage” of the basis function, ŵi(ξ, η), is always a quadratic

polynomial in ξ and η. For elements with straight sides, it is also true that wi(x, y) is

quadratic in x and y, basically because φ−1 is linear for such elements. But in an isopara-

metric element, the basis function wi(x, y) will not, in general have the simple form of a

quadratic polynomial when written in terms of x and y.

It should be clear from the definition that wi(x, y) is always 1 at node i and zero at all other

velocity nodes, as desired. It should also be clear that the function wi(x, y) is well defined,

even when a point (x, y) lies on the boundary of two or more elements, and that wi is a

continuous function everywhere.

A little thought will reveal the fact that, if we choose an arbitrary vector of values uhi , then

37

the function defined by

uh(x, y) =
Nw∑
i=1

uhi wi(x, y) (4.7)

will have the value uhi at node i.

The pressure basis functions are defined similarly, keeping in mind that in any element there

are only three pressure nodes. The major resulting difference for pressure nodes is that we

consider the unique linear polynomial q̂i(ξ, η) defined on the Taylor Hood element TH, which

has the value 1 at node l(i) and 0 at the two other pressure nodes.

In terms of basis functions, a shorthand (and for isoparametric elements, slightly inaccurate)

way of defining the Taylor Hood element is, therefore, the use of piecewise quadratic velocities

and piecewise linear pressures on a 6 node triangular element.

The use of the finite element basis functions has a number of advantages. In particular,

although a discrete set of data represents the solution functions, the solution functions

themselves are continuous functions, defined everywhere in the flow region. Moreover, it

is obvious how to take any continuously defined function and construct the finite element

representation for it, simply by sampling it at the appropriate nodes. (Other versions of

the finite element method, such as the least squares approach, do not share this particular

feature). Finally, operations such as differentiation of a solution function can be reduced to

the same operations on the underlying basis functions, whose properties are easy to derive.

4.7 Discretizing the Navier Stokes Equations

We now have a way of representing functions over the flow region. An arbitrary set of values

assigned to the nodes in the proper way will produce a set of functions (u, v, p). However, we

don’t want an arbitrary set of functions; we want functions that come close to the solution

functions for the continuous Navier Stokes equations. How can we do this?

38

The accepted finite element technique poses the equivalent question of how we determine

each of the unknown coefficients. To do so, we go back to the three equations that define the

continuous Navier Stokes problem. In particular, let us start with the horizontal momentum

equation. For each unknown coefficient uhi corresponding to a horizontal velocity, we will

multiply the horizontal momentum equation by the corresponding basis function wi(x, y),

and integrate over the region Ω, to arrive at the following equation:

∫
Ω

(−∂
2uh

∂x2
− ∂2uh

∂y2
+Re(uh

∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)) wi dΩ = 0. (4.8)

For technical reasons, including the desire to allow the use of basis functions of lower differ-

entiability, we will use integration by parts to lower the order of differentiation on certain

terms involving the solution variables. To do so, we apply a version of Green’s theorem:

Theorem 4.1 (Green’s Theorem in the Plane) Suppose Ω is a bounded, open, con-

nected subset of R2 with a piecewise differentiable boundary Γ. Suppose that u and w are

functions defined on Ω̄, the closure of Ω, and continuously differentiable there. Then

∫
Ω

∂u(x, y)

∂x
w(x, y) dx dy = −

∫
Ω
u(x, y)

∂w(x, y)

∂x
dx dy +

∫
Γ
u(x, y)w(x, y)n̂x(x, y) ds (4.9)

where n̂x(x, y) is the x component of the unit outward normal vector to Γ. A similar formula

holds for differentiation with respect to y.

For the horizontal momentum equation, we wish to apply Theorem 4.1 to the terms −∂
2uh

∂x2
wi

and−∂
2uh

∂y2
wi, reducing the highest order of differentiation applied to a velocity basis function

from 2 to 1. We could also apply Green’s theorem to the term Re
∂ph

∂x
wi, eliminating all

differentiation of pressures, at the cost of some unwieldy boundary terms.

If we carry out this same set of operations on the other two governing equations, we arrive

39

at the discretized finite element equations:

∫
Ω

(
∂uh

∂x

∂wi
∂x

+
∂uh

∂y

∂wi
∂y

+ Re(uh
∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)wi) dΩ

=
∫

Γ

∂uh

∂n
wi ds (4.10)∫

Ω
(
∂vh

∂x

∂wi
∂x

+
∂vh

∂y

∂wi
∂y

+ Re(uh
∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)wi) dΩ

=
∫

Γ

∂vh

∂n
wi ds (4.11)∫

Ω
(
∂uh

∂x
+
∂vh

∂y
)qi dΩ = 0 (4.12)

In the boundary integrals, we should point out the meaning of the expression
∂uh

∂n
, which is

sometimes called the normal derivative:

∂uh

∂n
≡ ∂uh

∂x
n̂x +

∂uh

∂y
n̂y, (4.13)

where, as before, the outward unit normal vector to the flow region Ω at (x, y) is the vector

(n̂x(x, y), n̂y(x, y)).

Now the unknowns in this system seem to be the functions uh(x, y), vh(x, y), and ph(x, y),

but since we assume that these functions are represented by linear combinations of the basis

functions, the true unknowns are the coefficients, that is, the numbers uhi , v
h
i , and phi . We

could make this explicit by replacing all occurrences of the functions uh(x, y), vh(x, y), and

ph(x, y) in the finite element equations by the finite sums, but the resulting expressions are

much too cumbersome to work with.

By construction, there are exactly as many of these equations as there are unknown co-

efficients uhi , v
h
i and phi . These equations are nonlinear, as are the original Navier Stokes

equations, but they are strictly algebraic (in fact, they are actually quadratic). That means

that they may be treated by a form of Newton’s method in which the linearized operator to

be inverted is simply a Jacobian matrix.

40

4.8 Discretizing the Boundary Conditions

In order to have a completely posed discretized problem, we must account for the boundary

conditions that were applied in the continuous case. We will attempt to do this in such

a way that we eliminate redundant equations. In this process, we will disrupt somewhat

the original situation, in which, for instance, every corner node always had two associated

unknown velocity components and an unknown pressure.

The boundary conditions for the continuous case were:

v(x, y) = 0 along the boundary;

u(0, y) = Inflow(y, λ) along the inflow;

u(x, y) = 0 on the walls and the bump;

p(xmax, ymax) = 0.

Note, however, that we do not have to impose the boundary condition

∂u

∂x
(xmax, y) = 0 along the outflow, (4.14)

because this is automatically enforced weakly by the finite element method itself.

As a first step towards discretization, we may simply interpret these conditions as being

statements about the value of the state solution at the corresponding velocity or pressure

nodes. In other words, the discrete boundary conditions may be interpreted as:

vh(x, y) = 0 at all velocity nodes on Γ; (4.15)

uh(0, y) = Inflowh(y, λ) at all inflow velocity nodes; (4.16)

uh(x, y) = 0 at all velocity nodes on the walls and the bump; (4.17)

∂uh

∂x
(xmax, y) = 0 at outflow velocity nodes; (4.18)

ph(xmax, ymax) = 0 for the upper right pressure node. (4.19)

41

In the above equations, Inflowh(y, λ) denotes that discretization has been applied to our

original inflow function. In our case, we will use the interpolant, that is, at every velocity

node, it will be true that:

Inflowh(y, λ) = Inflow(y, λ) (4.20)

The discretized boundary conditions may be translated into algebraic equations involving

the finite element coefficients, and we may append these equations to the discretized state

equations. However, most of these boundary conditions are simple enough that from them

we can easily determine the values of certain coefficients. It seems wasteful to treat such

quantities as unknowns. We will find that, by proper application of the given boundary

conditions, we can solve for many of the unknowns along the boundary. For such eliminated

unknowns, we can discard the corresponding finite element equations and basis functions

from our system.

Let us consider the vertical velocity boundary condition, vh(x, y) = 0 at all velocity nodes

on Γ. At each velocity node i along the boundary, we know that the value of the associated

finite element coefficient vhi is zero; in other words, vhi is not an unknown. We may therefore

apply the boundary condition by dropping the discrete finite element equation associated

with vhi , which would normally be used to solve for the unknown coefficient. In all other

equations we replace occurrences of vhi by 0. Node i will no longer have an associated vertical

velocity.

We handle the Dirichlet boundary conditions on the horizontal velocity at the inflow, along

the walls and on the bump, and the condition on the pressure in the upper right corner in

a similar way.

Since we have already eliminated the velocity unknowns associated with the walls, bump,

and inflow, all remaining velocity basis functions wi are zero on Γ, except, possibly, along

42

the outflow boundary. But, as we have pointed out, the finite element method automatically

weakly enforces the boundary conditions:

∂uh

∂x
=
∂uh

∂n
= 0

∂vh

∂x
=
∂vh

∂n
= 0 (4.21)

which means that in Equations (4.10) and (4.11) the right hand side integrals over Γ drop

out, leaving us with the slightly simpler system:

∫
Ω

(
∂uh

∂x

∂wi
∂x

+
∂uh

∂y

∂wi
∂y

+ Re(uh
∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)wi) dΩ = 0 (4.22)∫

Ω
(
∂vh

∂x

∂wi
∂x

+
∂vh

∂y

∂wi
∂y

+ Re(uh
∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)wi) dΩ = 0 (4.23)∫

Ω
(
∂uh

∂x
+
∂vh

∂y
)qi dΩ = 0 (4.24)

Because the inflow velocities are generally nonzero, the treatment of the boundary conditions

means that the previously unknown velocity coefficient uhi at an inflow node is replaced by a

known constant. In some cases, this will result in the computation of a term which we will

move to the right hand side.

4.9 Estimating the Solution at Nearby Parameters

Let us suppose, for a moment, that the definition of the discretized Navier Stokes problem

we are solving includes a set of parameters β, as in Chapter 2, and that we can consider the

corresponding flow solutions to be functions of those parameters. If we wish to keep this

relationship in mind, we write the flow solution as (uh(β), vh(β), ph(β)).

Now our discrete Navier Stokes equations and boundary conditions comprise a system of

nonlinear algebraic equations, which we plan to solve using some iterative scheme. The very

first time that we try to solve the nonlinear system, say at the parameter values β0, we’ll use

43

zero as the starting guess for (uh(β0), vh(β0), ph(β0)). But if we are able to solve that initial

system, then if we require the values of (uh, vh, ph) at a nearby set of parameters, we should

surely be able to produce a better starting point for the next iteration than simply the zero

guess. One way to get a better estimate might be to use the previous solution:

uh(β0 + ∆β) ≈ uh(β0), (4.25)

but we usually have data that approximates the first partial derivatives such as
∂uh(β)

∂βi
, since

we are computing the discretized sensitivities or finite difference estimates of the sensitivities.

Hence, we can make an even better estimate by using the first order Euler prediction:

uh(β0 + ∆β) ≈ uh(β0) +
∑
i

∂uh(β0)

∂βi
∆βi. (4.26)

4.10 Picard Iteration Applied to the Discrete Problem

In some cases, the starting point produced by the Euler prediction will be close enough to the

correct solution that Newton’s method can converge. But this may not be so, particularly

for higher Reynolds numbers. Thus, in some cases, we must work harder to produce a

satisfactory starting point.

In such situations, we will use the Euler estimate as the starting point for a Picard iteration

scheme. We will use the following decomposition H(X,Xold) of the discrete state equations

F (X):

∫
Ω

(
∂uh

∂x

∂wi
∂x

+
∂uh

∂y

∂wi
∂y

+ Re(uhold
∂uh

∂x
+ vhold

∂uh

∂y
+
∂ph

∂x
)wi) dΩ = 0 (4.27)∫

Ω
(
∂vh

∂x

∂wi
∂x

+
∂vh

∂y

∂wi
∂y

+ Re(uhold
∂vh

∂x
+ vhold

∂vh

∂y
+
∂ph

∂y
)wi) dΩ = 0 (4.28)∫

Ω
(
∂uh

∂x
+
∂vh

∂y
)qi dΩ = 0 (4.29)

along with the boundary conditions (4.15) through (4.19). Given the value of Xold =

44

(uhold, v
h
old, p

h
old) the equations H(X,Xold) = 0 are a linear system solvable for the new co-

efficients X = (uh, vh, ph) that define the next approximation to the flow solution.

The following theorem from Rheinboldt and Ortega [24] suggests how our Picard iteration

could be analyzed and modified to guarantee global convergence:

Theorem 4.2 (Global Convergence of Picard Iteration) Let A ∈ L(Rn) be a sym-

metric and positive definite matrix, assume that φ : Rn → Rn is continuously differentiable,

that φ′(x) is symmetric and positive semidefinite for all x ∈ Rn, and that there is a constant

β < +∞ for which

‖φ′(x)‖2 ≤ β, ∀x ∈ Rn. (4.30)

Then the equation Ax+φ(x) = 0 has a unique solution x∗, and for any x0 ∈ Rn, the sequence

{xk} defined by the Picard iteration:

(A+ (β/2)I)xk+1 = (β/2)xk − φ(xk) (4.31)

converges to x∗.

The version of Picard iteration we are currently employing does not attempt to estimate the

value of the constant β, and thus has the form

Axk+1 = −φ(xk) (4.32)

which is not guaranteed to converge. Indeed, we have seen cases where our Picard formulation

fails in practice. In the future, we intend to investigate the reformulation of our iteration

along the lines suggested by the theorem, so that we may guarantee global convergence.

Picard iteration can be particularly useful at higher Reynolds numbers, where the radius of

convergence for Newton’s method is generally much decreased. However, at least when the

hypotheses of Theorem 4.2 apply, the guaranteed convergence is only of linear order. Thus, a

45

reasonable use of Picard iteration is simply to reduce the residual of the initial point enough

that the Newton method, with its superior quadratic convergence, may be applied to bring

the iteration to a rapid conclusion.

With our current Picard iteration, which does not satisfy the hypotheses of Theorem 4.2, we

cannot guarantee global convergence. Thus, our iteration may fail. It is sometimes possible

to recover from such a failure; for instance, if we are computing a solution at a high Reynolds

number, we can retry the computation by finding a solution at a low Reynolds number, and

then using the Euler prediction method discussed in the previous section to produce a better

starting estimate at the Reynolds number of interest. In other cases, we may be able to

recover by reducing the mesh parameter h, although this is a costly solution.

4.11 The Newton Method Applied to the Discrete Prob-

lem

Assuming we have a starting point X0 that is sufficiently close to a solution of F (X) = 0,

Newton’s method produces a sequence of iterates by computing a correction ∆X to the

current iterate. The heart of the iteration is the pair of calculations:

∆Xi ← −FP (Xi)
−1 F (Xi) (4.33)

Xi+1 ← Xi + ∆Xi (4.34)

The expensive part of the calculation is the computation of the Jacobian matrix FP and

its factorization. Many attempts to improve the efficiency of the Newton method begin by

trying to reduce the storage used for this matrix or the frequency with which it is calculated.

As soon as we have the new iterate Xi+1, we can compute the residual F (Xi+1). The norm

of this quantity is an indication of how far away we are from a solution. Thus, if we monitor

46

this quantity, its behavior will allow us to decide whether to take another iterative step, or

to accept Xi+1 as our approximation to the solution, or to determine that the iteration has

failed to converge, or is actually diverging.

The local behavior of Newton’s method is laid out in the following theorem (Dennis and

Schnabel, [10]):

Theorem 4.3 (Local Convergence of Newton’s Method in Rn) Suppose that the func-

tion F : Rn → Rn is continuously differentiable in an open convex set D, and that there is

a point x∗ ∈ D at which F (x∗) = 0. Suppose that the Jacobian matrix FP (x∗) is invertible,

with ‖FP−1(x∗)‖ = β. Suppose, finally, that there is an open ball Br(x
∗) of radius r centered

at x∗, with Br(x
∗) ⊂ D, so that for every x ∈ Br(x

∗), FP (x) is Lipschitz continuous, with

Lipschitz constant γ independent of x.

Then there is an ε > 0 with the property that, for any starting point x0 ∈ Bε(x
∗), the sequence

of Newton iterates {xk} is well defined, converges to x∗, and for each k satisfies

‖xk+1 − x∗‖ ≤ βγ‖xk − x∗‖2. (4.35)

This theorem informs us that if we are close enough to the correct solution, Newton’s method

will converge quadratically. Conversely, practical experience shows that if the starting point

is too far away, Newton’s method will diverge. There is no general way to compute this

critical distance beforehand; therefore, we must expect from time to time that we must deal

with a Newton failure. In some cases, it may be possible to recover by producing a better

starting guess, or trying to solve an easier problem (one whose parameters are closer to the

parameters of a problem we’ve already solved). However, some failures of Newton’s method

will cause the entire optimization to fail.

To implement Newton’s method, we must differentiate each finite element equation with

47

respect to the unknown coefficients, a tedious computation. For the state equations (4.22)-

(4.24) associated with basis functions wi or qi, we list the entries in the Jacobian FP with

respect to a typical coefficient uj, vj or pj. These entries are evaluated at the “old” solution

point, (uhold, v
h
old, p

h
old), and are used to solve for the change in the coefficients that will give

us the next Newton approximant.

The derivative of the horizontal momentum equation associated with basis function wi with

respect to coefficient uhj is:

∫
Ω

(
∂wj
∂x

∂wi
∂x

+
∂wj
∂y

∂wi
∂y

+Re(wj
∂uhold
∂x

+ uhold
∂wj
∂x

+ vhold
∂wj
∂y

)wi) dΩ; (4.36)

the derivative of the horizontal momentum equation associated with basis function wi with

respect to coefficient vhj is: ∫
Ω
Re wj

∂uhold
∂y

wi dΩ; (4.37)

the derivative of the horizontal momentum equation associated with basis function wi with

respect to coefficient phj is: ∫
Ω
Re

∂qj
∂x

wi dΩ; (4.38)

the derivative of the vertical momentum equation associated with basis function wi with

respect to coefficient uhj is: ∫
Ω
Re wj

∂vhold
∂x

wi dΩ; (4.39)

the derivative of the vertical momentum equation associated with basis function wi with

respect to coefficient vhj is:

∫
Ω

(
∂wj
∂x

∂wi
∂x

+
∂wj
∂y

∂wi
∂y

+Re(uhold
∂wj
∂x

+ wj
∂vhold
∂y

+ vhold
∂wj
∂y

)wi) dΩ; (4.40)

the derivative of the vertical momentum equation associated with basis function wi with

respect to coefficient phj is: ∫
Ω
Re

∂qj
∂y

wi dΩ; (4.41)

48

the derivative of the continuity equation associated with basis function qi with respect to

coefficient uhj is: ∫
Ω

∂wj
∂x

qi dΩ; (4.42)

and the derivative of the horizontal momentum equation associated with basis function qi

with respect to coefficient vhj is: ∫
Ω

∂wj
∂y

qi dΩ. (4.43)

We note that the Jacobian that defines the Newton iteration is not the same as the system

matrix used for Picard iteration, although they have the same structure, and share most of

the same entries. This means that it will not be possible to reuse a Picard iteration matrix

during the Newton iteration, for instance, a fact that will reduce the options for efficient

execution later on.

4.12 The Approximation of the Continuous Problem

We have shown how the discrete problem is derived from the continuous problem. While it is

not clear how to solve the continuous problem, we have outlined an algorithm for producing

the solution of the discrete problem. We would like, therefore, to determine in what sense

the solution of the discrete problem is a good approximation to the solution of the continuous

problem.

It is shown by, for instance, Boland and Nicolaides [1], that as long as the solution of the

continuous problem (u, p) has a particular smoothness, then the error in the approximation

can be bounded in terms of the mesh parameter h.

Before we can present their results, we must develop the appropriate notation. First, we

49

define the following spaces of functions:

L2(Ω) ≡ {f : Ω→ R :
∫

Ω
f 2 dΩ <∞}. (4.44)

We then define the following related spaces:

L2
0(Ω) ≡ {f ∈ L2(Ω) :

∫
Ω
fdΩ = 0}, (4.45)

and the Sobolev space:

Hk(Ω) ≡ {f ∈ L2(Ω) : Dsf ∈ L2(Ω), s=1,...,k} (4.46)

where Dsf denotes any derivative of order s.

We define a space of functions that is zero on the boundary of Ω:

Hk
0 (Ω) ≡ {f ∈ Hk(Ω) : f = 0 on Γ}. (4.47)

We also define the following norm on the space L2 (and, of course, on all its subspaces):

‖f‖0 ≡ (
∫

Ω
f 2dΩ)

1
2 , (4.48)

as well as the following seminorm on functions in H1
0 (Ω):

|f |1 ≡ (
n∑
i=1

‖ ∂f
∂xi
‖2

0)
1
2 . (4.49)

We have written f when a function takes values in Rn, and in such cases, we define the

corresponding spaces Hk
0(Ω) and so on.

We can now paraphrase the approximation theorem, which states that, for m = 2 or 3, if

the solutions u and p to the continuous Navier Stokes problem satisfy:

u ∈ Hm(Ω) ∩H1
0(Ω), (4.50)

p ∈ Hm−1(Ω) ∩ L2
0(Ω), (4.51)

50

then the following error estimates, which compare the solutions of the continuous problem

to the solutions uh and ph of the discretized problem, hold uniformly in h:

|u− uh|1 = O(hm−1) (4.52)

‖u− uh‖0 = O(hm) (4.53)

‖p− ph‖0 = O(hm−1) (4.54)

For our problem, the exact velocities u can not, in general, be supposed to lie in H3(Ω),

because our region is not convex. The actually smoothness of the solution depends strongly

on the amount of deviation from convexity, most prominently in the angles made where the

bump surface joins the bottom of the channel. For the class of problems we have chosen,

we can expect that the exact velocities will be elements of H2(Ω). This means that, if

we can satisfy the other hypotheses of the theorem, that we can expect O(h2) accurate

approximation of velocity, and O(h) accurate approximation of pressure.

On the face of it, the solutions u and p of the continuous problem do not satisfy the other

conditions necessary to apply the results. This is because we do not have zero boundary

conditions on u, nor do we require that p have a zero integral over the region. However,

these difficulties are easily overcome.

The discrepancy in the pressure conditions is truly minor. If we replace the original pressure

condition by ∫
Ω
p(x, y) dΩ = 0, (4.55)

we will recompute the original result, plus or minus a constant. The choice between the two

boundary conditions is strictly a matter of convenience.

For the velocity boundary conditions, we appeal to the discussion in Gunzburger [15], where

it is shown that the error estimate given for the homogeneous boundary condition still holds if

51

a nonhomogeneous condition is given, assuming the discretized problem uses the interpolant

of the original boundary condition function.

These results tell us that the solution to the finite element problem is indeed close to the

solution to the original continuous problem, and that the error of approximation goes to zero

with h.

Spatial derivatives of u and p, which are also produced by the finite element method, are

less accurately computed. In general, each degree of spatial differentiation reduces the order

of accuracy of approximation by one power of h. We will find later that, in order to produce

certain quantities called geometric sensitivities, we will want accurate approximation of

the derivatives of the continuous solution such as uy ≡
∂u

∂y
. We can see that, given the

smoothness assumptions about the solution, we can expect a lower order approximation of

ux and uy:

(‖ux − uhx‖2
0 + ‖uy − uhy‖2

0)
1
2 = O(h), (4.56)

which we will take to mean that we have O(h) error in either approximate derivative uhx or uhy .

This fact will have ramifications on the accuracy of the discretized sensitivity computations.

52

Chapter 5

STATE SENSITIVITIES WITH
RESPECT TO A PARAMETER

5.1 Introduction

As long as we confine ourselves to the feasible set, each set of values for the parameters

defined in Chapter 2 defines a corresponding fluid flow problem. From Chapter 3, we may

expect that there is a corresponding solution of the problem, and from Chapter 4 we know

that, for the same set of parameters, there is also a discretized flow problem whose solution

may be computed, and which approximates the solution of the continuous problem. These

facts are summarized by stating that, for each set of feasible parameter values, β, there is

(at least) one corresponding continuous flow solution (u, v, p), and discretized flow solution

(uh, vh, ph).

We would like, if possible, to regard these flow solutions as actual functions of the parameters.

Despite the fact that we know that solutions to the continuous flow problem are not unique,

we will find that, away from certain critical Reynolds numbers, the flow solutions form

continuous branches of solutions, which are “locally unique”.

Once we regard the flow solutions as functions of the parameters, it is natural to investigate

53

the influence of each problem parameter on the components of the solution, a concept called

the sensitivity of the solution with respect to the parameter.

We show how the state equations that define the state variables may be differentiated to

yield equations for the sensitivity of the state variables with respect to a given problem

parameter. This operation may be carried out on continuous or discrete state equations.

Since discrete state equations are generally derived from a continuous state equation, we

might consider applying the same discretization process to the sensitivities of the contin-

uous equation, and consider how the resulting discretized sensitivities are related to the

sensitivities of the discrete state equation.

We work through a simple linear differential equation with a parameter, computing the

sensitivities and discretized sensitivities, and showing that in this case discretization and

differentiation may be interchanged; that is, they commute. These operations are not actually

guaranteed to commute in all cases, and we briefly mention the case of parameters that

affect the problem geometry. The consequences of non-commutativity are discussed in later

chapters.

5.2 Questions About the Solutions of Parameterized

Problems

In many fluid problems, there are a number of physical quantities which influence the prob-

lem, and hence the solution. These quantities might include the viscosity, the strength of

the inflow, the temperature, the roughness of the walls, and so on. Especially when the item

can be described by a few numerical values, we call such a varying quantity a flow param-

eter. Some flow parameters might be under the explicit control of the experimenter, while

some might represent physical conditions which can’t be controlled, but may be measured

54

beforehand.

A special class of flow parameters is called geometric or shape parameters. Such parameters

affect the shape of the flow region, or the location or shape of obstacles in the flow, or the

location at which boundary conditions are imposed. The bump parameters that we discussed

in Chapter 2 are an example of geometric parameters. As we proceed to the optimization

problem we are ultimately interested in, we will see that geometric parameters introduce

special complications into the problems we study. We will handle these difficulties at the

appropriate time.

We will suppose, however, that if the values of the relevant parameters are known, then the

particular fluid flow problem is completely defined, and can be solved to produce at least one

flow solution. Let us consider some generic set of one or more parameters which we will call

β. We will let u momentarily represent all three flow solution quantities for the continuous

problem. If we fix all other aspects of the fluid flow problem, then we would like to regard

the flow solution as a function of the parameters that are varying, a relationship we would

represent by writing u(β). Although we will frequently use such expressions, they are not

quite proper. We have already discussed the fact that for higher Reynolds numbers, there

may be multiple solutions of a given flow problem, so that the notation u(β), suggesting a

unique solution, is not strictly correct.

However, there is a sort of “local uniqueness” result for solutions to the flow problem. That

is, there are certain generally isolated values of the Reynolds number, where the nature of

the solution changes, and the graph of the solution may bifurcate. If we remove the data at

those critical Reynolds numbers, the remaining solution graph breaks apart into a collection

of open sets, each of which is a smoothly varying function of the Reynolds number, called a

smooth solution branch. In general, this means that for a given set of parameters β0, if we

compute a flow solution u0, we may reasonably write u(β) to represent the local family of flow

55

solutions that lie along the open branch that passes through the given solution u(β0) ≡ u0.

Once we confine our attention to a smooth branch of solutions, we may pose certain natural

questions. We phrase these questions in terms of the continuous problem, though we will be

interested in the discretized problem as well. Questions we might ask about the relationship

between u and β include:

• Suppose that, for some set of parameter values β0, we have computed a particular

solution u0. Can we estimate the value of flow solutions for nearby values of β?

• Can we, in fact, guarantee that there is a solution at a nearby value of β?

• Can we guarantee that the solution is unique?

• If we have the value J(u0) of some functional J at u0, can we estimate the value of J

at flow solutions for nearby values of β?

• At the given solution u0, can we estimate the value of
∂J

∂β
?

We will show that the answer to these questions is generally positive, and that the primary

tools we need are the linearizations (or, for the discrete case, the partial derivatives) of the

state equations with respect to u and β, and the partial derivatives of the state variable u

with respect to the parameters β, called the solution sensitivity.

5.3 The Sensitivity of a Continuous Solution

Let us assume that we have a solution space of pairs ((u, v, p), β) of state variable functions

(u, v, p) and parameter sets β ∈ Rm. We assume that each state function is a suitably

differentiable function defined over the open domain Ω ⊂ Rp and taking values in Rq. We

56

assume that Ω has a piecewise smooth boundary Γ, and we allow the possibility that the

domain Ω depends on β.

We assume that there is a state function, written F ((u, v, p), β) = 0, with u, v ∈ C2(Ω),

p ∈ C1(Ω), and β ∈ Rn. The function F ((u, v, p), β) comprises internal constraints, which

are applied at all points x ∈ Ω, and boundary constraints that hold just at points x ∈ Γ.

A solution of the parameterized Navier Stokes equations may then be considered as a pair

((u, v, p), β) for which the equation F ((u, v, p), β) = 0 holds.

Suppose we have already found a solution to the state equation, that is, a pair ((u0, v0, p0)β0)

from the solution space, which satisfy the state equations. Having found such a solution,

we are interested in understanding how the two components (u, v, p) and β are related, and

whether, for small changes in β0, we can make correspondingly small changes in (u0, v0, p0)

and come up with a new pair that again solves the state equation.

We would like to assert the existence of an implicitly defined function h(β) which allows us

to view the state solution locally as an explicit function of β. The function h(β), if it exists,

should have the property that it solves the flow problem for the parameters β, that is, for β

“near” to β0:

F (h(β), β) = 0 . (5.1)

Moreover, we would like h(β) to be continuous in β, and in fact continuously differentiable.

In that case, assuming that the state system F has a continuous Frechet derivative, we may

differentiate Equation (5.1) with respect to any component parameter βi to arrive at:

Fuvp(h(β), β) hβi
(β) + Fβi

(h(β), β) = 0 . (5.2)

If the function h(β) exists, then we may abuse notation and write (u(β), v(β), p(β)) instead,

to emphasize the idea that, locally at least, the flow solution may be regarded as a function

of the parameters. In that case, instead of hβi
(β) we write (uβi

(β), vβi
(β), pβi

(β)).

57

We call Equation (5.2) the continuous sensitivity equation. We call the quantity uβi
(β)

the continuous sensitivity of the solution component u(β) with respect to the parameter

βi, although this is, of course, simply another name for the partial derivative of u(β) with

respect to βi.

5.4 The Sensitivity of a Discrete Solution

When we talk about the solution of a discrete state equation, we are usually referring to

the solution of a discretized continuous state equation. That is, it is understood that the

discrete state equation was derived, via discretization, from some continuous state equation.

This will be the case for all the problems we consider.

Whether or not there is a corresponding continuous state equation, we will assume that the

discrete state equations do not involve any differentiation or integration with respect to the

parameters, but rather are purely algebraic in uh, vh, ph and β.

In fact, the finite element equations we have been considering are fairly simple functions of

the unknown coefficients uhi , v
h
i and phi . It might seem that the discretized finite element

equations, Equations (4.10)-(4.12) plus the boundary conditions, do not have an algebraic

form, since they involve integrals and derivatives of the state variables with respect to the

spatial variables. But since the basis functions and approximating functions used in the

finite element method are piecewise polynomials, the integrals such as

∫
Ω
Re uh

∂uh

∂x
wi dΩ , (5.3)

are integrals of polynomials. This term, in particular, is equivalent to the expression:

Nw∑
j=1

Nw∑
k=1

(
∫

Ω
Re wj

∂wk
∂x

wi dΩ)uhju
h
k , (5.4)

where the quantity in parentheses is simply a numerical quantity to be determined.

58

Because of complications that may occur with isoparametric elements, or nonpolynomial

source terms, or boundary conditions, these integrals are usually carried out using numerical

quadrature. Nonetheless, it should be clear now that the discretized finite element equations

are merely a set of quadratic equations in the finite element coefficients.

We begin consideration of the discrete case by quoting a version of the implicit function

theorem for Rn. This theorem gives us conditions under which a differentiable relation-

ship involving state variables and parameters guarantees that there is actually an implicitly

defined local differentiable function for the state variables in terms of the parameters.

Theorem 5.1 (The Implicit Function Theorem for Rn) Suppose f : D → Rn, where

D ⊂ Rn ×Rm is an open set, and that f ∈ C1(D), that f(x0, y0) = 0 for some (x0, y0) ∈ D,

and that rank[fx](x0, y0) = n.

Then there exists an open set U ⊂ Rn × Rm, containing (x0, y0), an open set V ⊂ Rm

containing y0, and a function h : V → Rn such that h(y0) = x0 and f(h(y), y) = 0 for all

y ∈ V .

Furthermore, h is uniquely determined by (h(y), y) ∈ U for all y ∈ V , and h ∈ C1(V) and

h′(y) satisfies:

fx(h(y), y)h′(y) + fy(h(y), y) = 0. (5.5)

For our purposes, we want to slightly modify the hypotheses of this theorem, and change

the terminology to fit our own more closely. In particular, we replace the rank condition by

a stronger condition on the solvability of a certain linear system. This is in part because in

order to get the “base solution” ((uh0 , v
h
0 , p

h
0), β0), we will have to solve exactly such a linear

system, and in part because such a formulation is closer to that used for the continuous

problem. In the following theorem, we will commit a slight abuse of notation, by writing

59

uh(β) for the implicit function that was denoted by h(y) in the previous theorem, and uhβ(β)

for the derivatives.

Theorem 5.2 (Local Parameterization of Solutions in Rn) Suppose that we have a

set of n algebraic state equations involving a discrete state variable uh ∈ Rn and a set

of parameters β ∈ Rm, which we write

F h(uh, β) = 0; (5.6)

that these state equations are well-defined and continuously differentiable in both uh and β,

throughout some open domain D ⊂ Rn × Rm; that we have a pair of values uh0 and β0, with

(uh0 , β0) ∈ D, for which F h(uh0 , β0) = 0; and that the linear system of equations

F h
u (uh0 , β0)ψ = φ (5.7)

is uniquely solvable for any value φ.

Then there exists an open set U ⊂ Rn × Rm, containing (uh0 , β0), an open set V ⊂ Rm

containing β0, and a function uh : V → Rn such that uh(β0) = u0 and F h(uh(β), β) = 0 for

all β ∈ V .

Furthermore, the function uh(β) is uniquely determined by (uh(β), β) ∈ U for all β ∈ V , and

uh(β) ∈ C1(V), and the derivative function uhβ(β) satisfies

F h
u (uh(β), β)uhβ(β) + F h

β (uh(β), β) = 0. (5.8)

Proof: Condition (5.7) implies that

rank(F h
u (uh0 , β0)) = n, (5.9)

and since all the other hypotheses of Theorem 5.2 are assumed, we may now assert the

desired result. 2

60

Thus, the implicit function theorem says that if we solve the discrete problem for a particular

set of parameters β0, getting a solution uh0 , then for values of β “near” to β0, there is a

uniquely determined “nearby” state solution value, which we may write as uh(β). The pair

(uh(β), β) satisfy the state equation, and uh(β) is continuously differentiable.

Since the discrete state equations are algebraic, F h
u is simply the Jacobian matrix, and

Condition (5.7) requires that this matrix be nonsingular. Given that, the derivative function

uhβ(β) is defined by a solvable linear system.

Thus if we can assume the conditions of Theorem 5.2, then when we have a particular

solution to the parameterized state equations, we know that there is actually a smoothly

parameterized curve of solutions, which we may write as uh(β), of “nearby” solutions to

“nearby” problems. We are interested in studying exactly how these nearby solutions vary

with changes in the parameter. We make the following definitions:

Definition 5.1 (Discrete Sensitivity Equation) Equation (5.8) is called the discrete

sensitivity equation corresponding to the discrete state equation (5.6).

Definition 5.2 (Discrete Sensitivity) Under the assumptions of Theorem 5.2, the func-

tion uhβ(β) which solves the discrete sensitivity equation (5.8) is defined to be the discrete

sensitivity uh0 with respect to the parameters β.

The expression uhβ(β) stands for the sensitivity of the discrete solution with respect to all of

the parameters. For our problem, uh actually represents three discretized functions, which

are in turn represented by 2Nw+Nq real numbers. Supposing that we haveNPar parameters,

then uhβ(β) could be expressed as a rectangular matrix of 2Nw+Nq rows and NPar columns.

A particular column would represent the sensitivity of all of the solution coefficients with

respect to a particular parameter βi, and we could denote this by uhβi
(β), which is also equal

61

to the partial derivative of uh(β) with respect to βi.

Under the assumption that the state equations F (uh, β) = 0 contain no derivatives of the

state variables with respect to β, the sensitivity equation (5.8) is linear in the unknown

function uhβ.

Perhaps we should emphasize the meaning of Equation (5.8). It tells us that to compute

the sensitivity of a particular solution to the state equations, we must differentiate the state

equations with respect to the parameter of interest, and evaluate the resulting quantities at

the particular solution, to arrive at the sensitivity equations.

5.5 The Discretized Sensitivity of a Solution

If we start with a continuous state equation for a state variable u, discretize it to a system

for a discrete state variable uh, we know from the previous section that we may also derive

a sensitivity equation from this discretized state equation, for a quantity uhβ, and that the

sensitivity uhβ is exactly the partial derivative of the discrete state variable uh with respect

to β.

Suppose, instead, that, beginning with the same continuous state equation, we first derive

the continuous sensitivity equation, and then discretize that. We have interchanged the

two operations that gave us the sensitivity uhβ. What can we say about the results of this

operation?

When we discretize the state equation first, we derive the sensitivity equation by differenti-

ation of the discretized system. This can require the differentiation of numerous terms that

do not appear directly in the state equation, but are simply part of the discretization process

that may depend on the parameters, such as the location of quadrature points, the area of

finite elements, the form of basis functions, and so on.

62

By contrast, it is generally easy to differentiate the continuous state equation with respect

to a parameter. Once this is done, the same process that discretized the state equation can

be applied to the sensitivity equation. This means that there is far less work required to

design the algorithm, and we will see later that there will also be far less work to carry out

the algorithm as well.

Before we proceed, we give a name to the solution of the system that is produced by dis-

cretizing the continuous sensitivity equation.

Definition 5.3 (Discretized Sensitivity of a Solution) Suppose that we have a contin-

uous state equation F (u, β) = 0 with solution u, and the corresponding continuous sensi-

tivity equation with sensitivity uβ. Suppose that a discretization can be applied, yielding a

discretized state equation F h(uh, β) = 0. Suppose that this same discretization can be ap-

plied to the continuous sensitivity equation (5.2), yielding what will be called the discretized

sensitivity equation:

(Fu)
h(uh(β), β) (uβ)h + (Fβ)h(uh(β), β) = 0 . (5.10)

The solution (uβ)h of this equation, if any, is called the discretized sensitivity of the

continuous solution u.

Because a discretization operation has been applied, the discretized sensitivity equation is not

guaranteed to be a sensitivity equation, that is, it need not represent the defining equation

for a partial derivative.

Moreover, when we solve the discretized sensitivity equations, the discretized sensitivities

are not guaranteed to actually be the partial derivatives of any quantity. In particular, they

are not guaranteed to be the partial derivatives of the discrete state variables with respect

to the parameters.

63

It is easy to miss this fact, because in many common cases, the operations of differentiation

and discretization may commute. That is, we may have the case that:

(uβ)h = uhβ, (5.11)

but such a situation must be verified.

In our setting, because of the convergence properties of the finite element method, we can

assert that, as h → 0 the discretized sensitivity (uβ)h approaches uβ, the sensitivity of the

continuous solution. But even this statement doesn’t guarantee commutativity, since we

haven’t shown that uhβ also approaches uβ.

5.6 Example: An Explicit Parameter in a Linear ODE

We will now consider a simple case where the sensitivities are easy to compute. Consider the

following linear ordinary differential equation, with parameter β, which will play the role of

our continuous state equation:

du(t, β)

dt
= β u(t, β), (5.12)

u(0, β) = u0. (5.13)

For any particular value of β, the exact solution, that is, our continuous state solution, is:

u(t, β) = u0 e
βt, (5.14)

from which we may immediately compute the continuous sensitivity:

uβ(t, β) =
∂u

∂β
= u0 t e

βt . (5.15)

We now show that we do not need to have an explicit formula for the dependence of u on β

in order to compute uβ. To show this, we compute the continuous sensitivity equations:

duβ(t, β)

dt
= β uβ(t, β) + u(t, β), (5.16)

64

uβ(0, β) = 0. (5.17)

For a fixed value of β, we can solve this system directly for uβ(t, β). We would not need

a formula for u valid for all β, but only the form of u(t, ∗) for the current values of the

parameters.

Now we suppose that we wish to define and solve a discretized version of this problem. We

discretize by setting down a mesh of equally spaced points ti, with a spacing of h, and with

the initial point set to t0 = 0, and then using the forward Euler approximation for the

derivative with respect to t. Then we may immediately write the resulting discrete state

equations as:

uh(ti+1, β)− uh(ti, β)

h
= βuh(ti, β), (5.18)

uh(t0, β) = u0. (5.19)

Now suppose that we have solved the discrete state equation for the state variables uh(ti, β).

We may then differentiate the discrete state equations with respect to β to get the sensitivity

equations for the discretized problem:

uhβ(ti+1, β)− uhβ(ti, β)

h
= βuhβ(ti, β) + uh(ti, β), (5.20)

uhβ(t0, β) = 0 . (5.21)

If we instead discretize the continuous sensitivity equation, we arrive at the discretized

sensitivity equations:

(uβ)h(ti+1, β)− (uβ)h(ti, β)

h
= β(uβ)h(ti, β) + uh(ti, β), (5.22)

(uβ)h(t0, β) = 0 . (5.23)

The equations defining uhβ and (uβ)h are the same, and so their solutions must be the same.

For this problem and this discretization, then, differentiation and discretization may be

applied in either order without affecting the result.

65

5.7 Sensitivities for Geometric Parameters

We have seen that the derivation of the sensitivity equations can be quite straightforward

when the parameter in question appears explicitly in the state equations. Simply differenti-

ating the state equations produces the desired system.

But geometric parameters do not appear in such a simple way. For instance, a state equation

involving a geometric parameter might have the form u(β) = 0, where β is to be interpreted

here as a spatial location. Our simple technique of differentiation will not produce a proper

result here.

To produce a proper formulation of the sensitivity with respect to a geometric parameter,

it is best, if possible, to return to the definition of a sensitivity as a difference quotient. In

other words, given a solution u(x, β0), we can compute its sensitivity to the parameter β by

imagining that we compute a solution at β0 + ∆β, and considering the limit

uβ(x, β0) = lim
∆β→0

u(x, β0 + ∆β)− u(x, β0)

∆β
. (5.24)

The difference quotient makes a comparison between values of u at the same spatial coor-

dinates. Because a geometric parameter can actually alter the shape of the region, we may

find that even for small perturbations of the parameter, a particular point x no longer lies

within the region, and has no associated value of u. This problem is particularly acute when

the point x lies on the boundary of the region. However, there are generally ways to handle

such difficulties by extending or extrapolating the solution as necessary. We will see, when

we consider the sensitivities with respect to bump parameters, that for our formulation, we

can always choose the sign of the perturbation of the bump parameter so that the point of

interest remains in the flow region, and hence has defined solution values that may be used

to make the necessary comparison.

66

It should be clear that geometric parameters are more difficult to handle when computing

sensitivities. In the next chapter, we will see that geometric parameters can also create

situations in which the discretization and differentiation operations do not commute.

67

Chapter 6

SENSITIVITIES FOR AN
EXPLICIT PARAMETER

6.1 Introduction

We now consider the computation of sensitivities for a Navier Stokes problem. We are

interested in both the continuous and discrete problems, and we would like an idea of the

form of the resulting sensitivity equations, and perhaps an idea of what a sensitivity “looks

like” for such a problem.

We consider how, starting with a general set of continuous Navier Stokes equations, we may

derive the sensitivity equations with respect to the Reynolds number Re, or a parameter

λ that controls the strength of the inflow. We derive the corresponding discrete sensitivity

equations for the discretized Navier Stokes equations. We then discretize the continuous

sensitivity equation, to derive the equation for the discretized sensitivities.

We make a simple check of these calculations for the Poiseuille flow solution, computing the

continuous, discrete and discretized sensitivities directly, and plugging them into the derived

equations.

We display pictures of some computations of sensitivities for a discrete problem involving

68

fluid flow in a channel with a bump. We also exhibit a table showing excellent agreement

between the discrete sensitivities and the discretized sensitivities.

6.2 Re-Sensitivity Equations

Let us suppose that our parameter is the Reynolds number, Re, and that for a particular value

of Re0, we have a state solution (u0, v0, p0). We assume that there is an open neighborhood

of Re0, so that, for any Re in that neighborhood, and for any (x, y) in the flow region, the

mixed derivatives of the state variables with respect to Re and either x or y exist and are

continuous. Then we can apply Clairaut’s theorem, which allows us to interchange the order

of differentiations with respect to Re and either x or y.

The Reynolds number appears explicitly, and in a simple way, in the horizontal and vertical

momentum equations. We differentiate the continuous state equations with respect to Re,

and where necessary, interchange so that differentiation of state variables with respect to Re

happens first. We then abbreviate the expression
∂u

∂Re
as uRe.

With these assumptions, we arrive at the following set of continuous Re-sensitivity equations:

−(
∂2uRe
∂x2

+
∂2uRe
∂y2

) + Re(uRe
∂u

∂x
+ u

∂uRe
∂x

+ vRe
∂u

∂y
+ v

∂uRe
∂y

+
∂pRe
∂x

)

= −(u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
) (6.1)

−(
∂2vRe
∂x2

+
∂2vRe
∂y2

) + Re(uRe
∂v

∂x
+ u

∂vRe
∂x

+ vRe
∂v

∂y
+ v

∂vRe
∂y

+
∂pRe
∂y

)

= −(u
∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
) (6.2)

∂uRe
∂x

+
∂vRe
∂y

= 0 (6.3)

with differentiated boundary conditions:

vRe(x, y) = 0 along the boundary;

69

uRe(x, y) = 0 along the inflow boundary, the walls, and the bump;

∂uRe
∂x

(xmax, y) = 0 on the outflow;

pRe(xmax, ymax) = 0.

To get the discrete Re-sensitivity equations, we recall the discrete state equations:

∫
Ω

(
∂uh

∂x

∂wi
∂x

+
∂uh

∂y

∂wi
∂y

+ Re(uh
∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)wi) dΩ = 0 (6.4)∫

Ω
(
∂vh

∂x

∂wi
∂x

+
∂vh

∂y

∂wi
∂y

+ Re(uh
∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)wi) dΩ = 0 (6.5)∫

Ω
(
∂uh

∂x
+
∂vh

∂y
)qi dΩ = 0 (6.6)

and boundary conditions:

vh(x, y) = 0 at boundary velocity nodes; (6.7)

uh(0, y) = Inflowh(y, λ) at inflow velocity nodes; (6.8)

uh(x, y) = 0 at velocity nodes on the walls and the bump; (6.9)

ph(xmax, ymax) = 0 for the upper right pressure node. (6.10)

If we now differentiate these equations with respect to Re, bringing the differentiation inside

the integral signs and interchanging differentiations where necessary, we arrive at the discrete

Re-sensitivity equations:

∫
Ω

(
∂uhRe
∂x

∂wi
∂x

+
∂uhRe
∂y

∂wi
∂y

+ Re(uhRe
∂uh

∂x
+ uh

∂uhRe
∂x

+ vhRe
∂uh

∂y
+ vh

∂uhRe
∂y

+
∂phRe
∂x

)wi) dΩ

=
∫

Ω
−(uh

∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)wi dΩ (6.11)∫

Ω
(
∂vhRe
∂x

∂wi
∂x

+
∂vhRe
∂y

∂wi
∂y

+ Re(uhRe
∂vh

∂x
+ uh

∂vhRe
∂x

+ vhRe
∂vh

∂y
+ vh

∂vhRe
∂y

+
∂phRe
∂y

)wi) dΩ

=
∫

Ω
−(uh

∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)wi dΩ (6.12)

70

∫
Ω

(
∂uhRe
∂x

+
∂vhRe
∂y

)qi dΩ = 0 (6.13)

with boundary conditions:

vhRe(x, y) = 0 for boundary velocity nodes;

uhRe(x, y) = 0 for velocity nodes on the inflow, walls, and bump;

phRe(xmax, ymax) = 0 at the upper right pressure node.

On the other hand, if we apply the finite element method to the sensitivity equations for the

continuous system, we get the equations for the discretized Re-sensitivities:

∫
Ω

(
∂(uRe)

h

∂x

∂wi
∂x

+
∂(uRe)

h

∂y

∂wi
∂y

+ Re((uRe)
h∂u

h

∂x
+ uh

∂(uRe)
h

∂x
+ (vRe)

h∂u
h

∂y
+ vh

∂(uRe)
h

∂y
+
∂(pRe)

h

∂x
)wi) dΩ

=
∫

Ω
−(uh

∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)wi dΩ (6.14)∫

Ω
(
∂(vRe)

h

∂x

∂wi
∂x

+
∂(vRe)

h

∂y

∂wi
∂y

+ Re((uRe)
h∂v

h

∂x
+ uh

∂(vRe)
h

∂x
+ (vRe)

h∂v
h

∂y
+ vh

∂(vRe)
h

∂y
+
∂(pRe)

h

∂y
)wi) dΩ

=
∫

Ω
−(uh

∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)wi dΩ (6.15)∫

Ω
(
∂(uRe)

h

∂x
+
∂(vRe)

h

∂y
)qi dΩ = 0 (6.16)

with boundary conditions:

(vRe)
h(x, y) = 0 for boundary velocity nodes;

(uRe)
h(x, y) = 0 for velocity nodes on the inflow, walls, and bump;

(pRe)
h(xmax, ymax) = 0 at the upper right pressure node.

A glance at the discrete sensitivity equations and the discretized sensitivity equations shows

that we have arrived at the same system; hence, for the Re parameter, the discrete and

discretized sensitivities are identical.

71

6.3 λ-Sensitivity Equations

We now derive the sensitivity equations for λ, a parameter that influences the strength of

the Inflow function. Exactly as for Re, we proceed to derive the continuous λ-sensitivity

equations:

−(
∂2uλ
∂x2

+
∂2uλ
∂y2

) +Re(uλ
∂u

∂x
+ u

∂uλ
∂x

+ vλ
∂u

∂y
+ v

∂uλ
∂y

+
∂pλ
∂x

) = 0 (6.17)

−(
∂2vλ
∂x2

+
∂2vλ
∂y2

) +Re(uλ
∂v

∂x
+ u

∂vλ
∂x

+ vλ
∂v

∂y
+ v

∂vλ
∂y

+
∂pλ
∂y

) = 0 (6.18)

∂uλ
∂x

+
∂vλ
∂y

= 0 (6.19)

with differentiated boundary conditions:

vλ(x, y) = 0 along the boundary;

uλ(x, y) =
∂Inflow(y, λ)

∂λ
along the inflow boundary;

uλ(x, y) = 0 along the walls, and the bump;

∂uλ
∂x

(xmax, y) = 0 on the outflow;

pλ(xmax, ymax) = 0.

As for the Re parameter, we are about to discover that the discrete sensitivity equations

and the discretized sensitivity equations are identical. Therefore, we will only write out one

set of equations.

Applying the finite element method to the continuous sensitivity equations, we get the

discretized λ-sensitivity equation:∫
Ω

(
∂(uλ)

h

∂x

∂wi
∂x

+
∂(uλ)

h

∂y

∂wi
∂y

+ Re((uλ)
h∂u

h

∂x
+ uh

∂(uλ)
h

∂x
+ (vλ)

h∂u
h

∂y
+ vh

∂(uλ)
h

∂y
+
∂(pλ)

h)

∂x
)wi) dΩ = 0(6.20)∫

Ω
(
∂(vλ)

h

∂x

∂wi
∂x

+
∂(vλ)

h

∂y

∂wi
∂y

72

+ Re((uλ)
h∂v

h

∂x
+ uh

∂(vλ)
h

∂x
+ (vλ)

h∂v
h

∂y
+ vh

∂(vλ)
h

∂y
+
∂(pλ)

h)

∂y
)wi) dΩ = 0(6.21)∫

Ω
(
∂(uλ)

h

∂x
+

∂(vλ)
h

∂y
)qi dΩ = 0 (6.22)

with boundary conditions:

(vλ)
h(x, y) = 0 for boundary velocity nodes;

(uλ)
h(0, y) =

∂Inflowh(y, λ)

∂λ
for outflow velocity nodes;

(uλ)
h(x, y) = 0 for velocity nodes on the walls and bump;

(pλ)
h)(xmax, ymax) = 0 for the upper right pressure node.

Again, because the discrete sensitivity equations are identical in form to the discretized

sensitivity equations, we may assert the equality of the discrete sensitivities uhλ and the

discretized sensitivities (uλ)
h.

6.4 Discretization and Differentiation May Commute

For both the Reynolds and inflow parameters, we reached the same set of equations by two

distinct methods, starting from the continous state equations:

• Discretize to determine the discrete state equations, then differentiate to determine

the discrete sensitivity equations;

• Differentiate to determine the continuous sensitivity equations, then discretize to de-

termine the discretized sensitivity equations.

The commutation of these two operations, if it occurs, is quite convenient. It allows us

to do the sensitivity operations in a continuous space, where they are easy to perform,

and to apply the discretization last, which means we can rely on a variety of theorems

73

for the finite element method to show convergence of the discretized sensitivities to the

continuous sensitivities. Thus, if we have commutation, then at the same time, the discretized

sensitivities are the exact partial derivatives of the discrete solution with respect to the

parameter (useful for various calculations), and there are the finite element approximants to

the continuous sensitivities (which is useful for convergence analysis).

In fact, we can show that this commutation occurs between the application of the finite

element method and differentiation with respect to parameters, as long as the parameters

don’t influence the region, the basis functions, or other items that would affect the finite

element implementation:

Theorem 6.1 (Commutation for Non-Geometric Parameters) Consider a system of

differential equations F (u, β) = 0 with boundary conditions G(u, β) = 0 for the unknown

function u(x, y). Suppose that this system is suitable for treatment by the finite element

method. Suppose that the implicit function theorem may be applied, so that u(x, y) may be

regarded as a continuously differentiable function of β, which we write u(x, y, β). Suppose

that F and G are continuously differentiable in their arguments u and β. Suppose that the

operations of differentiation and discretization commute on both F and G, so that we may

write

F h
u = (F h)u = (Fu)

h (6.23)

F h
β = (F h)β = (Fβ)h (6.24)

Gh
u = (Gh)u = (Gu)

h (6.25)

Gh
β = (Gh)β = (Gβ)h (6.26)

Suppose, finally, that the parameter β has no influence on the shape of the domain Ω, the

value of basis functions, or on other such features of the finite element discretization. Then

the discretized sensitivity equations are identical to the sensitivity equations for the discretized

74

system.

Proof: The continuous sensitivity equations will have the form:

Fu(u, β)uβ + Fβ(u, β) = 0 (6.27)

Gu(u, β)uβ +Gβ(u, β) = 0 (6.28)

and the discretized sensitivity equations will have the form:

∫
Ω

(F h
u (uh, β)(uβ)h + F h

β (uh, β)) wi dΩ = 0 (6.29)

Gh
u(u

h, β)(uβ)h +Gh
β(uh, β) = 0 (6.30)

where wi is a “typical” basis function. The discretized state equations have the form:

∫
Ω
F h(uh, β) wi dΩ = 0 (6.31)

Gh(uh, β) = 0 (6.32)

and the discrete sensitivity equations may be computed by carrying out the operations:

D

Dβ

∫
Ω
F h(uh, β) wi dΩ = 0 (6.33)

D

Dβ
Gh(uh, β) = 0 (6.34)

Now because the domain of integration does not depend on β, we may bring the differen-

tiation under the integral sign. Because the basis function wi does not depend in any way

on β, we have only to compute the total derivative of F h, so that the discrete sensitivity

equations are:

∫
Ω

(F h
u (uh, β)uhβ + F h

β (uh, β)) wi dΩ = 0 (6.35)

Gh
u(u

h, β)uhβ +Gh
β(uh, β) = 0 (6.36)

But this system is identical in form to the discretized sensitivity equation, and hence their

solutions must also be identical. 2

75

6.5 Exact Example: Poiseuille Sensitivities

For the Poiseuille flow problem, consider the influence of λ, the strength of the inflow field,

upon the solution defined by Equations (3.6)-(3.8). The continuous sensitivities may be

immediately written down from the explicit formula for the solution:

uλ =
∂u(x, y)

∂λ
= y(ymax− y) (6.37)

vλ =
∂v(x, y)

∂λ
= 0 (6.38)

pλ =
∂p(x, y)

∂λ
= 2(xmax− x)/Re (6.39)

We can make some simple conclusions from this information. For instance, λ has no influence

on the vertical velocity anywhere. That’s obvious, actually, since, for every value of λ the

vertical velocity is zero everywhere. Note also how the influence of λ on the horizontal

velocity varies: it is zero along the walls (where u is always zero) and is greatest at the

center line y = ymax/2, because changes in the velocity are proportional to the value of the

velocity, and the velocity is greatest along the center line.

The Reynolds number Re might also be considered a parameter for this problem, but would

make a singularly uninteresting flow:

uRe = 0 (6.40)

vRe = 0 (6.41)

pRe = −2λ(xmax− x)/Re2 (6.42)

The continuous sensitivity equations derived earlier may be checked by plugging in these

continuous sensitivity functions. For the Re parameter, note that the vertical momentum and

continuity equations are identically zero, while the horizontal momentum equation reduces

76

Figure 6.1: Discrete velocity sensitivity with respect to the inflow parameter λ.

to:

Re
∂pRe
∂x

= −∂p
∂x
, (6.43)

which is easily verified by plugging in the values of p and pRe.

For the λ parameter, the system simplifies to

−∂
2uλ
∂y2

+Re
∂pλ
∂x

= 0 (6.44)

∂uλ
∂x

= 0 (6.45)

which is again easy to verify.

6.6 Computational Example: Flow Past a Bump

In this section, we display plots of the discrete sensitivities of the velocity for a flow prob-

lem with parameters (λ, α,Re). The base solution was calculated at parameter values

(0.25, 0.25, 5.0). The underlying grid had a mesh parameter of h = 0.25.

For clarity, we have only shown the sensitivities at every other node. Also, the vectors have

77

Figure 6.2: Discrete velocity sensitivity with respect to the Re parameter.

been resized so that the largest vector has a fixed size; thus, comparisons of the strength

of the influence of different parameters is not possible. However, in any particular plot, the

relative sizes of the vectors are meaningful, and represent the strength of the influence of the

parameter on each particular velocity. A similar, but less enlightening, contour plot could

be shown for pressure.

In the resulting plots, keep in mind that what we are displaying is a velocity increment that

should be added to the current velocity if the given parameter is increased. The discrete

velocity sensitivities for the inflow and Re parameters satisfy the discrete continuity equation,

a fact suggested by the form of the displayed solutions in Figure 6.1 and Figure 6.2. Moreover,

as can be judged from the plots, the λ-sensitivity equations have an inflow boundary term,

while the Re-sensitivity equations have zero boundary conditions, but have source terms

throughout the region. Note in Figure 6.1 how the inflow parameter affects the velocity field

throughout the entire region, while Figure 6.2 shows that the influence of the Re parameter

is restricted to the area near the bump.

78

Table 6.1: Finite difference check of λ-sensitivities.
Variable ‖uhλ‖∞ ‖∆(uh)/∆(λ)‖∞ ‖Difference‖∞

U 1.167 1.167 1.1E-08
V 0.2067 0.2067 6.7E-09
P 1.140 1.140 5.6E-08

Table 6.2: Finite difference check of Re-sensitivities.
Variable ‖uhRe‖∞ ‖∆(uh)/∆(Re)‖∞ ‖Difference‖∞

U 3.118E-03 3.118E-03 2.1E-09
V 2.460E-03 2.460E-03 1.3E-09
P 5.334E-02 5.334E-02 5.2E-08

6.7 Comparison of Sensitivities with Finite Difference

Estimates

We have mentioned that the discrete sensitivities are an inexpensive estimate of the partial

derivatives of the discrete state variables with respect to a parameter. We have also noted

that the accuracy of this approximation is limited, and depends on the fineness of the mesh

parameter h.

To illustrate that the sensitivities can, in fact, provide a very good approximation in prac-

tice, Tables 6.1 and 6.2 compare the sensitivities with an estimate made using finite differ-

ences. The problem involves three parameters, (λ, α,Re), and our solution was computed at

(0.5, 0.5, 10.0), on a grid with h = 0.125. Here we will only look at the results for Re and λ.

These results show almost perfect agreement between the two calculations.

The formula for ∆(λ) requires the value of ε, the relative accuracy for double precision

arithmetic on the given computer, which, for the DEC Alpha, is roughly 1.1E-16:

∆(λ) = 10ε
1
2 sign(λ) (‖λ‖+ 1), (6.46)

which results in a relative perturbation of about 1.0E-07. The same sort of formula is used

79

to compute ∆(Re).

80

Chapter 7

SENSITIVITIES FOR AN IMPLICIT
PARAMETER

7.1 Introduction

In Chapter 6, we found that we could derive the sensitivity equations for an explicit variable

by simple differentiation of the state equations. But if our parameter is implicit, that is, does

not show up directly in the state equations, then simply formally differentiating the state

equations will produce a homogeneous sensitivity system with zero solution, which can’t be

correct if the parameter does actually have some influence on the solution.

To derive the correct approach for computing such sensitivities, we need to return to the

definition of a sensitivity as a change in the solution caused by changes in the parameter. In

our examples, the influence of the parameter will show up in a nonzero source term in the

boundary conditions.

The implicit parameters we will consider affect the geometry of the region. This means that

we may have to make special adjustments when computing a partial derivative or making a

finite difference quotient, at a fixed point in space. Special difficulties occur for points on the

boundary, since even for small perturbations of the parameter, such a point is likely to move

81

to the interior or exterior of the region. Moreover, the very structure of the discretization

method will change, including the location of nodes, the shape of elements, and the definition

of basis functions.

7.2 The Continuous α-Sensitivity Equations

We consider our standard problem of fluid flow in a channel with a bump, and attempt to

derive the continuous sensitivity equations for a parameter that affects the shape of that

bump. As usual, we denote this shape parameter by α, and note that while there might

actually be several shape parameters in a particular problem, we will restrict our attention

to a single one.

Let us suppose, then, that we have a particular parameter value α0 and a solution (u, v, p)(α0)

to the corresponding flow problem. We will first consider the case of a point (x, y) lying in

the interior of the flow region. We will do so by computing a second flow solution at a

slightly altered parameter value, α0 +∆α and comparing the two solutions at (x, y). As long

as the influence of the parameter α on the shape of the region is at least continuous, then

because the point is contained strictly in the interior of the region, for all sufficiently small

values of ∆α, the point will remain in the interior. Therefore, for both the unperturbed

and perturbed parameter values, there will be a flow solution defined at the point. Hence,

at such a point (x, y), we can define difference quotients of the flow solutions, and hence

functions uα, vα and pα which are the limits of those difference quotients. That is:

uα(x, y) ≡ lim
∆α→0

u(α0 + ∆α)− u(α0)

∆α
. (7.1)

These limit functions, the continuous sensitivities, will satisfy the homogeneous Oseen equa-

82

tions:

−(
∂2uα
∂x2

+
∂2uα
∂y2

) +Re (uα
∂u

∂x
+ u

∂uα
∂x

+ vα
∂u

∂y
+ v

∂uα
∂y

+
∂pα
∂x

) = 0 (7.2)

−(
∂2vα
∂x2

+
∂2vα
∂y2

) +Re (uα
∂v

∂x
+ u

∂vα
∂x

+ vα
∂v

∂y
+ v

∂vα
∂y

+
∂pα
∂y

) = 0 (7.3)

∂uα
∂x

+
∂vα
∂y

= 0 (7.4)

To complete the specification of our continuous sensitivity system, we have only to determine

the form of the boundary conditions.

The pressure condition is easily disposed of. For every value of α, we require that p(xmax, ymax) =

0. Note that the values of xmax and ymax do not depend on the parameter; hence there is

little doubt about how to take a difference quotient of this condition, and the limit operation

results in the condition:

pα(xmax, ymax) = 0. (7.5)

Now let us consider a point on a stationary wall. Both the horizontal and vertical velocities

are zero here, for every value of α, and no pressure condition is applied. Hence the parameter

can exert no influence whatsoever, and the appropriate boundary conditions are

uα = vα = 0 along the fixed walls. (7.6)

For similar reasons, we also easily determine the boundary condition:

∂uα
∂x

= vα = 0 on the outflow boundary. (7.7)

The fact that the inflow velocity specification is always the same, regardless of the value of

α means that we can also conclude that

uα = vα = 0 on the inflow boundary. (7.8)

83

At this point, we have almost specified a homogeneous problem. If the boundary condition

along the bump were zero, then the solution to the Oseen problem would be the zero flow.

Since apparently, this boundary condition will be the only way for the solution to be nonzero,

the correct computation and accurate evaluation of this condition is crucial.

Recall that we have a function that defines the surface of the bump, of the form y =

Bump(x, α). We now consider a fixed point (x, y) which, for the value α = α0 lies on the

bump surface. We want to analyze how the horizontal velocity at that point must be affected

by changes in α. That means we must look at the value of u(x, y) for solutions at nearby

values of α. Of course, for any nearby value of α, the point (x, y) is probably no longer

lying on the bump surface, and instead will probably lie outside the region, where we have

no solution information, or in the interior, where we do. We much prefer the latter case. It

seems reasonable to demand that our Bump function be specified so that, if a point (x, y) lies

on the bump surface for the parameter value α0, then it either remains on the bump surface

for all values of α (the endpoints of the bump), or else, we can always find a perturbation

∆α such that (x, y) lies strictly within Ω(α) for every α strictly between α0 and α0 + ∆α.

Here, the perturbation ∆α may in fact be negative.

Now we must try to compute an estimate for the value u(x, y, α0 + ∆α) so that we can make

our comparison. Since (x, y) was on the bump surface for α = α0, and we have only changed

α a small amount, it is reasonable to try to estimate the value of u at (x, y) by referring to

its value at the nearby point (x,Bump(x, α0 + ∆α)). Since this reference point lies on the

bump, we know that the value of u there is exactly zero:

u(x,Bump(x, α0 + ∆α), α0 + ∆α) = 0. (7.9)

Using this information, we can use a Taylor estimate to deduce the value of u at (x, y):

u(x, y, α0 + ∆α) = u(x,Bump(x, α0 + ∆α), α0 + ∆α) (7.10)

84

Figure 7.1: Estimating the solution at a moving point.
The original solution u(x, y, α0) is the solid curve.

The perturbed solution u(x, y, α0 + ∆α) is the dashed curve.
A two-term Taylor estimate approximates u(x, α0, α0 + ∆α).

+
∂u

∂y
(x, ξ, α0 + ∆α) (y −Bump(x, α0 + ∆α)), (7.11)

where ξ lies between Bump(x, α0 + ∆α) and y. Using Equation (7.9) and the fact that

y = Bump(x, α0), our equation becomes:

u(x, y, α0 + ∆α) =
∂u

∂y
(x, ξ, α0 + ∆α) (Bump(x, α0)−Bump(x, α0 + ∆α)), (7.12)

and if we assume that u is, at least locally, twice continuously differentiable in y, we can

make an estimate using known quantities, with an error term:

u(x, y, α0 + ∆α) =
∂u

∂y
(x, y, α0 + ∆α) (Bump(x, α0)−Bump(x, α0 + ∆α))

+O((Bump(x, α0)−Bump(x, α0 + ∆α))2). (7.13)

Figure 7.1 suggests how we are going to estimate the value of uα.

We now set up our difference quotient estimate, using the fact that u(x, y, α0) = 0:

uα(x, y, α0) =
∂u

∂α
(x, y, α0) (7.14)

85

= lim
∆α→0

u(x, y, α0 + ∆α)− u(x, y, α0)

∆α
(7.15)

= lim
∆α→0

∂u
∂y

(x, y, α0 + ∆α)(Bump(x, α0)−Bump(x, α0 + ∆α)

∆α
(7.16)

= −∂u
∂y

(x, y, α0)
∂Bump

∂α
(x, α0). (7.17)

A second, and quicker, way to derive this same formula works by considering a point that

moves with the surface of the bump. Such a point would have a varying y coordinate

y(α) = Bump(x, α). Then, for every value of α, the point lies on the bump and so the value

of its horizontal velocity is zero. Therefore, we may assert:

Du

Dα
(x,Bump(x, α), α) =

∂u

∂y

∂Bump(x, α)

∂α
+
∂u

∂α
= 0, (7.18)

which immediately yields Equation (7.17).

Similar manipulations allow us to conclude that

vα(x,Bump(x, α), α) = −∂v
∂y

Bump(x, α)

∂α
. (7.19)

These two equations may be regarded as boundary conditions that are to replace the usual

conditions on u and v on the bump. Our continuous α-sensitivity boundary conditions

therefore have the form:

uα(0, y) = 0 on the inflow and walls;

vα(0, y) = 0 on the inflow, outflow and walls;

uα(x, y) = −∂u
∂y

∂Bump(x, α)

∂α
on the bump;

vα(x, y) = −∂v
∂y

∂Bump(x, α)

∂α
on the bump;

∂uα
∂x

(xmax, y) = 0;

pα(xmax, ymax) = 0.

86

These boundary conditions, together with the homogeneous Oseen equations, make up our

continuous sensitivity system for the implicit parameter α.

7.3 The Discrete α-Sensitivity Equations

To derive the discrete α-sensitivity equations, we begin by writing out the discrete state

equations (4.10), (4.11), and (4.12). We intend to differentiate these with respect to the

shape parameter α. However, we cannot proceed by simply bringing the differentiation

operator inside the integral; the case of α is special, because the domain of integration

depends on α. We will try to emphasize that point in this section by dutifully designating

the region as Ω(α).

Thus, instead of the general rule:

∂

∂β

∫
Ω
f(x, y, β) dxdy =

∫
Ω

∂f(x, y, β)

∂β
dxdy, (7.20)

which holds for differentiable f and a domain of integration which does not depend on β,

we must use the rule:

∂

∂α

∫
Ω(α)

f(x, y, α) dxdy =
∫

Ω(α)

∂f(x, y, α)

∂α
dxdy (7.21)

+
∫

Γ(α)
f(x(s), y(s), α)

dn̂(s)

dα
ds. (7.22)

Here, the expression
dn̂(s)

dα
refers to changes in the outward unit normal vector along the

boundary Γ(α). This formula tells us that a change in β causes changes to the original

integral in two ways: the integrand f changes in the original integration region, and the

region of integration itself Ω changes. We suggest this situation in Figure 7.2.

Note that this extra term comes about because of the fact that the finite element method

uses an integral. If our discrete state equations had been derived from the finite difference

method, no such extra term would arise.

87

Figure 7.2: How an integral changes when the integrand and region both vary.
We compare changes in u over the original region.

We must also account for changes where the region expands.

With this formula as our guide, we may now proceed to derive the discrete α-sensitivity

equations for the discretized finite element state equations. In this set of equations, we have

suppressed the indexing of the basis functions wi and qi, since we are going to need to take

partial derivatives of these functions:

∫
Ω(α)

(
∂uhα
∂x

∂w

∂x
+
∂uhα
∂y

∂w

∂y
+Re(uhα

∂uh

∂x
+ uh

∂uhα
∂x

+ vhα
∂uh

∂y
+ vh

∂uhα
∂y

+
∂phα
∂x

)w) dΩ =

−
∫

Ω(α)
(
∂uh

∂x

∂wα
∂x

+
∂uh

∂y

∂wα
∂y

+Re(uh
∂uh

∂x
+ uh

∂uh

∂x
+ vh

∂uh

∂y
+ vh

∂uh

∂y
+
∂ph

∂x
)wα) dΩ

−
∫

Γ(α)
(
∂uh

∂x

∂w

∂x
+
∂uh

∂y

∂w

∂y
+Re(uh

∂uh

∂x
+ vh

∂uh

∂y
+
∂ph

∂x
)w)

dn̂

dα
dΓ

(7.23)∫
Ω(α)

(
∂vhα
∂x

∂w

∂x
+
∂vhα
∂y

∂w

∂y
+Re(uhα

∂vh

∂x
+ uh

∂vhα
∂x

+ vhα
∂vh

∂y
+ vh

∂vhα
∂y

+
∂phα
∂y

)w) dΩ

= −
∫

Ω(α)
(
∂vh

∂x

∂wα
∂x

+
∂vh

∂y

∂wα
∂y

+Re(uh
∂vh

∂x
+ uh

∂vh

∂x
+ vh

∂vh

∂y
+ vh

∂vh

∂y
+
∂ph

∂y
)wα) dΩ

−
∫

Γ(α)
(
∂vh

∂x

∂w

∂x
+
∂vh

∂y

∂w

∂y
+Re(uh

∂vh

∂x
+ vh

∂vh

∂y
+
∂ph

∂y
)w)

dn̂

dα
dΓ

88

(7.24)∫
Ω(α)

(
∂uhα
∂x

+
∂vhα
∂y

)q dΩ = −
∫

Ω(α)
(
∂uh

∂x
+
∂vh

∂y
)qα dΩ−

∫
Γ(α)

(
∂uh

∂x
+
∂vh

∂y
)q
dn̂

dα
dΓ

(7.25)

The complicated form of these equations may be something of a surprise. Notice, though,

that the left hand side, involving the unknowns, has the same form as the discrete sensitivity

systems for Re and λ. The complications show up only on the right hand side. Aside from the

new boundary integral over Γ, something else has entered the equations: partial derivatives

of basis functions w and q with respect to the parameter. This is a peculiarly unwelcome

development since it will require a careful analysis of the dependence of the basis functions

upon the node locations, and their dependence, in turn, on the value of α.

The boundary conditions are derived in the usual way, that is, by differentiating them, except

that the condition on the bump must be deduced as described earlier for the continuous

sensitivity equation. The result is:

uhα(x, y) = 0 at inflow and wall velocity nodes;

vhα(x, y) = 0 at inflow, outflow and wall velocity nodes;

uhα(x, y) = −∂u
h

∂y

∂Bump(x, α)

∂α
at bump velocity nodes;

vhα(x, y) = −∂v
h

∂y

∂Bump(x, α)

∂α
at bump velocity nodes;

pα(xmax, ymax) = 0 at the upper right pressure node.

For comparison, we will now discretize the continuous sensitivity equation, that is, reverse

the order of the operations of discretization and differentiation. We will see that the resulting

equations are significantly different.

89

7.4 The Discretized α-Sensitivity Equations

To derive the discretized sensitivity equations, we must refer to the continuous sensitivity

equations, (7.2), (7.3), and (7.4), and apply the finite element discretization:

∫
Ω(α)

(
∂(uα)h

∂x

∂wi
∂x

+
∂(uα)h

∂y

∂wi
∂y

+Re((uα)h
∂uh

∂x
+ uh

∂(uα)h

∂x
+ (vα)h

∂uh

∂y
+ vh

∂(uα)h

∂y
+
∂(pα)h

∂x
)wi) dΩ = 0

(7.26)∫
Ω(α)

(
∂(vα)h

∂x

∂wi
∂x

+
∂(vα)h

∂y

∂wi
∂y

+Re((uα)h
∂vh

∂x
+ uh

∂(vα)h

∂x
+ (vα)h

∂vh

∂y
+ vh

∂(vα)h

∂y
+
∂(pα)h

∂y
)wi) dΩ = 0

(7.27)∫
Ω(α)

(
∂(uα)h

∂x
+
∂(vα)h

∂y
)qi dΩ = 0

(7.28)

The boundary conditions are straightforwardly derived, except that the conditions on the

bump are in terms of spatial derivatives of the exact solution u, which we do not know.

Therefore, we must approximate those conditions using spatial derivatives of the discretized

solution uh:

(uα)h(x, y) = 0 at inflow and wall velocity nodes;

(vα)h(x, y) = 0 at inflow, outflow and wall velocity nodes;

(uα)h(x, y) = −∂u
∂y

∂Bump(x, α)

∂α

≈ −∂u
h

∂y

∂Bump(x, α)

∂α

at bump velocity nodes;

(vα)h(x, y) = −∂v
∂y

∂Bump(x, α)

∂α

90

≈ −∂v
h

∂y

∂Bump(x, α)

∂α
at bump velocity nodes;

(pα)h(xmax, ymax) = 0 at the upper right pressure node.

This discretized sensitivity system contrasts strongly with the discrete sensitivity system.

In particular, the right hand sides are zero, whereas the right hand sides of the discrete

sensitivity system exhibited many terms that will require extensive calculations.

Nonetheless, note that both systems have the same form on the left hand side. Thus, we

might say that two systems agree on the operator, but differ on the right hand side.

Finally we note that, for the discretized sensitivity equations, the boundary conditions along

the bump are a primary source of error. To apply the boundary condition exactly, we need

to know the partial derivatives of the true solution u and v. In fact, we only have knowledge

of the discretized solution variables uh and vh, and our approximation is made worse by the

fact that we are working at points on the boundary, and because we are approximating a

spatial derivative rather than a state variable. Roughly speaking, we have seen that the true

velocities u are approximated by the Taylor Hood finite element method with an error which

we estimate to be of order O(h2). We said that this meant that a spatial derivative like
∂u

∂y

would be approximated with an error of O(h). This means that there is an error of order

O(h) in our specification of the boundary condition for the discretized shape sensitivities uhα.

These problems do not occur for the discrete sensitivity equations, because there the bound-

ary conditions are given in terms of the discrete solution, which is known exactly.

7.5 Exact Example: Shape Sensitivity of Poiseuille Flow

Let us try to get our bearings by working with the simple case of Poiseuille flow.

Since we can only produce exact solutions of the Poiseuille flow when the channel is rectan-

91

gular, we don’t want to insert a curved bump into the channel. Instead, our parameter α will

move the upper wall up and down, as a whole. Thus, the value of α will be the coordinate

of the upper wall.

We assume an inflow profile of the form:

Inflow(y, α, λ) = λy(α− y). (7.29)

For any 0 < α, we can write out the exact continuous state solution at every point in the

domain:

u(x, y, α) = λy(α− y) (7.30)

v(x, y, α) = 0 (7.31)

p(x, y, α) = 2λ(xmax− x)/Re (7.32)

and we can write the sensitivities with respect to the implicit shape parameter α:

uα(x, y, α) = −λy (7.33)

vα(x, y, α) = 0 (7.34)

pα(x, y, α) = 0 (7.35)

Note that, for this special problem, the Inflow function also has a dependence on α, and

that we will make use of the fact that for this simple problem,

∂Bump

∂α
= 1. (7.36)

The continuous α-sensitivity equations for this problem are:

−(
∂2uα
∂x2

+
∂2uα
∂y2

) + Re(uα
∂u

∂x
+ u

∂uα
∂x

+ vα
∂u

∂y
+ v

∂uα
∂y

+
∂pα
∂x

) = 0 (7.37)

−(
∂2vα
∂x2

+
∂2vα
∂y2

) + Re(uα
∂v

∂x
+ u

∂vα
∂x

+ vα
∂v

∂y
+ v

∂vα
∂y

+
∂pα
∂y

) = 0 (7.38)

∂uα
∂x

+
∂vα
∂y

= 0 (7.39)

92

with the boundary conditions:

uα(0, y) =
∂Inflow(y, α, λ)

∂α

= λy;

vα(0, y) = 0;

uα(x, y) = −∂u
∂y

= −λy on the upper wall;

vα(x, y) = −∂v
∂y

= 0 on the upper wall;

uα(x, y) = vα(x, y) = 0 on the lower wall;

∂uα
∂x

(xmax, y) = 0 on the outflow;

vα(xmax, y) = 0 on the outflow;

pα(xmax, ymax) = 0.

We can easily verify that this system is satisfied by the sensitivities that we would get by

differentiating the exact solution:

uα(x, y, α) = λy (7.40)

vα(x, y, α) = 0 (7.41)

pα(x, y, α) = 0 (7.42)

Thus, we have shown that we can derive the continuous sensitivity equations for the Poiseuille

flow with a moving wall, and compute values for the sensitivities which are equal to the

known, exact values.

We should note that the shape parameter required us not only to add a new boundary

condition along the moving shape, but also had an effect on the form of the inflow boundary

condition. This happened because the shape parameter affected the region where the inflow

93

Figure 7.3: Discretized velocity α-sensitivity.

boundary condition was specified. Such secondary effects of a shape parameter may be hard

to foresee or calculate in general.

7.6 Computational Example: Flow Past a Bump

If we return to the three-parameter problem already discussed in section 6.6, we may now

compute the discretized flow sensitivities with respect to the parameter α that affects the

flow variables implicitly by determining the shape of the bump that intrudes into the flow

region.

Now we can, if we wish, plot the discretized velocity sensitivity field as though it were a

physical quantity, as in Figure 7.3. In this case, a plot vector drawn at a particular point

represents the relative change that would apply to the current velocity at that point, with

a unit change in α. The discretized sensitivity velocity vectors don’t behave like a physical

flow: they satisfy the Oseen equations rather than the Navier Stokes equations. However,

the same continuity equation appears in both sets of equations, and we can see directly from

94

Table 7.1: Finite difference check of discretized α-sensitivities.
Variable ‖(uα)h‖∞ ‖∆(uh)/∆(α)‖∞ ‖Difference‖∞

U 0.6541 0.8046 1.5E-01
V 0.2709 0.2702 1.2E-01
P 0.4709 0.4378 2.3E-01

the plot that the continuity equation seems to be satisfied: the vector quantity represented

by the plotted arrows seems to satisfy the rule that “what comes in goes out”.

We can glean other useful information from this figure. The plot shows that the influence of

the shape parameter is restricted to the area near the bump, generating a sort of “whorl”.

Further downstream, the influence is negligible. This means that, unlike the inflow param-

eter, measurements of the effect of the shape parameter should be made near to the bump.

We will see the importance of this fact later, when we try to use a profile line that is too far

downstream from the bump.

7.7 Comparison of Finite Differences and Discretized

Sensitivities

We return to the three-parameter problem discussed in Section 6.7. We would like to make a

similar comparison, between the discretized sensitivities (uα)h and estimates of the influence

of α made using finite differences. As in the previous table, we will simply compare the vector

of finite element coefficients for (uα)h with the vector of differences in the finite element

coefficients for u at α and at α+ ∆α, divided by ∆α. Table 7.1 reports the maximum norm

of these two vectors, and of their difference. As in the previous Tables 6.1 and 6.2, our mesh

parameter is h = 0.25. The perturbation ∆(α) was computed using a formula similar to

Equation (6.46).

The discrepancy here is startling, particularly when compared to the near perfect agreement

95

obtained for the λ and Re sensitivities. There are actually several factors to investigate.

First, we should already be aware that we are using discretized sensitivities, rather than

discrete sensitivities. Secondly, as we will discover, our finite difference results are comparing

the same coefficient at different values of α. If α were not a shape variable, then the two

values of the coefficient would both be associated with the same fixed spatial value. But

because we regrid the region when we compute the solution at α + ∆α, our two coefficient

values are actually associated with different positions, which is not a proper approximation

to the partial derivative of uh(x, y, α), which holds x and y fixed.

The proper computation of finite difference estimates of the sensitivities, and their compar-

ison to discretized sensitivities, is a complicated matter that we will analyze carefully in

the next chapter. At the end of that chapter, we will again make a comparison chart like

Table 7.1, but we will have better agreement, and be able to explain what is going on.

96

Chapter 8

FINITE DIFFERENCE ESTIMATES
OF SENSITIVITIES

8.1 Introduction

A common method of approximating derivatives is to use finite differences. Since the sensi-

tivities are derivatives, or approximations of them, we would like to compute finite difference

estimates of the quantities whose sensitivites we are studying. Such an independent com-

putation will be useful as a check of both the accuracy and efficiency of the discretized

sensitivity approach.

We compare the definitions, computations, accuracy, and usefulness of discretized sensitiv-

ities and finite difference sensitivities. We show that if shape parameters are involved, it is

more difficult to make comparisons, particularly if we are interested in comparing individual

finite element coefficients, that is, values associated with nodes. This is mainly because the

nodes move, while a sensitivity must refer to changes at a fixed location.

We consider an adjustment to finite difference calculations involving finite element coeffi-

cients. This adjustment allows a comparison with the discretized sensitivities. We show

data that suggests that, for our finite element formulation, the approximation error, as mea-

97

sured by the difference between the discretized sensitivities and the adjusted finite difference

quantities, decreases linearly with h.

This is empirical evidence that the discretized sensitivities, which are cheaper to compute

than discrete sensitivities, have good enough approximation abilities for most uses.

8.2 Finite Coefficient Differences and Finite Physical

Differences

In earlier discussions of sensitivities with respect to a parameter, we have mentioned the

idea of comparing a discretized sensitivity and a finite difference estimate. We did not stop

to explain this concept; it is a common technique, and, for explicit parameters, does not

require any special thought or consideration.

However, for a geometric parameter, particularly in the discrete case, we will see that the

calculation of a finite difference sensitivity, and comparison to a discretized sensitivity re-

quires some extra care. Let us suppose that, for some geometric parameter value α, we have

a solution to the discrete problem, comprising a set of finite element coefficients. To be more

particular, let us suppose that one of those items is ui, a velocity coefficient associated with

node i, which is itself located at node (xi, yi).

If we change the value of α, the quantities that change may include not just ui, but also the

location of the associated node. At this point there are two paths we could follow. If we

simply compute the finite difference quotient

ui(α + δα)− ui(α)

δα
(8.1)

then we are approximating the behavior of the finite element coefficient itself, which we can

term a finite coefficient difference.

98

To approximate the behavior of the the physical quantity u at (xi, yi), we would need to

determine where this point lies in the finite element mesh associated with α + δα, evaluate

the finite element approximation, and then compute the quotient:

uh(xi, yi, α + δα)− uh(xi, yi, α)

δα
. (8.2)

This is a proper approximation of the physical quantity, and hence we might term this a

finite physical difference.

It may not be clear, but it is much easier to compute the finite coefficient differences than

the finite physical differences. As a geometric parameter varies, the nodes and elements

move, complicating the evaluation of the perturbed solution. But the structure of the finite

element coefficient vector itself will generally not change, and it is a trivial matter to compute

differences of comparable vector elements.

To get an idea of the distinction between these quantities, we will look at plots of the

discretized sensitivities (which approximate the same quantities as the finite physical dif-

ferences) versus the finite coefficient differences. Figure 8.1 displays the discretized α-

sensitivities for velocity, while Figure 8.2 shows a corresponding finite coefficient difference

field, computed by comparing coefficient values.

Significant information can be found by comparing the two plots. In particular, we note

that the discretized sensitivity field is nonzero on the bump, whereas the corresponding

finite difference sensitivities vanish; the discretized sensitivities seem to satisfy the continuity

equation (the discretized sensitivity equation forces this!) while this is not true for the finite

difference sensitivities; the discretized sensitivities and finite difference sensitivities seem to

agree in the portions of the region before and after the bump, where the geometry is never

distorted.

The plot should make it clear that discretized sensitivities and finite coefficient differences can

99

Figure 8.1: Discretized α-sensitivity nodal values.
Notice, in particular, the nonzero boundary condition on the bump.

The sensitivities estimate change at a fixed location.

100

Figure 8.2: The corresponding α-finite difference nodal values.
The boundary values are exactly zero, and the “vortex” is quite different.

These values apply at a fixed node, but a moving location.

be quite different quantities. We propose to explain what this difference is, and how it can be

quantified. We are interested in how well our discretized sensitivities approximate the true

continuous sensitivities and the discrete sensitivities. Understanding the finite coefficient

differences will help us in this task.

8.3 Differencing with Respect to Geometric Parame-

ters

Throughout this chapter, we will assume that we are varying a single shape parameter

which we shall denote by α. We will occasionally want to write a formula that references

state variable values such as u(x, y). When we are varying a geometric parameter, there may

101

be times when the point (x, y) does not lie within the current flow region Ω(α), so that we

don’t have a well-defined value for u. In such cases, let us agree that u will simply be set

to 0. While better choices exist to extend the solution to the neighboring area, right now

we are only interested in assuring ourselves that an expression like u(x, y) will always have

a defined value.

In order to distinguish the information produced by a finite coefficient difference sensitivity

from that in a discretized sensitivity, we must consider how a finite difference quotient is

computed. Again, we assume that we have a particular value of α of interest to us, with a

corresponding solution (u, v, p), and as usual, we will focus our attention on u. Typically,

once the current solution u is calculated at α, we slightly perturb the value of the parameter

to α + ∆α and compute a new solution, which we may write u(α + ∆α). We then form a

difference quotient whose numerator is the change in the solution at a fixed location (x, y),

and whose denominator is the change in the parameter. Since the (total) derivative of a

quantity depending on α is defined as the limit of such quotients as ∆α→ 0, we can expect,

for reasonably smooth problems and small ∆α, that we can compute a good approximation

to this quantity.

If we focus our attention on a point (x, y) which lies in Ω(α), and consider how the value of

u(x, y) will vary with α, then we can approximate the desired partial derivative
∂u

∂α
(x, y, α)

by the finite difference quotient:

∆u(x, y, α)

∆α
≡ u(x, y, α±∆α)− u(x, y, α)

±∆α
(8.3)

Perhaps we should explain the cumbersome form of the quotient on the right hand side. In

this formula, we assume that the perturbation ∆α is small enough, and that we have chosen

the proper sign for it, so that the point (x, y) is not only in Ω(α) but also in Ω(α + ∆α).

Simple control of the size of the perturbation ∆α is enough to guarantee that a point (x, y)

in the interior of Ω(α) will also lie in the interior of Ω(α+ ∆α). But for points that actually

102

lie on the bump, we need to control the sign of the perturbation as well, and even then, we

can’t guarantee that the point will remain in the perturbed region unless we can show that:

∂Bump

∂α
(x, α) 6= 0. (8.4)

For a bump defined by a piecewise linear function, for instance, we can guarantee that

Condition (8.4) is true everywhere except at the fixed endpoints, where we don’t care.

So now if u is the solution of a continuous problem, Equation (8.3) may be used to define

a finite difference quotient
∆u

∆α
(x, y, α) which has values throughout the flow region, and

which estimates the influence of α. The sensitivity of the solution of the continuous problem

at (x, y) is the partial derivative
∂u(x, y, α)

∂α
, but this derivative is precisely the limit of the

finite difference quotients defined by Equation (8.3), so we may assert immediately that, for

the continuous problem,

lim
∆α→0

∆u

∆α
(x, y, α) = uα(x, y, α), (8.5)

and thus, finite difference quotients can be used as a check on the accuracy of the sensitivity

calculation.

Now, by contrast, let us suppose that we are interested in the value of u at a moving point.

This might seem a needless complication, until one realizes that points on the bump surface

move, that we have nodes on the bump, and in our formulation, all the interior nodes above

the bump will also move if the bump moves. The interior nodes determine the shape of

the elements, the form of the basis functions, and the physical “anchor” for the coefficient

values, so a lot changes when a node moves.

Both on the bump, and at the interior nodes, we expect to find nonzero sensitivities. We

will keep our problem simple by assuming that only the y coordinate of such a point varies

with α, so that we may write its coordinates as (x, y(α)). Further, we assume that this

point remains in Ω(α) for all values of α of interest to us. At such a moving point, we now

103

must consider u to be effectively a function of only x and α. To study the influence of the

parameter α, we would need to find the total derivative of u with respect to α, which we

write
Du

Dα
(x, y(α), α), and we may approximate this total derivative by the finite difference

quotient:

∆u(x, y(α), α)

∆α
=
u(x, y(α + ∆α), α + ∆α)− u(x, y(α), α)

∆α
. (8.6)

Moreover, we note that for this situation, we have a simple relationship between the total

derivative and the sensitivity:

Du

Dα
(x, y(α), α) =

∂u

∂y
(x, y(α), α)

dy(α)

dα
+
∂u

∂α
(x, y(α), α), (8.7)

which breaks down our total derivative into a change due to spatial movement, and a change

due to variations in α.

From what we have discussed so far, we can now explain a few things about Figure 8.1

and Figure 8.2. First of all, in the regions before and after the bump, none of the nodes

move with changes in α. Therefore, in this region the discretized sensitivities and the finite

coefficient differences should agree closely.

We can also explain the “boundary value discrepancy”, that is, why on the surface of the

bump the discretized sensitivities are nonzero while the finite coefficient differences are ex-

actly zero. The discretized sensitivity approximates the true sensitivity, which is computed

as the limit of finite difference quotients that compare the value of u to values of u for

nearby values of α, but at the same location. Clearly, if α decreases, the velocity at the

point (which is now zero) will increase, that is, fluid will pass through the point, moving to

the right. Therefore, the sensitivity, which is the limit of ratios of this positive change in u

to this negative change in α is represented as a negative horizontal velocity increment.

By contrast, the finite coefficient difference compares the current value of u (which is zero) to

values of u at nearby values of α, at locations that move (up or down) with the bump. But

104

a point on the bump always has zero horizontal velocity u, so the finite coefficient difference

associated with a node on the bump will always be zero.

Thus, we arrive at quite different results, based on whether we allow the point under con-

sideration to move with α or stay fixed.

8.4 Finite Differences for a Discretized Problem

Now let us suppose that, corresponding to a parameter value of α, we have the solution of

a discrete problem, which may be represented a set of coefficient data uhi (α), which in turn

determine a continuously differentiable function of x, y, and α:

uh(x, y, α) ≡
∑
i

uhi (α) wi(x, y, α). (8.8)

where, as usual, if the geometric point of evaluation happens to be the i-th node, (xi, yi),

then

uh(x, yi(α), α) = uhi (α). (8.9)

As in the continuous case, we may define the following finite difference approximation to the

partial derivative
∂uh(x, y, α)

∂α
:

∆uh(x, y, α)

∆α
≡ uh(x, y, α±∆α)− uh(x, y, α)

±∆α
. (8.10)

where we choose the magnitude of ∆α and, if necessary, the sign, so that the point (x, y) is

in Ω(α + ∆α) as well as in Ω(α).

From this definition, and assuming uh is twice continuously differentiable in α, we may use

a Taylor expansion to see that

∆uh(x, y, α)

∆α
=
∂uh(x, y, α)

∂α
+O(∆α), (8.11)

105

and hence, for small ∆α, the finite difference quotient is a good approximation to the sensi-

tivity.

Now, if we again assume we are interested in the changes in uh at a point whose y-coordinate

changes with α, and if we assume that the point is always in the flow region, then we consider

the difference quotient:

∆uh(x, y(α), α)

∆α
=
uh(x, y(α + ∆α), α + ∆α)− uh(x, y(α), α)

∆α
, (8.12)

and we can use a Taylor expansion to show that

∆uh(x, y(α), α)

∆α
=

Duh(x, y(α), α)

Dα
+O(∆α) (8.13)

=
∂uh

∂y

dy

dα
+
∂uh

∂α
+O(∆α). (8.14)

In particular, let us take the moving point to be velocity node i, so that the y-coordinate of

the node may be written yi(α). In this case, we may write

∆uh(x, yi(α), α)

∆α
=

uh(x, yi(α + ∆α), α + ∆α)− uh(x, yi(α), α)

∆α
(8.15)

=
uhi (α + ∆α)− uhi (α)

∆α
, (8.16)

where we have written uhi (α) to indicate the dependence of the i-th horizontal velocity finite

element coefficient on the parameter α. In other words, the total derivative of uh along the

path of the moving node is simply the difference quotient of the associated coefficient uhi (α).

Combining Equations (8.14) and (8.16), we see that:

uhi (α + ∆α)− uhi (α)

∆α
=
∂uh

∂y
(x, yi(α), α)

dyi(α)

dα
+
∂uh

∂α
(x, yi(α), α) +O(∆α), (8.17)

which means that we may estimate the true sensitivity at node i by

uhα(x, yi(α), α) ≡ ∂uh(x, yi(α), α)

∂α
(8.18)

≈ uhi (α + ∆α)− uhi (α)

∆α
− ∂uh

∂y
(x, yi(α), α)

dyi(α)

dα
. (8.19)

106

Now, if we call the quantity on the right hand side of Equation (8.19) the “adjusted finite

coefficient difference”, we can now see how to relate three quantities of interest to us: the

discretized sensitivities, the finite coefficient differences, and the discrete sensitivities. We

will make our comparison by considering individual finite element coefficients. For a par-

ticular value of α, consider a flow solution (uh, vh, ph), and some finite element node i set

at (x, yi(α)). The discrete sensitivity of the solution is uhα(x, yi(α)). We can now see that

this quantity is approximated to order O(∆α) by the adjusted finite coefficient difference.

Moreover, the discrete sensitivity at (x, yi(α)) is also approximated, to an order depending

in some way on the mesh parameter h (which we expect to be roughly O(h) for our Taylor

Hood approach), by the discretized sensitivity (uα)h(x, yi(α)), which is simply the discretized

sensitivity coefficient at node i. Thus, for suitably small values of ∆α and h, the discretized

sensitivity coefficient and the adjusted finite coefficient difference should be comparable.

Therefore, for a discrete problem, we can compare discretized sensitivities and finite differ-

ence sensitivities at a node by comparing the corresponding finite element coefficients, but

we must make an adjustment to the finite difference sensitivity coefficients in cases where

the associated node actually moves with changes in α.

To demonstrate this fact, we adjust the finite coefficient difference velocity field that was

shown Figure 8.2 (and which matched so poorly with our discretized sensitivity field) and

display the result in Figure 8.3. There are no arrows displayed along the boundary, because

we don’t have unknown coefficients associated with those nodes. In the interior, however,

the agreement with the discretized velocity sensitivity field of Figure 8.1 is now striking.

Equation (8.18) tells us how to adjust the finite coefficient differences associated with a

moving node, so that they approximate the sensitivity of a solution quantity at a fixed point.

Conversely, the equation also tells us how to transform the discretized sensitivity coefficient

associated with a node so that we can estimate the change in the solution coefficient as the

107

Figure 8.3: Adjusted finite difference α-sensitivity nodal values.

108

parameter changes and the node moves. The corresponding formula is simply:

uhi (α + ∆α)− uhi (α)

∆α
≈ (uα)h(x, yi(α), α) +

∂uh

∂y
(x, yi(α), α)

dyi(α)

dα
. (8.20)

Whereas Equation (8.18) is useful for estimating the closeness of our approximation to the

true sensitivities, Equation (8.20) is useful if we wish to use discretized sensitivities to esti-

mate the change that will occur in our finite element coefficients associated with a moving

node, when a shape parameter is varied. This is exactly the sort of calculation we must

make when trying to produce a suitable starting point for the Picard or Newton iteration.

8.5 Sensitivity Approximation with Decreasing h

We now wish to make a comparison, for a shape parameter, between the discretized sen-

sitivities and the adjusted and unadjusted finite coefficient differences. We already saw a

fairly poor agreement in the previous chapter, where we compared discretized sensitivities

and unadjusted finite coefficient differences.

Table 8.1 is based on solutions of a problem involving three parameters, (λ, α,Re), and a

flow solution computed at (0.5, 0.5, 10.0), on grids with h = 0.25, h = 0.125, and h = 0.0625.

For each mesh parameter, we computed the discretized sensitivities, the finite coefficient dif-

ferences, and the adjusted finite coefficient differences, that is, the results of Equation (8.18).

In Table 8.1 we print out the largest of each of these quantities, broken down into the compo-

nents associated with u, v and p. The last column gives the maximum difference between the

finite element coefficients for the discretized sensitivities and the adjusted finite coefficient

differences.

From the table, it is clear that we are not getting the superb agreement between discretized

sensitivities and finite coefficient differences that we have seen for explicit parameters; even

109

Table 8.1: Finite coefficient differences versus discretized α-sensitivities.
Table entries represent the maximum absolute coefficient value.

h Finite Coef Adjusted Discretized AFCD - DS
Difference FCD Sensitivity

(FCD) (AFCD) (DS)
U

0.25 0.309 0.802 0.654 0.148
0.125 0.326 1.07 1.02 0.0834
0.0625 0.327 1.33 1.30 0.0327

V
0.25 0.242 0.260 0.271 0.108
0.125 0.260 0.273 0.272 0.0584
0.0625 0.258 0.276 0.272 0.0232

P
0.25 0.438 0.438 0.471 0.133
0.125 0.400 0.493 0.507 0.0684
0.0625 0.346 0.462 0.476 0.0338

the adjusted finite coefficient differences have a significant disagreement with the discretized

sensitivities. However, we expected that fact. The first interesting thing to note is how much

better the agreement is between the discretized sensitivities and the adjusted finite coefficient

differences. Evidently, the adjustment for moving nodes is quite significant. The more

important question is, how does the disagreement behave with decreasing mesh parameter

h?

We ask this question because we really want to know how the discretized sensitivities ap-

proximate the true sensitivities. That information is not available to us, since we have not

tried to compute the true sensitivities. However, we assume that the adjusted finite coeffi-

cient differences are a good estimate of the true sensitivities. If the discretized sensitivities

approximate the adjusted finite coefficient differences well, then we expect that they are

almost as good an approximation of the true sensitivities.

We must keep in mind, though, that the adjusted finite coefficient differences are by no

110

Figure 8.4: Discretized sensitivity/adjusted finite coefficient difference discrepancies.
The box marks u data, the cross v, the circle p.

means perfect estimates of the true sensitivities. The errors incurred by the adjusted finite

coefficient differences include the usual finite difference error, but also the added inaccuracy

due to the use of the Taylor approximation involving
∂uh

∂y
for the adjustment term.

The discrepancies between the discretized sensitivities and the adjusted finite coefficient dif-

ferences are plotted in Figure 8.4. There is a clear trend in the data. For each solution

component, the discrepancy between the discretized sensitivity and the adjusted finite coef-

ficient differences drops roughly in step with h; as h is halved, so is the discrepancy. This

bears out our claim that, even for geometric parameters, the discretized sensitivities con-

verge to the true sensitivities as h goes to zero. The actual order of convergence depends, of

course, on the particular discretization applied to the problem, and seems, for our problem,

111

to be behaving linearly in h, as we have already estimated.

The table contains more information, if we look closely. As h decreases, the infinity norms

of the horizontal velocity and the pressures increase significantly. This should be surprising.

It suggests that the grid is still not fine enough to capture important features of the flow.

But this hasn’t happened on other problems, so what is different here? The difference is

surely the fact that there is a strong boundary condition being applied on a curved boundary.

Very important effects are occurring just on the boundary, and we are missing some of these

details if the mesh is not fine enough.

112

Chapter 9

OPTIMIZATION AND THE COST
FUNCTIONAL

9.1 Introduction

Chapter 1 introduced the problem of finding parameter values producing a flow solution

that best matched a given set of flow data along a profile line. Subsequent chapters have

developed the tools needed to set up parameters, define the problem, and determine the

corresponding flow pattern.

Now that we can produce flow solutions, we want a way to assign a score that evaluates

how well that solution satisfies our requirements. The measurement we will use will be

defined in a cost functional. Once the cost functional is specified, our problem is ready

for automatic treament by an optimization algorithm, which determines how to go about

choosing particular sets of parameters to test by evaluating the cost functional.

We have seen how the flow parameters β determine the particular problem to be solved, and

how, at least locally, the resulting flow solution (u, v, p) can be regarded as a function of

these parameters. We will see that the cost functional, initially defined in terms of the state

variables, can also be regarded as a function of the underlying parameters.

113

The optimization algorithm will generally require not only the evaluation of the cost func-

tional for a given set of parameters, but also the partial derivatives of the cost functional

with respect to those parameters. We will investigate how to make this calculation, given

that we don’t have the necessary explicit information.

In anticipation of problems that will arise during computation, we discuss some modifica-

tions that can be made to the cost functional, involving penalty functions, in pursuit of

regularization. Reasons for modifying the cost functional in this way include the existence

of local minima or a functional whose contour levels are very “twisted” or badly scaled.

9.2 Local Minimizers in Computational Optimization

A local minimizer of a functional is a point which has a functional value that is less than or

equal to the functional value of every other point in some sufficiently small neighborhood.

A local minimizer may be contrasted with a global minimizer, whose functional value is

less than or equal to the functional value of all other points. While a global minimizer is

obviously more desirable than a local minimizer, most practical optimization algorithms are

only able to locate local minimizers.

Some methods for checking whether a point is actually a true local minimizer are not suitable

for a practical, finite computation: we might wish to have a perfectly true graph of the

functional, in which case a single glance would tell us everything we need to know; we might

imagine evaluating the functional at every point in a neighborhood of the candidate; we

might, if we had an explicit formula for the functional in terms of the parameters, perform

some simple analysis on the gradient.

The optimization code has no such luxuries. Its analysis of the problem is based entirely on

sampling the cost functional and its gradient (which may itself be inaccurate!) at a finite

114

number of points. The Hessian matrix is also useful in this regard, and an optimization code

may desire values of this matrix from the user, or, as in our case, attempt to approximate

the matrix based on functional and gradient information. The following theorems suggest

how this information may be used in the search for local minimizers (Dennis and Schnabel

[10]):

Theorem 9.1 (The Gradient of a Local Minimizer) Suppose that J : Rn → R is con-

tinuously differentiable in an open neighborhood of β0. If β0 is a local minimizer of J (β),

the gradient vector ∇J (β) must vanish at β0.

Theorem 9.2 (The Hessian of a Local Minimizer) Suppose that J : Rn → R is twice

continuously differentiable in an open convex neighborhood of β0. If β0 is a local minimizer

of J (β), and if the Hessian matrix ∇2J (β) is Lipschitz continuous at β0, then the Hessian

matrix must be positive semidefinite at β0.

If we strengthen the condition on ∇2J (β), we can turn these two necessary conditions on a

minimizer into a sufficient condition for local minimization:

Theorem 9.3 (A Test for Local Minimization) Suppose that J : Rn → R is twice con-

tinuously differentiable in an open convex neighborhood of β0, that the gradient vector ∇J (β)

vanishes at β0, and that the Hessian matrix ∇2J (β) is Lipschitz continuous and nonsingular

at β0.

Then β0 is a local minimizer of J if, and only if, ∇2J (β0) is positive definite.

These conditions are local; if we are allowed to assume the needed level of continuity, we

may even assert that the conditions are pointwise. That is, to verify that a point is a local

115

minimizer, we generally need only check the value of the first two derivatives there. Hence,

these conditions are computationally feasible to check.

The optimization code uses derivative information to seek to move in a “downhill” or “de-

scent” direction, and assumes convergence when the partial derivatives are sufficiently close

to zero. As the optimization proceeds, the gradient and the estimated Hessian of each

new candidate are examined, and convergence to a (local) minimizer will be declared based

primarily on that evidence.

As we have said, we really want a global minimizer from the optimization code. By con-

struction, in most of our test problems we will know the solution beforehand. We denote

the value of the target parameters by (λT , αT , ReT), and the corresponding state variables

by (uT , vT , pT). The form of the cost functional then guarantees that at the target solution,

the globally minimizing cost is 0. Yet we will see cases where the optimization code returns

a local minimizer which is significantly far from the target solution, and with a higher value

of the functional.

Supposing that there are local minimizers of the cost functional, aside from the global min-

imizer, it may actually be quite easy for the optimization code to return such a point. All

that is required is that, during the course of the optimization, a point is computed which

is close enough to the local minimizer. In that case, the gradient vector is likely to draw

the optimization code even closer. A local optimizer generally lies in a “valley of attrac-

tion”, that is, a small depression in the graph of the functional. Most optimization codes

are very reluctant to consider points with higher functional values than their most recently

accepted point. Thus, once the optimization code has fallen into the valley of attraction of

a local minimizer, it is unable to climb back out, and it will converge to the local minimizer

contained in the valley.

116

9.3 The Optimization Algorithm

Our search for the bump shape, inflow conditions, and Reynolds number which produce the

closest match to a given set of flow data has been rephrased to become the search for the set

of parameters β which produce the lowest value of some functional J (β). Before we consider

the details of the specification of the particular functionals that we will use, we wish to make

some general remarks about optimization, and the particular optimization algorithm we will

employ.

Although we are trying to minimize the cost functional J (β), a great deal of useful infor-

mation may be gleaned from the gradient vector ∇J (β). One reason for this is that the

negative of the gradient vector points in the direction of steepest descent of J (β). Moreover,

Theorem 9.1 tells us that a necessary condition for a minimizer is that the gradient function

vanish there.

If we were able to express the dependence of J on β explicitly, say, in a formula, then we

might seek candidates for a minimizer by computing formulas for the partial derivatives of

J with respect to each component βi, and trying to solve for those sets of parameters β

where all the partial derivatives vanish:

∂J (β)

∂βi
= 0. (9.1)

However, for the discrete problem, we have no formula for J , and our only understanding

of its properties comes about by explicitly evaluating J at a sequence of points. Therefore,

the optimization is most naturally an iterative process. On the other hand, in this iterative

process, we will still seek points where the gradient vanishes. The particular algorithm that

we employ is a version of the model/trust region method.

The iterative process that we will carry out involves constructing a local model of the behavior

117

of J , which we expect is valid over some small “trust region” centered at the most recently

accepted point. We then predict the location of a point which lies within the trust region,

and at which J is expected to have a lower value. This prediction is based in part on the

gradient direction, but uses other information as well. We then check the actual value of J

at the predicted point. If the value is lower, as expected, then we may accept this point as

the next iterate, and construct a new trust region around it. Otherwise, we retain the old

iterate, shrink the trust region and try again.

In this process, gradient information is extremely valuable; not only does it tell us when we

have reached a candidate minimizer, but it also tells us where to look. This is because the

negative of the gradient vector points in the direction of maximum decrease of the functional.

Moreover, a gradient give us information about the behavior of J in the entire neighborhood

of a point. Many optimization algorithms require gradients of the cost function. We will not

be able to supply the exact gradient, but we will be able to approximate it using discretized

sensitivities or finite difference sensitivities.

At any time, the algorithm may decide to stop because it believes that the minimizer has

been found. Such a decision will be based on the estimated value of the gradient, on the

values of the functional at the previous points, and on the relative change in the position of

the estimated location of the minimizer. The algorithm may also decide to stop because it

suspects an error in the data, such as an inconsistency between the gradient data and the

cost functional values. Otherwise, the algorithm will proceed to a new step, continuing to

try to reduce the value of the functional.

This is as much as we need to know right now about the design and behavior of the opti-

mization code. Further details about the algorithm are reported in Chapter 17.

118

9.4 Defining a Cost Functional

Our class of flow problems completely specified the shape of the region except for the bump,

the boundary conditions except for the inflow, and the state equations except for the value of

the Reynolds number. The quantities left unspecified, which we called the “flow parameters”,

may then be freely varied to produce a variety of flow problems. We assume that any set

of parameter values (λ, α,Re) represents a well-defined flow problem. For convenience, we

will speak as though there exists uniquely a corresponding continuous flow solution (u, v, p),

although we know that the situation is actually more complicated. If we represent the

parameters by β, we may emphasize the dependence of the flow solution on the parameters

by writing, for instance u(β) or u(λ, α,Re).

The desired behavior that we are seeking to optimize is for the flow solution to come as

close as possible to some given flow data along a single vertical profile line in the flow region.

Specifically, let us suppose that along the line x = xs we are given the following functions,

or target data, uT (xs, y), vT (xs, y) and pT (xs, y), for 0 ≤ y ≤ 3. It is possible that these

functions are utterly arbitrary, in which case we might expect poor approximation; it is

possible that the profile data was generated as the flow solution of a discrete problem, but

that this flow solution does not lie in the feasible space, so that we can, at best approximate

its behavior along the profile line; finally, these functions may in fact be the profiles of an

actual flow solution of a discrete problem from the feasible parameter space, generated by a

set of parameters which may be designate as βT . Only in this last case is it permissible to

write uT (x, y) = u(x, y, βT).

In the latter case, we might be tempted to assume that an alternate form of the optimiza-

tion problem would be to recover the generating parameters βT . We will see that this is

not an equivalent problem. Many flows, corresponding to parameter values quite distinct

119

from βT , might come close to the desired behavior, and be locally optimal solutions, while

corresponding to a set of parameters quite distinct from the target set. On the other hand,

simply by the assumed continuity of the flow solution u(x, y, β) as a function of β, it is

correct to expect that if an optimization produces an answer very close to βT , that the flow

profiles will be close to the target profiles, and the desired behavior nearly achieved.

Now to measure how well a given flow solution approximates the target data, we want to

define a cost functional, which we may write as J(u, v, p, β). The cost functional should

compute, in some reasonable way, the closeness between the desired and achieved behaviors.

Let us suppose that in our case, we are only interested in the discrepancy for the horizontal

velocity component, between the target data and the computed flow solution. A natural

choice of cost functional for the continuous problem would then be:

J(u, v, p, β) =
∫
x=xs

(u(x, y)− uT (xs, y))2 dy. (9.2)

Since we’re actually only going to be able to solve discrete flow problems, it is necessary

for us to make the obvious transformations so that we can produce a corresponding cost

functional for the discrete problem, which we write Jh(uh, vh, ph, β). Since the discrete flow

solution actually produces functions defined over the whole region, the cost functional for

the discrete problem will formally look identical to that for the continuous case:

Jh(uh, vh, ph, β) =
∫
x=xs

(uh(xs, y)− uT (xs, y))2 dy. (9.3)

While this is the basic form for the cost functional, note that we haven’t specified the actual

value xs yet. We will discuss this matter shortly. We will also reserve the right to vary

the form of this cost functional by adding new terms, in our case to control undesirable

oscillations in the solution.

120

9.5 The Role of the Cost Functional in Optimization

The cost functional allows us to specify with a single number the closeness of any given flow

profile to the desired target profile. That makes it simple to define the problem: we want

the “best” flow solution, one for which there’s no flow solution with a lower cost functional.

We also may have to settle for a “locally best” flow solution, for which there is no nearby

flow solution with a lower cost functional.

Once the cost functional is specified, we can pose the optimization problem for the parame-

terized continuous flow equations:

Suppose that, for every choice of values of the parameters β there corresponds a

continuous Navier Stokes flow problem with a solution (u(β), v(β), p(β)), which

we will call a feasible flow. Suppose that a cost functional J(u, v, p, β) is defined

for flow functions (u, v, p) and parameters β. The continuous optimization

problem seeks the parameter values β∗ and the corresponding flow solution

(u(β∗), v(β∗), p(β∗)) such that J(u(β∗), v(β∗), p(β∗), β∗) is minimized over all fea-

sible flows (u(β), v(β), p(β)).

In analogy, we also pose the optimization problem for the discrete parameterized flow equa-

tions:

Suppose that, for every choice of values of the parameters β there corresponds

a discrete Navier Stokes flow problem, and that this problem has a flow solu-

tion (uh(β), vh(β), ph(β)), which we will call a (discrete) feasible flow. Suppose

that a cost functional Jh(uh, vh, ph, β) is defined for all flow functions (uh, vh, ph)

and parameters β. The discrete optimization problem seeks the parameter

values β∗ and the corresponding flow solution (uh(β∗), vh(β∗), ph(β∗)) such that

121

Jh(uh(β∗), vh(β∗), ph(β∗), β) is minimized over all feasible flows (uh(β), vh(β), ph(β)).

9.6 The Cost Functional as a Function of the Problem

Parameters

We will find it advantageous to be able to express the optimization problem without explicit

mention of the flow variables (u, v, p). It should be clear that we can do this, at least formally.

If we can assume that the parameters β uniquely determine the flow solution, or that this is

true at least in a local sense, as discussed in Chapter 3, then a function which depends on u

and β can be replaced by an equivalent function depending only on β.

In particular, let us suppose that, instead of arbitrary flow variables (u, v, p), we are only

going to evaluate the cost functional at flow variables that correspond to the argument β,

so that we would write:

J(u(β), v(β), p(β), β) =
∫
x=xs

(u(x, y, β)− uT (xs, y, β))2 dy. (9.4)

Since knowledge of β determines u(x, y, β), we really only need to know β to evaluate J in

this case. We can simply eliminate the mediation of the state variables, and regard the cost

functional as a direct function of the parameter, arriving at what we will call the constrained

cost functional:

J (β) ≡ J(u(β), v(β), p(β), β) (9.5)

=
∫
x=xs

(u(x, y, β)− uT (xs, y))2 dy. (9.6)

Note the distinction between the unconstrained functional J and the constrained functional

J : the cost functional J is defined for arbitrary functions u, v, p, but J requires the

specific functions u(β), v(β) and p(β) that satisfy the Navier Stokes problem defined by the

122

parameters β. In a natural way, we define the constrained discrete cost functional J h(β) in

terms of Jh(uh, vh, ph, β).

9.7 Computing the Gradient of the Cost Functional

The optimization code will require the gradient of the cost functional. This computation

would be straightforward if J (β) were given via an explicit formula. But we have no formula

for the cost functional in terms of β, and we must devise a way of approximating the gradients.

For any particular parameter component, we can write out the relationship between an entry

of ∇J and the derivatives of the original cost functional J :

∂J (β)

∂βi
=

DJ(u(β), v(β), p(β), β)

Dβi

=
∂J(u(β), v(β), p(β), β)

∂u
uβi

+
∂J(u(β), v(β), p(β), β)

∂v
vβi

+
∂J(u(β), v(β), p(β), β)

∂p
pβi

+
∂J(u(β), v(β), p(β), β)

∂βi
, (9.7)

while, for the discrete problem, we write the corresponding formula in terms of derivatives

of Jh with respect to the individual finite element coefficients:

∂J h(β)

∂βi
=

DJh(uh(β), vh(β), ph(β), β)

Dβi

=
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂uhk
(uhk)βi

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂vhk
(vhk)βi

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂phk
(phk)βi

+
∂Jh(uh(β), vh(β), ph(β), β)

∂βi
. (9.8)

123

These formulas require the values of the continuous or discrete sensitivities. These are unob-

tainable for the continuous case, and difficult to calculate in the discrete case. Therefore, we

consider ways of estimating the discrete cost gradient, using approximations to the discrete

sensitivities.

If we have computed the discretized sensitivities, for instance, we may try the approximation:

∂J h(β)

∂βi
≈ (

∂J (β)

∂βi
)h ≡

∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂uhk
(uk,βi

)h

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂vhk
(vk,βi

)h

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂phk
(pk,βi

)h

+
∂Jh(uh(β), vh(β), ph(β), β)

∂βi
. (9.9)

Here, we have had to write awkward quantities such as

(uk,βi
)h (9.10)

to stand for the k-th finite element coefficient of the discretized velocity sensitivity with

respect to βi, in other words, the k-th coefficient of (uβi
)h.

If we have computed the finite coefficient differences, then we can instead use the approxi-

mation:

∂J h(β)

∂βi
≈

∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂uhk

∆uhk
∆βi

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂vhk

∆vhk
∆βi

+
∑
k

∂Jh(uh(β), vh(β), ph(β), β)

∂phk

∆phk
∆βi

+
∂Jh(uh(β), vh(β), ph(β), β)

∂βi
. (9.11)

124

Finally, we could choose to approximate the gradient directly, using the formula:

dJ h(β)

dβi
≈ ∆J h(β)

∆βi
≡ J

h(β + ∆βi)− J h(β)

∆βi
. (9.12)

Assuming we use either the discretized sensitivities or finite coefficient differences, it remains

to compute the partial derivatives of J with respect to uk, vk, and pk. This is usually not

a problem, since J is generally presented as a simple, explicit formula in terms of these

variables. The partial derivative with respect to βi should also be easy to compute, as

long as there are no secondary effects on the cost functional due to changes in the region’s

geometry. That might happen, for instance, if the profile line were placed in a region which

was affected by changes to β. As it happens, the profile line will always be placed in the

fixed portion of the region, so we will not have to concern ourselves with such effects.

Note that, if we use the finite coefficient difference approach, the computation of component i

of the gradient will require that we carry out a full flow solve to find uh(β+∆βi), v
h(β+∆βi)

and ph(β+∆βi). Moreover, we must choose a “reasonable” increment βi that is small enough

for an accurate approximation of the partial derivative while being large enough to avoid

roundoff problems. Finally, as we have already noted, at least a few nodes must move if

we are using a shape parameter; perhaps most of the nodes move. If we actually wish

to compute sensitivities at a fixed spatial location, then the finite coefficient differences

computed at moving nodes must be adjusted as described earlier to subtract off changes in

the flow solution that are merely due to spatial displacement of the nodes.

If we use the discretized sensitivity approach, then we will generally just have finished a

Newton iteration for the flow solution, and so will have at hand exactly the matrix we

need for the sensitivity system, already assembled and factored. Therefore, the only cost

will be in the assembly of the right hand sides for each sensitivity, and the solution of the

already factored linear system. We will see that, in general, this approach can be actually

125

cheap compared to the finite coefficient difference method. Instead of NPar extra flow

solutions, we simply have NPar linear systems to solve. The main drawback to using the

discretized sensitivities for geometric parameters is their inherent error. Once we have chosen

a particular finite element mesh, there is an automatic discrepancy between the discretized

and true sensitivities; the only sure cure for this is to refine the finite element mesh, a costly

step.

9.8 The Formula for the Hessian

Although we will not do so here, we wish to note that, if we had approximated the second

order sensitivities using discretized sensitivities or finite coefficient differences, the Hessian

matrix could also be supplied to the optimization algorithm. We exhibit the appropriate

formula for the continuous case, although for simplicity we suppress the terms involving

differentiation with respect to the variables v and p:

∂2J (β)

∂βi∂βj
=

D2J(u(β), v(β), p(β), β)

DβiDβj

=
∂2J(u(β), v(β), p(β), β)

∂u2(β)

∂u(β)

∂βi

∂u(β)

∂βj

+
∂2J(u(β), v(β), p(β), β)

∂u∂βj

∂u(β)

∂βi

+
∂2J(u(β), v(β), p(β), β)

∂u∂βi

∂u(β)

∂βj

+
∂J(u(β), v(β), p(β), β)

∂u

∂2u(β)

∂βi∂βj

+
∂2J(u(β), v(β), p(β), β)

∂βi∂βj
. (9.13)

126

9.9 Optimization With Approximate Gradients

Whether we use the chain rule on discretized sensitivities or finite coefficient differences, or

use finite cost functional differences directly, we will be producing an approximation of the

cost gradient. To halve the approximation error in a first order finite difference quotient, we

have only to halve the size of the perturbation, such as ∆α. A new estimate then costs us

one more flow solve. But, if our discretized sensitivity error is of order O(h), to halve the

approximation error in a discretized sensitivity, we must halve h, which means we roughly

quadruple the number of nodes and unknowns, making the work of factoring the Jacobian

increase by a factor of more than 16. Thus there is a limit to how much we can reduce h

simply to improve the gradient estimates.

The effect of using an inaccurate gradient depends greatly on which particular algorithm is

being used. For a variation of the model trust region optimization method, Carter [8] showed

that convergence to a minimizer would still be achieved as long as the approximate gradient

(∇J (β))h had a sufficiently positive projection on the correct gradient ∇J h(β). In such a

case, the negative of the approximate gradient would still define a descent direction for the

function to be minimized, though generally not a steepest descent direction. The condition

given is equivalent to the requirement that there exist some fixed positive γ, so that for all

parameter values β at which (∇J (β))h does not vanish, it is true that:

0 < γ (∇J (β))h · (∇J (β))h ≤ (∇J (β))h · ∇J h(β). (9.14)

While we don’t have the exact gradients, we may carry out an approximate version of this

check on the discretized sensitivity gradients, using finite difference gradient estimates.

127

9.10 Example: A Cost Functional Using Horizontal

Velocities Only

As an example of a cost functional, let us consider a case where we are given the value of

the function uT (xs, y), with the profile line at xs = 3:

J2(u, v, p, β) =
∫
xs=3

(u(xs, y)− uT (xs, y))2 dy. (9.15)

which we may rewrite in terms of β as:

J2(β) =
∫
xs=3

(u(xs, y, β)− uT (xs, y))2 dy. (9.16)

Now, we would like to compute a partial derivative of the form
∂J2

∂u
but, as in the calculation

of the FP operator in Chapter 3, we must use the method of variations in order that the

computation makes sense. In other words, we use the fact that:

∂J2

∂u
(u0, v0, p0, β0) ũ = lim

ε→0

J2(u0 + εũ, v0, p0, β0)− J2(u0, v0, p0, β0)

ε
(9.17)

to compute that

∂J2

∂u
(u0, v0, p0, β0) ũ (9.18)

= lim
ε→0

∫
xs=3((u+ εũ)(xs, y)− uT (xs, y))2 dy −

∫
xs=3(u(xs, y)− uT (xs, y))2 dy

ε

(9.19)

= lim
ε→0

∫
xs=3((u+ εũ)(xs, y)− uT (xs, y))2 − (u(xs, y)− uT (xs, y))2 dy

ε
(9.20)

= lim
ε→0

∫
xs=3 2εu(xs, y)ũ(xs, y)− 2εũ(xs, y)uT (xs, y)− ε2ũ2(xs, y) dy

ε
(9.21)

= 2
∫
xs=3

(u(xs, y)− uT (xs, y))ũ dy. (9.22)

Now if we simply choose ũ to be
∂u

∂β
, we have

∂J2(β)

∂β
=

∂J2(u(β), v(β), p(β), β)

∂u

∂u(β)

∂β
(9.23)

= 2
∫
xs=3

(u(xs, y, β)− uT (xs, y))
∂u(β)

∂β
dy. (9.24)

128

For the discrete problem, we can easily derive the corresponding formula:

∂J h
2 (β)

∂β
=

∂J2(uh(β), vh(β), ph(β), β)

∂uh
∂uh

∂β
(9.25)

= 2
∫
xs=3

(uh(xs, y, β)− uT (xs, y))
∂uh

∂β
dy (9.26)

= 2
∫
xs=3

(uh(xs, y, β)− uT (xs, y))uhβ dy. (9.27)

We can approximate this equation by using the discretized sensitivities, giving us the fol-

lowing computable approximation to the gradient:

∂J h
2 (β)

∂β
≈ (

∂J2(β)

∂β
)h (9.28)

≡ ∂J2(uh(β), vh(β), ph(β), β)

∂uh
(uβ)h (9.29)

= 2
∫
xs=3

(uh(xs, y, β)− uT (xs, y))(uβ)h dy. (9.30)

When the discretized target flow uT is actually a feasible flow, that is, uT (x, y) = uh(x, y, βT)

for some set of parameters βT , this formula implies that the approximate cost gradient

computed using discretized sensitivities will always be identically zero at the global minimizer

uh(x, y, βT).

This is not because of some special property of discretized sensitivities, but rather because of

the factor of uh(xs, y, β)− uT (xs, y) in the cost gradient computation; an arbitrary approx-

imation for uhβ would satisfy the same condition. This means that while we should expect

the approximated cost gradients to be zero at a feasible target, we should not take that as

evidence of special accuracy!

Now we have available three approximations to derivative quantities like
∂uh

∂β
, namely the

discretized sensitivities and the unadjusted and adjusted finite coefficient differences. We

129

Table 9.1: Cost gradients via discretized sensitivities and finite differences.
The comparison is made at several sets of parameter values.

Gradient Finite Coef Adjusted Direct Discretized
Component Difference FCD FD Sensitivity

(FCD) (AFCD) (DFD) (DS)
Re = 5.0

∂J h
2

∂λ
-0.86784 -0.86784 -0.86784 -0.86784

∂J h
2

∂α
-0.031580 -0.031580 -0.031580 -0.034021

∂J h
2

∂Re
-0.00010525 -0.00010525 -0.00010525 -0.00010527

Re = 7.5
∂J h

2

∂λ
-0.45423 -0.45423 -0.45423 -0.45423

∂J h
2

∂α
-0.032849 -0.032849 -0.032849 -0.036069

∂J h
2

∂Re
-0.00017476 -0.00017476 -0.00017476 -0.00017476

Re = 10.0
∂J h

2

∂λ
-0.334E-15 -0.334E-15 0.283E-06 -0.334E-15

∂J h
2

∂α
0.608E-15 0.608E-15 0.170E-07 0.574E-15

∂J h
2

∂Re
0.151E-18 0.151E-18 0.356E-11 0.151E-18

may also approximate the cost gradient directly, without using an estimate for the sensitiv-

ities, using a direct finite difference approach. In Table 9.1, we compare the cost gradients

we get via these methods. The problem being solved uses three parameters, one inflow,

one bump, and Re, with a mesh of 240 elements and a mesh parameter h = 0.5. The tar-

get data was generated previously on the same mesh, setting (λT , αT , ReT) to the values

(0.5, 0.5, 10.0). The program generated flow solutions and cost gradients for the parameter

values (0.25, 0.25, 5.0), (0.375, 0.375, 7.5), and (0.5, 0.5, 10.0).

Note that, at Re = 10, where the cost gradients should be zero, it is the direct finite difference

estimate that is most out of line. This error is to be expected, of course. We said that the

direct finite difference estimate gave an answer that was equal to the true gradient, plus an

error of order ∆β. Since the true gradient is zero, we are seeing exactly the error term.

All four gradient estimates agree almost completely for the first and third components of the

130

gradient. However, there is a roughly 10% error in the estimates for the shape gradient when

using discretized sensitivities. It is hard to judge this fact. We are using a crude mesh, and a

finer one would improve the agreement, as we have seen in Chapter 8. Since the discretized

sensitivities are arrived at by a “shortcut”, we must expect to pay a price for their ease of

computation. But whether these inaccuracies in the gradient will actually hamper us in the

optimization efforts is a question we will have to face shortly, in Chapter 11.

9.11 Regularization of Cost Functionals

We will shortly see a number of situations in which the optimization algorithm is unable to

produce a satisfactory answer for us. This is not remarkable when we consider the constraints

on the optimization code. It generally uses very local information, so that it cannot “see”

that just beyond a rise in the functional lies a very substantial drop in its value. The

optimization code will refuse to accept a new iterate which causes the functional value to

increase. Hence, once an optimization code has entered a “valley” it generally cannot escape.

It is very common for a functional to have multiple local minima, and many of these local

minima can have functional values that are quite large relative to the value obtained at the

global minimum.

Our first question then is, if the optimization code has stumbled into a local minimum which

is unsatisfactory, but for which the “valley” is reasonably shallow, can we “escape” from

somehow, and force the optimization code to try to find a better minimum?

A second, milder problem can also occur. Even though a function may have only one

minimizer, it may be unusually flat, or be poorly scaled, or have level sets that are very

twisted. In all these cases, it can be extremely inefficient to carry out the typical optimization

algorithm, which uses local directional data, takes a large step in a descent direction, and

131

then penalizes itself severely if the step caused the functional to increase.

Finally, we may find that the minimizer uncovered by the optimization code has some un-

desirable property that we wish to avoid. For instance, if we are seeking the shape of a

bump that will produce a given flow downstream, we may not realize that we want a smooth

bump until the optimization code returns with a set of parameters that define an extremely

oscillatory shape. The undesired oscillations can be controlled by adding a penalty function,

which measures the amount of oscillation in the bump, and adds some small multiple of this

amount to the cost function. A simple example might be

J3(λ, α) ≡
∫
x=xs

(u(x, y)− uT (xs, y))2 dy + ε
∫

(
∂Bump(x, α)

∂x
)2 dx. (9.31)

Using such a penalty function requires an ad hoc choice for the quantity ε, and also means

that when the optimization code finds the solution that minimizes J3, there may be other

flow solutions which have a smaller discrepancy integral, and hence are “better” in the old

sense.

132

Chapter 10

A POORLY SCALED
OPTIMIZATION

10.1 Introduction

In this chapter, we consider a problem which can not be accurately optimized because the cost

functional has been poorly chosen. We discuss the behavior of the optimization package, and

the reasons for its failure. We examine the computed cost gradient and question its accuracy.

We then look closely at the velocity sensitivity field, and see clear reasons for the failure of

the optimization. We then propose a simple cure for the problem.

10.2 A Poor Optimization Using Discretized Sensitiv-

ities

We consider one of our standard problems, with four parameters: a single inflow parameter

λ, and three parameters α = (α1, α2, α3) which determine the shape of the bump. The

Reynolds number Re is fixed at 1.

We set a profile line at xs = 9, quite far down the channel from the bump. We then set the

target parameter values λT = 0.500 and αT = (0.375, 0.5, 0.375), and compute the target

133

Figure 10.1: The flow region and velocity field for the target parameters.
Note the profile line, at xs = 9.

flow solution:

(uT , vT , pT) = (u(λT , αT), v(λT , αT), p(λT , αT)). (10.1)

which is displayed in Figure 10.1.

We may now define the cost functional Jh1 :

Jh1 (uh, vh, ph, λ, α) =
∫
xs=9

(uh(xs, y)− uT (xs, y))2 dy, (10.2)

and in the usual way, define J h
1 to be Jh1 restricted to flow functions that are consistent with

the Navier Stokes equations as determined by the parameters:

J h
1 (λ, α) ≡ Jh1 (uh(λ, α), vh(λ, α), ph(λ, α), λ, α) (10.3)

=
∫
xs=9

(uh(xs, y, λ, α)− uT (xs, y))2 dy. (10.4)

We now face the problem of finding parameter values λ and α which minimize J h
1 . We use a

discretization of the flow problem with mesh parameter h = 0.25. We begin the optimization

attempt with λ and α set to zero. Initially, we set the optimization error tolerance, called

TolOpt, to 1.0E − 09. When the optimization code requests a value of the gradient of

J h
1 (λ, α), we compute an approximation of the answer by computing the discretized sensi-

134

Table 10.1: Optimization results for J h
1 , using discretized sensitivities.

The third optimization did not converge after 100 steps.

TolOpt Steps λ α1 α2 α3 J h
1 ||(∇J1)h||∞

1.0E-09 20 0.499998 0.0767 0.0656 0.276 0.572E-09 0.3E-05
1.0E-10 23 0.500000 0.1257 0.1075 0.453 0.375E-10 0.3E-05
1.0E-11 100 0.500001 0.1257 0.1075 0.453 0.358E-10 0.8E-09

tivities ((uλ)
h, (vλ)

h, (pλ)
h) and ((uα)h, (vα)h, (pα)h) and applying Equation (9.9) to compute

an approximation to the desired gradient, which we denote (∇J1(λ, α))h.

After 20 steps, the optimization code reports satisfactory convergence. However, the pa-

rameters that the optimization code returns are λ = 0.499998, α = (0.0767, 0.0656, 0.276).

These values seem unreasonably far from the target solution. A comparison of Figures 10.2

and 10.3 confirms that the difference between the shapes of the target and computed bumps

is considerable. Despite this fact, the cost functional, which started out at J h
1 (λ, α) = 0.400,

has dropped to 0.572E − 09, very close to the minimum value of 0.

Seeking a set of parameters that are closer to the correct values, we tried lowering the

tolerance TolOpt. The first reduction in the tolerance produces a “better” result in just 23

steps; the new bump has risen closer to its maximum height of 0.5, but the peak occurs at

the end of the bump rather than at the middle. If we reduce the tolerance by a factor of 10

again, the optimization code fails to converge after 100 steps, and produces results almost

identical to the previous set. The results are summarized in Table 10.1, where we list the

optimization tolerance, the number of steps, the final point of the optimization, the cost

functional evaluated at that point, and the maximum norm of the (approximate) gradient of

the cost functional. It is clear that this problem is beyond the abilities of the optimization

code to correct, and that we may need to look elsewhere for a remedy.

135

Figure 10.2: The bump and velocity field for the target parameters.
This figure shows the portion of the flow region near the bump.

136

Figure 10.3: The computed bump and velocity field using discretized sensitivities.
This is the solution computed for TolOpt=1.0E-9.

137

10.3 Approximating the Cost Gradient with Finite Dif-

ferences

It is reasonable to assume that the optimization algorithm failed because of inconsistent

data. In other words, we had asked the optimization algorithm to seek minimizers of the cost

functional, and we provided it with an approximation to the gradient of the cost functional.

However, especially near the end of an optimization, errors in the gradient can delay or

defeat further progress.

We can investigate this possibility, since we have an alternative, and presumably more accu-

rate, approximation of the cost gradient, via finite cost gradient differences. That is, once we

had a flow solution (u, v, p) for a particular set of parameters β, and the corresponding cost

J h
1 (β), we perturbed each component of β in turn, solved the corresponding flow problem,

evaluated the cost of the solution, and used the formula:

∂J h
1 (β)

∂βi
≈ J

h
1 (β + ∆βi)− J h

1 (β)

∆βi
. (10.5)

Using this modification, we again solved the flow optimization problem with TolOpt set

to 1.0E − 09. The optimization results were almost ludicrous: while the inflow parameter

was well approximated, the bump parameters were all identically zero! We repeated the

effort three times, with successively smaller optimization tolerances. None of these efforts

produced any significant improvement in the bump parameters. The results are summarized

in Table 10.2.

Unlike the previous optimization, this time the optimization code reported unsatisfactory

convergence behavior, of the type “false convergence”. This message may be interpreted to

mean that the optimization code believes there is a discrepancy between the cost functional

and the gradient. This is quite a surprise, since we specifically sought to improve the gra-

dient calculation. However, as will become plain later, this particular problem is especially

138

Table 10.2: Results for J h
1 , using finite cost gradient differences.

TolOpt Steps λ α1 α2 α3 J h
1 ||∇J h

1 ||∞
1.0E-09 10 0.499996 0.0 0.0 0.0 0.286E-08 0.2E-06
1.0E-10 13 0.499996 0.0 0.0 0.0 0.286E-08 0.2E-06
1.0E-11 16 0.499996 0.9E-12 0.8E-12 0.3E-11 0.286E-08 0.2E-06
1.0E-12 20 0.499999 0.2E-11 0.1E-11 0.7E-11 0.286E-08 0.2E-06

unsuitable for such finite difference estimates.

10.4 Approximating the Sensitivities with Finite Dif-

ferences

As a final approach to solving this problem, we tried going back to the chain rule calculation

of the cost gradients, Equation (9.8). However, this time, we tried to approximate the

sensitivities for the discrete problem by finite coefficient differences. That is, once we had

computed each of the finite element coefficients uhk(β), we computed uhk(β + ∆β), and made

the approximation:

(uhk)β(β) ≈ (uhk)(β + ∆β)− uhk(β)

∆β
. (10.6)

We already have discussed the fact that this finite difference approximation to
∂uh

∂βi
has a

built-in inaccuracy whenever moving nodes are involved. Nonetheless, we wished to compare

this approach with the use of discretized sensitivities.

A glance at Figure 10.5 will quickly confirm that the bump corresponding to the parameter

values we have achieved looks nothing like the bump for the target data. And yet the cost

functional is quite low, so that the optimization algorithm seems to have done part of its

job; it has decreased the cost functional, though not enough.

But how can the cost functional be so low, while the bump parameters are so far from being

correct? Perhaps it is the specification of the cost functional itself that is at fault. The fact

139

Figure 10.4: The computed bump and velocity field using a finite difference cost gradient.

140

Table 10.3: Results for J h
1 , using finite coefficient differences.

TolOpt Steps λ α1 α2 α3 J h
1 ||∇J h

1 ||∞
1.0E-09 19 0.499998 0.084 0.074 0.316 0.321E-09 0.4E-05
1.0E-10 45 0.500004 0.114 0.100 0.426 0.155E-10 0.8E-05
1.0E-11 46 0.500001 0.112 0.098 0.419 0.334E-11 0.4E-08
1.0E-12 40 0.500001 0.112 0.099 0.422 0.318E-11 0.1E-09

that the computed optimizing bump is so dramatically far off from the correct one suggests

to us that J h
1 is not a very good measure of closeness.

10.5 Investigating the Poor Convergence

We have tended to judge the optimization by how well it “rediscovers” the parameter values

βT that were used to define the target data uT (x, y). This is a natural expectation, but it is

not, strictly speaking, proper.

The optimization code’s task is simply to produce a set of parameters β that are “locally

optimal” to within the specified tolerance TolOpt. This means, roughly, that the parameters

β produce a value of J h
1 that is believed to be very near to the minimum value in some small

neighborhood. In other words, no “large” decrease in J h
1 can be expected by taking a small

step away from the estimated solution β.

Can we convince ourselves that the optimization code has actually performed its task well,

despite our distaste for the results? To believe that this is so, we must show that no small

step away from the estimated minimizer produces a large decrease in the cost. But this is

quite easy to check. For instance, consider the very first solution we got, using discretized

sensitivities. It lies at a Euclidean distance of about 0.53 units from the true solution, in

parameter space. Over that distance, the cost functional decreases from 0.572E-09 to 0.

If we suppose that in the neighborhood of the computed and correct minimizers, the cost

141

Figure 10.5: The bump and velocity using finite differences for sensitivities.

142

Figure 10.6: Discretized velocity α2-sensitivity field.
The profile line is shown at xs = 9.

functional does not vary significantly from these two values, then it is quite reasonable for

the optimization code to assume that it has reached a minimizer (since the gradients must

be extremely small) and that no “significantly” better minimizer lies close to the computed

one. In fact, given such small cost functional values, it would not be implausible to imagine

that there is actually a slight local minimum at the computed point. These remarks apply

to the points returned in the other computations as well, even to the displeasing results of

using finite difference cost gradients.

This is not a satisfactory state of affairs. The values of the cost functional seem to be

unusually small, even for parameters that are quite far from the target values. This makes

for a very difficult optimization indeed. It suggests that the cost functional is relatively

insensitive to changes in the parameters. It would be tempting to assume that therefore the

flow solution (uh, vh, ph) is also insensitive to parameter changes, but this is not correct, as

is made plain when we plot the discretized sensitivities over the flow region, in Figure 10.6.

The figure makes the problem clear: the flow solution as a whole is not insensitive to pa-

143

rameter changes, but the portion of the solution along the profile line xs = 9 is indeed very

insensitive. This is actually a feature of low Reynolds number flow through a channel; even

when disrupted by the bump, the flow has a very strong tendency to return to Poiseuille flow

once it is again passing through a rectangular region. Thus, by the time the flow has reached

the profile line, almost all traces of the influence of the bump have been overwhelmed.

Once we understand the meaning of this sensitivity plot, a reasonable solution is clear. We

don’t want to try to change the physics of the flow, but we are free to decide where we make

measurements (and for that matter, what we measure there). If we simply move the profile

line from xs = 9 to some point much closer to the bump, then changes in the parameters

will have a much larger effect on the portion of the flow solution that is sampled. This, in

turn, will make the cost functional values larger, and much less flat. And this, finally, will

make the optimization problem significantly easier to handle.

In fact, for all further computations, we will move the profile line right up to the back of

the bump, setting xs = 3. In the next chapter, we will begin using this new cost func-

tional. Although the convergence behavior will be much improved, we will discover a new

complication!

144

Chapter 11

A DISCRETIZED SENSITIVITY
FAILURE

11.1 Introduction

Having learned from the experiences with the profile line at xs = 9, we now move the line

much closer to the bump, and attempt to optimize the new problem.

We find that the optimization code returns a solution which is not the global minimizer, that

is, the target parameters we used to set up the problem. Moreover, the returned solution

does not even seem to be a local minimizer; the cost gradient entries are far too large. It is

necessary that we understand what has happened before proceeding.

After a brief consideration of the numerical evidence, we turn to graphical analysis. We plot

the cost functional along a line between the computed point and the global minimizer, and

then consider the value of the approximated cost gradient in this direction.

We then carry out a similar analysis in a plane, which allows us to conclude that the cost

gradients are not being adequately approximated for this problem.

145

Figure 11.1: The target flow region, velocity field, and profile line.
The profile line has been moved to xs = 3.

11.2 A Stalled Optimization

The experiments described in this chapter were all carried out on a problem with four free

parameters: λ, representing the strength of the parabolic inflow, and α1, α2, and α3, used to

control the shape of a cubic spline that represented a bump extending from x = 1 to x = 3.

The Reynolds number parameter Re was held fixed at a value of 1.

The target profile data was generated by computing a flow solution corresponding to an

inflow parameter λT = 0.5 and shape parameters αT = (0.375, 0.5, 0.375), and measuring

the state variables along the profile line, which we have moved quite close to the bump, at

xs = 3, as shown in Figure 11.1. The optimization code was given a zero starting estimate

for values of the parameters.

We define the cost functional in terms of the state variables as:

Jh2 (uh, vh, ph, λ, α) =
∫
xs=3

(uh(xs, y)− uT (xs, y))2 dy, (11.1)

146

Table 11.1: Optimization results for J h
2 .

TolOpt Steps λ α1 α2 α3 J h
2 ||(∇J2)h||∞

1.0E-09 33 0.505815 -0.0185 0.4352 -0.0448 0.390E-03 0.2E-01

and, in the usual way, define the constrained cost functional:

J h
2 (λ, α) ≡ Jh2 (uh(λ, α), vh(λ, α), ph(λ, α), λ, α) (11.2)

=
∫
xs=3

(uh(xs, y, λ, α)− uT (xs, y))2 dy. (11.3)

The cost functional at the starting point was J h
2 (0, 0, 0, 0) = 0.430.

We approximate the cost gradient using discretized sensitivities. We present the result of

the optimization in Table 11.1. The results presented are for an optimization tolerance of

TolOpt=1.0E-9, but essentially identical results were achieved for tolerances of 1.0E-10,

1.0E-11 and 1.0E-12.

In this table, the value of the cost functional at the computed minimizer seems far too large.

We happen to know that this value should be zero, although the optimization code has no

way of knowing this. But more tellingly, the cost gradient is quite large. This is a serious

problem, since the gradient must be zero at a minimizer, whether local or global, and the

optimization code knows this. This means that it is very unlikely that the solution returned

is even a local minimizer.

The picture of the computed flow in Figure 11.2 is disturbing, since we clearly have not

achieved the secondary goal of reproducing the shape of the target bump.

The discrepancies between the known target and the solution returned by the optimization

code are so serious that we must subject the solution to a series of tests to see if we are

justified in discarding it, and to try to determine what went wrong.

147

Figure 11.2: The flow produced with discretized sensitivities.

11.3 Checking the Results Along a Line

We are now going to consider the optimization results that we got using the discretized

sensitivities in the computation of the cost gradient. We have already made three simple

checks. We compared the cost functional value at the computed minimizer to the known

minimum value of 0. The value of 0.390E-03 does not seem suitably small, particularly since

we are carrying out a double precision calculation. The second check we made was to look at

the gradient of the cost functional. The fact that the maximum entry has a size of 0.2E-01

is very disconcerting; at a true local or global minimizer, this value would be 0. Finally, we

compared the computed bump values to the target values, and were not satisfied, although

we have learned from the previous chapter that this is not always a reliable measure.

With our suspicions raised, it is time to try to gain a feeling for what is going on. While

hardly conclusive, some graphic evidence may prove useful here. Let us simply draw a

straight line in parameter space between the computed point and the target point, pick

evenly spaced parameter values along this line, and evaluate the cost functional and the cost

148

Figure 11.3: Values of J h
2 (β(S)) along a line.

The “optimal” point is marked, at S=5.
The optimization used discretized sensitivities.

The local maximum on this line occurs at S=11.
The point S=25 is the global minimum.

gradient, as approximated with discretized sensitivities.

The actual table of values appears in Table 11.2, but perhaps the simple plot in Figure 11.3

best illustrates the problem. We must be careful to recall that the parameter space is actually

four-dimensional, and that we are looking at a very narrow slice through it. Nonetheless, it

is clear that something is quite wrong. It is surprising that there is a “hump” between the

computed point and the global minimizer. If the computed point actually lies in a “valley”

then the optimization, by its design, could never rise up out of the valley in order to reach

the global minimizer. But this does not explain why the optimization did not then proceed

downward to the left, where there are plenty of points with a lower functional value. The

149

Figure 11.4: Values of (∇J2)h(β(S)) ∗ dS along a line.
The optimization used discretized sensitivities.

Note that the computed slope changes sign between S=8 and S=9.

150

picture also shows us that the computed optimizer is not a local minimizer, nor does it seem

to be an inflection point or local maximum. The behavior of the optimization code is still a

mystery.

So let us now compute the gradient data that the optimization code had to work with. In

Figure 11.4, we take the cost functional gradient, as approximated using the discretized

sensitivities, and project it along the same line shown in Figure 11.3. Now some serious

discrepancies are apparent. We see at local maximum near S=11, and a global minimum at

S=25. Therefore, the correct slope must be positive up to S=11, and negative from there

to S=25. But the computed slope is only positive up to S=8. Thus, there is an interval

over which the cost functional is increasing, but the approximated directional derivative is

negative. It is precisely this kind of discrepancy that will cause the optimization code to fail.

11.4 Checking the Results in a Plane

Our analysis of the optimization failure along a line has made it clear that something is

wrong. In particular, it seems that the approximate gradients are inaccurate. But we’d like

to get more evidence of the problem, to try to understand the context in which it occurs,

how often it happens, and how severe the errors are.

To do so, we consider looking at the problem in a plane. That is, we start with the global

minimizer and the computed minimizer, and specify some auxiliary point, and consider the

plane that contains these three points. We then pick points on a regularly spaced grid over

the plane, and evaluate the cost functional there. Finally, we make a contour map of the

resulting data. The results are shown in Figure 11.5.

If we imagine a line drawn on this plot that goes from the computed minimizer to the global

minimizer, then we can reproduce the one-dimensional plot in Figure 11.3. We can see that

151

Figure 11.5: A contour map of the cost functional J h
2 in a plane.

The global minimizer is at the black dot.
The computed minimizer is at the black square.

152

the “hump” between the two points is, in part at least, avoidable, simply by moving to the

side slightly. From this graph, it seems possible that this could be done is such a way that

we did not have to increase the cost functional value.

It is quite interesting to note what seems to be a depression associated with a local minimum,

in the lower left corner of the graph. Since we will have occasion to examine a similar

phenomenon in the next problem that we study, we will overlook it for now.

From the contour plot alone, we cannot see what has gone wrong. But let us overlay this plot

with the normalized gradient direction vectors, in Figure 11.6. We have taken the liberty of

reversing the direction of the gradient field, so that it points down, in the direction of cost

functional decrease.

We may compare this plot with Figure 11.7, generated by approximating the cost gradients

with the finite difference sensitivities as in Equation (9.11). Consider the requirement that

a gradient vector must cross a contour line at a right angle. The discretized sensitivity

gradients fail this test, while the finite difference sensitivity gradients behave correctly. Note,

moreover, that the discretized sensitivity gradients seem to be completely “unaware” of the

local minimizer that lies off the page, in the lower left hand direction.

Our one-dimensional plot reported the same fact: for discretized sensitivities, the computed

cost gradients do not reliably estimate the cost gradient. However, the two-dimensional plot

gives a much better feel for the kind of details that can be missed, and for the magnitude of

the error.

Accurate computation of the magnitude of the gradient is not as important as getting the

direction correct. In Figure 11.8, we have magnified the portion of the region around the com-

puted minimizer, and shown the gradient direction fields derived from both the discretized

sensitivities and the finite difference sensitivities. We take the finite difference sensitivity

153

Figure 11.6: J h
2 gradient directions by discretized sensitivities.

The global minimizer is at the black dot.
The computed minimizer is at the black square.

154

Figure 11.7: J h
2 gradient directions by finite difference sensitivities.

The global minimizer is at the black dot.
The computed minimizer is at the black square.

155

Figure 11.8: Comparison of J h
2 gradient directions.

Finite difference and discretized sensitivity approximations are shown.
The computed minimizer is at the black square.

gradients to be correct, using the contour lines as guides. Then it is clear that in this small

region, there is an abrupt growth of error in gradient direction as we move from top to

bottom. Within a few sample points of the computed minimizer, we see points at which the

gradient direction error is greater than 90 degrees.

Of course, the evidence from this plot is not conclusive. We are only showing a two-

dimensional slice of the parameter space. If we compute the maximum angle between the

two four-dimensional gradient estimates, the largest value we compute over the set of points

156

we are displaying is roughly 17 degrees. To actually understand how the accuracy of the

gradient direction affects performance, we would have to look at the details of the particular

optimization algorithm we are using.

But since we have seen that, at least for this “slice” of the problem, the cost gradients

computed via finite difference sensitivities do such a good job of tracking the changes in the

cost functional, it is natural that we should use them to repeat the optimization of the same

problem we have analyzed here. We make this study in the next chapter.

157

Table 11.2: Values of J h
2 along a line in parameter space.

Point 6 is the optimizer returned when using discretized sensitivities.
Point 25 is the target parameters.

Note that a local maximum occurs between S=11 and S=12.
Point λ α1 α2 α3 J h

2 (∇J2)h · dS
×1, 000 ×1, 000

0 0.507 -0.117 0.419 -0.149 3.05 0.16
1 0.507 -0.097 0.422 -0.128 3.21 0.20
2 0.506 -0.077 0.425 -0.107 3.38 0.23
3 0.506 -0.057 0.428 -0.086 3.55 0.24
4 0.506 -0.038 0.432 -0.065 3.73 0.24
5 0.505 -0.018 0.435 -0.044 3.90 0.23
6 0.505 0.001 0.438 -0.023 4.06 0.19
7 0.505 0.020 0.441 -0.002 4.21 0.13
8 0.504 0.040 0.444 0.018 4.33 0.05
9 0.504 0.060 0.448 0.039 4.42 -0.05
10 0.504 0.079 0.451 0.060 4.49 -0.19
11 0.504 0.099 0.454 0.081 4.51 -0.35
12 0.503 0.119 0.457 0.102 4.48 -0.55
13 0.503 0.138 0.461 0.123 4.39 -0.77
14 0.503 0.158 0.464 0.144 4.24 -1.00
15 0.502 0.178 0.467 0.165 4.03 -1.25
16 0.502 0.197 0.470 0.186 3.73 -1.50
17 0.502 0.217 0.474 0.207 3.37 -1.73
18 0.502 0.237 0.477 0.228 2.94 -1.93
19 0.501 0.256 0.480 0.249 2.45 -2.06
20 0.501 0.276 0.483 0.270 1.92 -2.11
21 0.501 0.296 0.487 0.291 1.39 -2.05
22 0.500 0.316 0.490 0.312 0.87 -1.83
23 0.500 0.335 0.493 0.333 0.43 -1.44
24 0.500 0.355 0.496 0.354 0.12 -0.84
25 0.500 0.375 0.500 0.375 0.00 0.00
26 0.499 0.394 0.503 0.396 0.14 1.10
27 0.499 0.414 0.506 0.417 0.63 2.49
28 0.499 0.434 0.509 0.438 1.55 4.18
29 0.498 0.453 0.513 0.459 2.97 6.19
30 0.498 0.473 0.516 0.480 4.99 8.51

158

Chapter 12

A LOCAL MINIMIZER

12.1 Introduction

In this chapter, we repeat the computations of Chapter 11, but now, in the computation

of the cost gradients, the sensitivities are approximated by finite difference quotients rather

than with discretized sensitivities.

We expect this approximation to be better, and indeed, the optimization code now converges

properly to a minimizer. However, the minimizer is not the global minimizer corresponding

to the target data, but is instead a local minimizer. We exhibit graphical evidence of a

“barrier” between the this local minimizer and the global minimizer, which allows the local

minimizer to trap the optimization code.

We then consider whether this local minimizer is a spurious solution, that is, a mathematical

solution for the discrete problem which does not correspond to any physical solution. We

carry out this investigation by refining the finite element mesh and examining the behavior

of the refined finite element solution.

159

Table 12.1: Results for J h
2 , using finite difference gradients.

TolOpt Steps λ α1 α2 α3 J h
2 ||∇J h

2 ||∞
1.0E-09 44 0.507739 0.1407 0.5394 0.0599 0.311E-06 0.2E-09

12.2 Optimization Using Finite Difference Gradients

The experiments described in this chapter were all carried out on the same four-parameter

problem used in Chapter 11. The algorithm was the same, except for one difference. Where

previously we had estimated the sensitivities (uh)β with the discretized sensitivities, (uβ)h,

we now computed direct finite difference quotient approximations
∆uh

∆β
.

This is an expensive process, of course. Before, each step of the optimization iteration

required one flow solve. Now, each step will require an additional flow solve for every

parameter. In general, we would dearly like to avoid such wasteful computation by using

discretized sensitivities. But for now, we need to do the extra work in order to understand

whether the discretized sensitivities failed because of their limited approximation power.

The sensitivities, as estimated by finite differences, were used in Equation (9.11) to produce

an approximation to the cost gradients
∂J h

2

∂βi
. It was hoped that

∆uh

∆β
would give a better

estimate of (uh)β, and that we would therefore arrive at a reliable approximation of the cost

gradients.

As before, the optimization code was given a zero starting estimate for the parameters, and

the cost functional at this starting point was J h
2 (0, 0, 0, 0) = 0.430.

We present the results of these computations in Table 12.1. The results presented are for an

optimization tolerance of TolOpt=1.0E-9, but essentially identical results were achieved for

tolerances of 1.0E-10, 1.0E-11 and 1.0E-12.

The first thing we check in these results is the parameter values, and we see that, as with

160

Figure 12.1: The local optimizing flow.
Gradients computed with finite difference sensitivities.

The mesh parameter h is 0.25.
This flow may be compared with the target flow, in Figure 11.1.

the discretized sensitivity calculation, we have been unable to reproduce the original target

parameters.

We then turn to the cost functional information, and here we see that the optimization has

probably been successful, at least in terms of returning a local minimizer. The cost functional

has dropped by 6 orders of magnitude, from 0.430 to 0.311E − 06, and the gradient has

dropped extremely close to zero, signaling that very little “local” improvement can be made

to this solution point.

Thus, it seems we may have stumbled upon an unexpected solution to the problem. The

parameters don’t seem far from the target values. We see in Figure 12.1 that the computed

bump is not too far from the target bump, although it still has the “gutters” we saw in the

previous chapter.

But before we accept this solution, we would like to repeat the tests of the previous chapter,

and convince ourselves that what we are seeing this time is a real, acceptable, local mini-

161

mizer for the optimization problem, and that this minimizer tells us something about the

continuous physical problem whose behavior we are approximating.

12.3 Checking for Local Minimization

While it was natural to assume that the optimization code had halted at a local minimizer,

there were some simple checks that could be made to verify this. For instance, it was possible

that the optimization code had halted at the point because the functional was so flat that

there was no discernible difference between functional values at that point and the global

minimizer, or any points in a “plain” nearby. But this possibility was quickly dispelled by

computing the cost functional at a series of intermediate points on the line between the

optimization code’s solution and the global minimizer. The graph in Figure 12.2 shows how

the value of the cost functional rises from J h
2 = 0.3E−06 at the optimization code’s solution

to an intermediate value of J h
2 = 0.7E−04 before falling to J h

2 = 0 at the global minimizer.

The graph strongly suggests that a local minimizer has been found. However, this is not

guaranteed by any means. We have only sampled the functional along a direct line, whereas

the space of parameters has four dimensions, meaning there could yet be a curve connecting

the two points along which the functional is strictly decreasing. We would not expect the

optimization software to miss an obvious descent direction, but we will feel more confident

that we have found a local minimizer if we sample the functional in a plane and still see a

barrier of higher functional values blocking access from the optimization code’s solution to

the global minimizer. Figure 12.3 displays such a plot, and the barrier is clearly visible. The

solution returned by the optimization code lies in the “well” formed in the lower left hand

corner, and the global minimizer is in the well in the upper right. Once the optimization

code falls into the well in the lower left, it will not be able to rise out. Instead, its goal

should be to seek the local minimizer in the well, which it does.

162

Figure 12.2: Values of J h
2 on a line between the local and global minimizers.

This graph, in which the computed minimizer correctly lies in the bottom of a local depres-

sion, should be compared with the unsatisfactory situation portrayed in Figure 11.5, where

the optimization code stopped in confusion on a ridge, moving neither to the local nor global

minimizers.

Finally, to convince ourselves that the cost gradient data is compatible with the cost func-

tional, we display the (negative) normalized gradient vectors over the contour plot, in Fig-

ure 12.4. The plot makes it evident that the gradients computed using finite difference

sensitivities correspond properly to the contour lines of J h
2 , crossing them perpendicularly,

and pointing inward toward the local and global minimizers.

163

Figure 12.3: Contours of J h
2 on a plane containing the two minimizers.

The global minimizer is the black dot.
The local minimizer is the black square.

164

Figure 12.4: Contours and normalized gradients of J h
2 .

Gradients computed using finite difference sensitivities.
The global minimizer is the black dot.

The local minimizer is the black square.

165

12.4 The Possibility of Spurious Solutions

Solving the discrete problem has given us two solutions to the minimization problem: the

global minimizer that we had built into the problem, and the unexpected local minimizer.

We have no doubt that the global minimizer found for the discrete problem corresponds

precisely to the global minimizer that would be found if we could optimize the continuous

problem. But it is not certain whether the local minimizer really has physical meaning, or

is merely a spurious solution, that is, a mathematical artifact, a solution to the discrete

problem that does not correspond to any physical solution.

It can be quite difficult to tell whether a given solution to a discretized problem has a physical

meaning. For instance, we can convince ourselves that the “gutters” in the local minimizer’s

bump shape might perform the function of separating off regions of recirculating flow, so

that some streamline actually comes close to reproducing the target bump shape.

On the other hand, we have grounds for disbelieving this solution. The guttering causes a

substantial distortion of the relatively coarse finite elements, which makes the computational

results in those elements less reliable.

One way to investigate this question is to examine the same problem on a sequence of finer

meshes. If there actually is a true, physically meaningful, locally optimizing solution to the

continuous problem corresponding to the discrete local minimizer we found, then we expect

that each time we refine the mesh, we will again find a locally minimizing discretized solution,

and that the sequence of these solutions will converge to the physical solution. Without

actually knowing whether there is a true, limiting solution, we are testing the solutions by

performing a rough sort of Cauchy convergence test, demanding that the successive iterates

begin to cluster together.

The original solution was computed with mesh parameter h = 0.25, corresponding to 41

166

Table 12.2: Investigating the local minimizer with finer meshes.

h λ α1 α2 α3 J h
2 (λ, α)

0.250 0.507739 0.14079 0.539404 0.059978 0.311E-06
0.166 0.508730 -1.46097 0.359595 -0.084067 0.104E-04
0.125 0.511107 -1.91279 0.298398 -0.290631 0.126E-04

Figure 12.5: The flow for h = 0.166.

nodes along the x direction and 13 along y. To investigate the solution we found on this mesh,

we set up two finer meshes, starting these optimizations at the local minimizer λ = 0.507,

α = (0.140, 0.539, 0.059), and allowing up to 65 optimization steps. The numerical results are

displayed in Table 12.2. In each case, the optimization code concluded that it had converged

to an acceptable minimizer, but in both cases this minimizer had much deeper “gutters”

than the original solution.

The solutions for h = 0.166 and h = 0.125 are shown in Figures 12.5 and 12.6. These flows

may be compared with the flow solution for h = 0.125 in Figure 12.1.

The results from these runs on finer meshes suggest that the local minimizer is a spurious

solution. Instead of staying put, the gutters have gotten much deeper. The fact that the

167

Figure 12.6: The flow for h = 0.125.

gutters are so deep and narrow also means that all the elements above the gutters are

severely distorted, so that we cannot place much confidence in the computed flow results

either. Since this local minimizer doesn’t seem to represent an interesting physical solution,

we are no longer interested in it, except as a trap which we wish to avoid. We now consider

how to modify the approach so that the optimization can reach the global minimizer, avoiding

such meaningless solutions as we have just encountered.

168

Chapter 13

OPTIMIZATION WITH A
PENALTY FUNCTIONAL

13.1 Introduction

In this chapter, we try to avoid the local minimizer we found in Chapter 12 by adding a

“penalty functional” to the cost functional. As described in Section 9.11, such a penalty

functional can regularize a problem, that is, disqualify certain solutions with undesirable

properties; in particular, we prefer solutions with a monotonic bump derivative, and we

will use the penalty functional to try to select such solutions over those with “wiggles” or

“gutters”.

It is hoped that this regularization will fill in the valley of attraction for the local minimizer

seen in the previous chapter, and allow the optimization code to reach the global minimizer.

We will see that regularization will allow us to come closer to the global minimizer, but a

more elaborate procedure is needed to actually reach that point.

169

13.2 Regularizing the Cost Functional

We have already computed a number of solutions to the optimization problem, and found

something objectionable with each. The biggest drawback, of course, was that none of these

solutions were the global minimizer.

In a real problem, when the optimization code returns a purported minimizer, we won’t

know if there is a better, global minimizer. Nonetheless, there are some criteria that can be

used to declare that a solution is unacceptable, or undesirable.

For the problems that we have been examining, a wind tunnel engineer might reject every

solution with negative bump parameters because the concavities cause turbulence, are too

hard to machine, or are simply implausible. Solutions in which the bump almost entirely

occludes the channel might also be rejected for practical reasons.

We leave ourselves open to such undesirable results since we haven’t placed any constraints on

the feasible space of parameters to be examined by the optimization code. We could explicitly

add new requirements, in the form of equalities or inequalities that the parameters would

have to satisfy. However, this would change the problem to one of constrained optimization,

adding a layer of complication we prefer to avoid.

It is enough, for our purposes, if we can discourage the optimization code from making

certain choices, rather than forbidding them. This calls for the use of a penalty function,

which allows the optimization code to investigate any set of parameters, but which attempts

to make some choices unattractive by artificially increasing the cost functional there.

One possibility for controlling the oscillations of the bump is to compute a penalty functional

J h
B(α) based on the integral of the square of the derivative of the bump:

J h
B(α) =

∫ 3

1
(
∂Bump(x, α)

∂x
)2 dx. (13.1)

170

Table 13.1: Optimization results on J h
3 for various values of ε.

ε Steps λ α1 α2 α3 J h
B J h

3

1.0 22 0.512681 0.0026 0.0044 0.0032 0.4E-04 0.8E-02
1.0E-01 11 0.512231 0.0273 0.0467 0.0356 0.5E-02 0.8E-02
1.0E-02 19 0.505713 0.1740 0.3262 0.2706 0.2E+00 0.4E-02
1.0E-03 31 0.500561 0.2515 0.4677 0.3665 0.5E+00 0.5E-03
1.0E-04 40 0.500382 0.2849 0.5001 0.3636 0.5E+00 0.6E-04
1.0E-05 47 0.505597 0.1305 0.5442 0.1527 0.1E+01 0.1E-04
1.0E-06 47 0.507467 0.1387 0.5406 0.0712 0.6E+00 0.1E-05
1.0E-07 43 0.507710 0.1405 0.5395 0.0611 0.6E+00 0.4E-06

0.0 44 0.507739 0.1407 0.5394 0.0599 0.6E+00 0.3E-06

Such a penalty functional would be zero for a straight line connecting the beginning and

ending of the bump region, low for a small parabola or a piecewise linear function, and high

for a curve with wiggles or severe curvature. Our optimization code would then work with

a new cost functional J h
3 defined by adding a “small” multiple ε of the bump oscillation

integral to the original cost:

J h
3 (λ, α) ≡ J h

2 (λ, α) + εJ h
B(λ, α) (13.2)

=
∫
xs=3

(uh(xs, y)− uT (xs, y))2 dy + ε
∫ 3

1
(
∂Bump(x, α)

∂x
)2 dx. (13.3)

Here, we don’t include ε as a parameter of J h
3 , because we imagine it as being fixed to some

suitable value during the computation.

The optimization code minimizes this new cost functional by attempting to decrease the flow

discrepancy while not allowing the bump oscillation integral to get too large.

We ran a series of optimizations on the usual four parameter problem, with the target

parameters at λT = 0.5, αT = (0.375, 0.5, 0.375). We considered a series of values of ε to try

to get an idea of the effect of the penalty term on the computed optimizing solution. The

results are summarized in Table 13.1.

In this table, it is interesting to see how, as ε decreases, the computed solution begins to

171

Figure 13.1: Contours for cost functional J h
3 with ε = 0.0002.

The open circle marks the minimizer of J h
3 .

The filled circle marks the global minimizer of J h
2 .

The square marks the local minimizer of J h
2 .

move towards the global minimizer, down to the value ε=0.0001. Then, the local minimizer

becomes more attractive, and as ε decreases further, the computed solution begins to ap-

proach that point instead. Of course, if we actually set ε to zero, then that’s precisely where

we end up. From the table, we can conclude that the penalty functional can help, for certain

values of the penalty parameter ε; the value mustn’t be too large (or else we’re not solving

the flow problem we’re interested in) but it mustn’t be too small (or we’ll end up approaching

the undesirable local minimizer).

172

To get an idea of the smoothing effect of this change in the functional, consider Figure 13.1,

which displays contour lines of the smoothed functional, for ε = 0.0002, over the same

two dimensional plane used in Figure 12.3. The addition of the bump term seems to have

completely smoothed away the valley containing the local minimizer.

However, the minimizer of the new functional J h
3 is not the minimizer of the previous

functional J h
2 . This is to be expected; we could only guarantee that the minimizers were

the same in the unlikely case that the global minimizer of J h
2 also happened to minimize

the penalty function.

13.3 Reaching the Global Minimizer

Since we didn’t reach the global minimizer, it might seem that our penalty functional ap-

proach has not solved our problem. While our real goal was to reach the global minimizer

of J h
2 , we have reached a minimizer of a related functional, which is merely near our desired

value.

But it was exactly the task of getting near the global minimizer that we could not accomplish

earlier. Just as we would get near, the local minimizer would attract the optimization code,

and once we entered the local minimizer’s “valley” there was no way to escape.

The penalized functional J h
3 gives us a way to restart such a computation from the local

minimizer with the hope of exiting the valley. For values of ε that aren’t too small, the

valley disappears. Assuming that the global minimizer has a lower value of J h
3 , (though not

necessarily the lowest), it is reasonable to assume that a few steps of optimizing J h
3 will move

us closer to the global minimizer. Then if we return to optimizing J h
2 , we have a chance of

reaching the desired solution.

As our first example of this approach, let us start an optimization of J h
2 at the usual starting

173

Table 13.2: Results at the end of each stage of the three-stage optimization.

Minimizing Steps λ α1 α2 α3 J h
2 J h

3

J h
2 44 0.507739 0.1407 0.5394 0.0599 0.311E-06 0.297E-03
J h

3 15 0.502012 0.3411 0.5380 0.3086 0.144E-04 0.145E-03
J h

2 26 0.500007 0.3743 0.5000 0.3748 0.498E-09 NA

point. When that optimization is completed by reaching the local minimizer, let us use that

point as the starting point of a new optimization of J h
3 , with ε = 0.0002. We don’t need to

solve this problem well; we just want to get away from the local minimizer, so let’s take 15

steps. Then we will use that set of parameters as the starting point for a third optimization

of our unpenalized cost functional J h
2 . Essentially, we’re using the penalized function to “

get over the mountain” between the local and global minimizers.

As Table 13.2 makes clear, our 15 steps of minimizing J h
3 actually raise the value of J h

2 as it

moves away from the local minimizer. But this is exactly what must happen if we are to climb

out of the local valley. Once we are on the other side, it is safe to return to minimization of

J h
2 , and we finally have the satisfactory result of reaching our global minimizer.

Even though we are optimizing J h
3 , there is nothing that says we can’t monitor the values

of J h
2 . If we do so, then we can take a sustained drop in the cost functional value as a sign

that we have made it to the other side of the ridge. The actual sequence of cost functional

values for the 15 iterates in our case is shown in Figure 13.2.

If we anticipate problems with a local minimizer, or we want to try to rule out certain

behaviors with a penalty functional, then we could always begin by seeking a minimizer of

the penalized functional J h
3 . Then we restart the optimization from that point seeking the

minimizer of J h
2 . The results of carrying out this procedure on our current problem are

shown in Table 13.3. Again, we used a value of ε = 0.0002 to define J h
3 . As can be seen, the

initial optimization stops quite close to the global minimizer, making the second stage easy.

174

Figure 13.2: Values of J h
2 during the optimization of J h

3 .

Table 13.3: Results at the end of each stage of the two-stage optimization.

Minimizing Steps λ α1 α2 α3 J h
2 J h

3

J h
3 45 0.500363 0.2764 0.4952 0.3649 0.194E-05 0.119E-03
J h

2 26 0.500015 0.3735 0.5001 0.3747 0.283E-09 NA

Thus we have seen that, in the presence of an attractive local minimizer, a penalty functional

may be used to escape from the local region of attraction, or, if used in advance, to avoid it

altogether. A number of ad hoc decisions must be made; the most important one being the

choice of the form of the penalty functional. Typically, this choice is guided by seeking to

eliminate objectionable or unphysical features of the local minimizer. Secondly, an appro-

priate weight ε must be chosen when the penalty functional is added to the cost. Finally,

the user must decide when to switch between optimization of the penalized and unpenalized

cost functionals.

175

Chapter 14

FLOWS AT HIGHER REYNOLDS
NUMBERS

14.1 Introduction

Most of our work has been done at a Reynolds number Re = 1; real fluid flows encountered

in aircraft engine design may have Reynolds numbers of 10,000, 100,000 or more. We discuss

in this chapter some of the changes expected in the behavior of the flow and in the form of

the sensitivities as Re increases. Because higher Reynolds number flows are inherently more

difficult to compute, we discuss a continuation method approach for producing a suitable

starting point for the Newton iteration.

14.2 “Local” Influences Become Global

Low Reynolds number flow could be characterized by honey moving through a tube, while

an example of high Reynolds number flow would be air driven at high speed down a tunnel.

Experience tells us that the high Reynolds number flow is inherently more unpredictable

and unsteady. We are interested, though, in the behavior of the two kinds of flows when an

obstacle is encountered. We have already seen that, for Re = 1, the velocity sensitivities are

176

relatively large near the bump, but die out very quickly downstream. When we plotted the

sensitivities, we saw a “whirlpool” of influence right around the bump, and little else. We

interpreted this to mean that the bump caused almost purely a local disturbance.

It is natural to suppose, again from physical experience and intuition, that as the Reynolds

number increases, the influence of the bump will extend to a greater proportion of the flow

region behind the bump, while decreasing somewhat in front of the bump. In fact, at higher

Reynolds numbers, the influence of all the parameters and boundary conditions begins to

affect the solution throughout the region.

This is good news for our optimization efforts; it means that more of the flow will be affected

by the bump, and we will have a greater choice on where we place our profile line, or, indeed,

on what quantities we measure there.

On the other hand, it is going to make our individual computations of particular flow solu-

tions much harder; as Re increases, the nonlinear terms begin to dominate and our problem,

which we symbolize abstractly as F h(X) = 0, becomes much harder to solve.

As Re increases, F h(X) = 0 becomes not only a harder problem, but also a bigger problem,

because the mesh parameter h must be decreased. Cutting h in half quadruples the number

of unknowns, and our banded system matrix increases in size by roughly a factor of 8. Such

growth factors cannot be long sustained, and severely limit the Reynolds numbers for which

we can compute an approximate flow solution. But if the mesh is not sufficiently refined for

a given Re, the Newton iteration may converge extremely slowly, or, more likely, will almost

immediately diverge.

We now exhibit a set of plots of the α-velocity sensitivity field for Re=1, 10, 100, 500 and

1,000. These plots confirm the prediction that the influence of the bump begins to extend

downstream; it is almost as though the “whirlpool” that showed up above the bump, for

177

Figure 14.1: Velocity sensitivities for Re = 1.

Figure 14.2: Velocity sensitivities for Re = 10.

Re = 1, is blown to the right by an incoming wind.

A comparison of the sensitivity plots for Re = 1 and 1000 suggests that, at Re = 1, the

disruptions that the bump causes are strictly confined to the region above the bump, where

more flow has to pass through a narrowed channel; once past the bump, the flow quickly

restores itself to its original pattern. For Re = 1000, however, the flow deflected upward

does not come back down. The large arrows in the wake of the bump indicate that the bump

is causing the flow just behind it to die off.

178

Figure 14.3: Velocity sensitivities for Re = 100.

Figure 14.4: Velocity sensitivities for Re = 500.

Figure 14.5: Velocity sensitivities for Re = 1000.

179

14.3 Getting a Starting Point

At low Reynolds numbers, we started our first Newton process with a zero guess, and there-

after simply used the previous solution for the next Newton process. At higher Reynolds

numbers, the nonlinear terms are more significant. This means that Newton’s method has

to work harder, and requires a better starting point. It’s easy to detect when the starting

point isn’t good enough, because the Newton iteration will begin to fail.

If a better starting point is needed, one option is to compute a solution using a simple form

of continuation [23]. That is, to get the solution (u, v, p) for the parameters (λ0, α0, Re0), we

first compute the solution for (λ0, α0, 1). For example, if Re0 is “close” to 1, and we have

a flow solution computed at Re = 1, then we can compute a good initial estimate of the

solution at Re0 by using an Euler approximation:

u(λ0, α0, Re0) ≈ u(λ0, α0, 1) +
∂u

∂Re
∗ (Re0 − 1). (14.1)

Similar formulas are required to approximate the new values of v and p. Notice that, once

again, we need the sensitivities of the solution variables, this time with respect to Re. Of

course, we can estimate the sensitivities by finite differences, or try to economize by using

discretized sensitivities.

If Re0 is not close to 1, then the Euler approximation might not produce a good enough

starting point for the Newton iteration. Then a possible rememdy would be to advance to

Re0 in a sequence of several steps. At each step, we use an Euler approximation based at

the previous step as the starting point for our Newton process.

Once we have gotten a single solution (u, v, p) at our parameter values (λ0, α0, Re0), we may

choose to reuse that solution as the starting point for the next Newton process. However, at

high Reynolds numbers, the solution is much more sensitive to the parameter values, and we

180

may find this approximation unsatisfactory. In that case, we must return to the continuation

method. If the Newton process fails during a continuation step, we always have the option

of reducing the stepsize and trying again.

We have used this approach successfully to compute target solutions at Reynolds numbers

of 100 and 1,000. However, during the subsequent optimization steps, we have encountered

numerous problems with Newton divergence. In some cases, the bump parameter values

become strongly negative, or oscillatory; in other cases there is no clear reason for the

failure. Frequently, a convergence could be corrected by refining the mesh. However, because

of computer memory limitations, it was not possible for us to use a mesh parameter h finer

than 0.0625, which meant we frequently were unable to solve problems at Re = 1000.

181

Chapter 15

APPROXIMATING NONFEASIBLE
TARGETS

15.1 Introduction

The fundamental information defining our cost functional is the profile data, that is, the

values uT (x, y) (and possibly vT (x, y) and pT (x, y)) specified along the profile line x = xs.

Usually, this data is generated by specifying some set of parameters βT , solving for the

corresponding flow (uT (β), vT (β), pT (β)), and saving the flow values along the profile line.

In such a case, we speak of (uT , vT , pT) as a feasible target. This terminology is meant to

imply that the profile data was generated from a discrete fluid flow, that this fluid flow was

generated by solving a parameterized flow problem, and that the original set of parameters

is part of the feasible set of parameters to be examined by the optimization code. In other

words, if the target is feasible, the generating parameters are buried somewhere in the feasible

set, if only the optimizer is smart enough to find them.

Hence if we generate our problems in this way, we know beforehand that the minimum

value of the discrepancy cost functional will be zero, and that this minimum value certainly

occurs for the flow solution corresponding to the parameter values βT , although it may

182

occur for other parameter values as well. For that matter, we could also have numerous local

minimizers with higher values of the cost.

However, there is no requirement that we set up our cost functional data in this way. In a

real world application, it is likely that we would not know the form of any global or local

minimizer beforehand. It is also likely that we would prescribe what might be termed an

unfeasible target; that is, profile data for which there is no corresponding set of parameters

that would produce a flow with that profile.

We would like to investigate some simple problems involving unfeasible targets. We will

consider some problems where the target data is generated from a flow that depends on

parameters, but where the spaces spanned by the parameters are different than those used

for the optimization. We will also consider some problems where the target data is simply

produced, data ex machina, with presumably no corresponding flow solution.

In these cases, we will still expect the optimization code to produce a locally minimizing

solution, but we have no idea beforehand what the minimal value will be, nor what the form

of the solution will be. In cases where our target data is chosen too arbitrarily, we may find

that the optimization results are counter-intuitive.

15.2 Example 1: Differing One-Parameter Bump Shapes

For our first example, let us suppose that the target flow is generated in a flow region whose

bump is a piecewise quadratic, whereas the feasible space will only consider bumps which are

piecewise linear. To keep things simple, we will only use a single bump parameter, α = 0.5,

and we will fix the inflow parameter α at 0.5, and the Reynolds parameter at 1. When we

give this problem to our program, the optimizer converges to the solution α = 0.6498 in 14

steps, with a cost functional value of J (α) = 0.62E−4. Of course, we didn’t expect the two

183

Figure 15.1: Example 1: The target flow.
A piecewise quadratic bump is used.

Table 15.1: Example 1: Optimization results.

Steps α J h
2 ||∇J h

2 ||∞
0 0.000 0.00607 –
15 0.649 0.00006 0.2E-07

values of α to agree, since they are coefficients for different sets of piecewise polynomials.

The real tests are in the shape of the bump, and the functional match.

From Figures 15.1 and 15.2, it’s easy to see that the piecewise linear bump is “trying” to

match the shape of the piecewise quadratic, but it’s nearly impossible to see and compare

the horizontal velocities along the profile line. To rectify that problem, in Figure 15.3 we

plot the horizontal velocity functions for the target and optimizing flows, along the profile

line. The target values are drawn with a dashed line, but the match is so good between the

two functions that it’s hard to see.

184

Figure 15.2: Example 1: The optimizing flow.
Only piecewise linear bumps are feasible.

15.3 Example 2: Differing Three-Parameter Bump Shapes

After the results of our first example, we are interested in pushing the problem a little further.

We will essentially repeat the calculation, but with three parameters used to represent the

bumps. Also, we will make the target bump higher, using the values α = (0.75, 1.0, 0.75).

From the optimization history in Table 15.2, it seems reasonable to believe that the minimal

cost, and the values of the second and third bump parameters have been well approximated.

Looking at the behavior of the bump parameters, it seems as though they are determined

from right to left, with the bump parameter closest to the sampling line presumably having

the biggest influence, and hence being determined first. We will accept our results, while

realizing that there may be some uncertainty in the value of α1.

From Figures 15.4 and 15.5, it’s easy to see that the bumps are dissimilar in shape. The

piecewise linear bump is by no means the interpolant of the quadratic bump, nor does it

seem close to one.

185

Figure 15.3: Example 1: Comparison of target and achieved flows.

186

Figure 15.4: Example 2: The target flow.
A piecewise quadratic bump is used.

Figure 15.5: Example 2: The optimizing flow.
Only piecewise linear bumps are feasible.

187

Table 15.2: Example 2: Optimization results.

Steps α1 α2 α3 J h
2 ||∇J h

2 ||∞
0 0.000 0.000 0.000 0.343E-01 –
10 0.033 0.175 0.845 0.266E-03 –
20 0.151 0.666 0.859 0.179E-03 –
30 0.230 0.996 0.794 0.591E-05 –
40 0.231 1.000 0.791 0.575E-05 –
50 0.232 1.000 0.792 0.575E-05 –
60 0.471 1.006 0.793 0.574E-05 –
70 0.595 1.009 0.794 0.572E-05 –
80 0.599 1.010 0.793 0.571E-05 –
90 0.995 1.022 0.798 0.544E-05 –
100 1.161 1.006 0.805 0.515E-05 –
110 1.246 0.999 0.806 0.488E-05 –
120 1.364 0.988 0.812 0.458E-05 –
130 1.638 0.886 0.823 0.378E-05 –
135 1.638 0.885 0.823 0.378E-05 0.2E-08

Of course, since the target isn’t feasible, we can’t judge our results by how well the bumps

match, but should instead refer to the match of horizontal velocities along the sampling line.

In our plots which show the entire region, this is very difficult to see. To rectify that problem,

in Figure 15.6 we plot the horizontal velocity functions for the target and optimizing flows,

along the profile line. The target values are drawn with a dashed line, but even now the

discrepancy between the two is difficult to spot.

It may be of interest to compute the flow solution generated by the linear interpolant to the

quadratic bump, which would have been a natural guess for the minimizing parameters. The

results are shown in Figure 15.7, where the discrepancy between the target and computed

flows is clear. The value of J (α) is 0.1E-03, which certainly shows that our minimizing

solution has done better.

188

Figure 15.6: Example 2: Comparison of the target and minimizing flows.

189

Figure 15.7: Example 2: Comparison of the target and linear interpolant flows.

190

Table 15.3: Example 3: Optimization results.

Steps λ1 λ2 λ3 J h
2 ||∇J h

2 ||∞
0 0.1000 0.1000 0.1000 5.974 –
22 1.9608 -2.0536 2.9955 0.128E-01 0.9E-08

15.4 Example 3: Three-Parameter Inflows

In our next example, we leave the bump fixed, but allow the inflow to vary. We model the

shape of the inflow by three parameters. Such a varying inflow might be generated by using

several separate fans or deflectors in a wind tunnel.

We generate an arbitrary curve for the horizontal flow at the profile line, using the formula:

u1(xs, y) = (3− y)y/m1

u2(xs, y) = (3− y)y(1.5− y)/m2

uT (xs, y) = γ1u1(xs, y) + γ2u2(xs, y)

where m1 is chosen so that the maximum value of the parabolic flow u1 over [0, 3] is 1, and m2

is chosen similarly for u2. The quantities γ1 and γ2 are chosen by the user at run-time. Since

parabolic flow is the natural tendency for our problem, we may think of u2 as a perturbation

to this natural tendency. The larger γ2 is, relative to γ1, the more “unnatural” the target

flow will be, and the harder to achieve. For our demonstration problem, we choose γ1 = 2,

γ2 = −0.5. Figure 15.8 is a graph of the resulting target profile.

Now the value of the target flow along the profile is all we need to define an optimization

problem, so we can proceed to solve this problem, using a Reynolds number Re = 10.

Because the target flow was not generated in the usual way, we expect that our optimizing

flow will not achieve a zero cost functional, although we do want the cost gradients to be

close to zero. A summary of our results are in Table 15.3.

191

Figure 15.8: Example 3: The “artificial” flow.
Values γ1 = 2.0, γ2 = −0.5 were used.

192

Figure 15.9: Example 3: The optimizing flow, near the profile line.

In Figure 15.9 we show the optimizing velocity field near the profile line, and in Figure 15.10

the optimizing velocity field at the inflow, where it is plain that a certain amount of outflow

is generated. Finally, in Figure 15.11 we show the excellent match between the target and

optimizing velocities.

193

Figure 15.10: Example 3: The optimizing inflow (includes outflow!).

194

Figure 15.11: Example 3: The match between target and desired flows.

195

Chapter 16

EFFICIENT SOLUTION OF THE
OPTIMIZATION PROBLEM

16.1 Introduction

The optimization of a cost functional associated with a Navier Stokes problem is expensive;

that is, the usual solution algorithm requires a considerable amount of arithmetic operations

and computer time. It is important to investigate whether there are simple techniques for

reducing the computational expense.

We choose a standard problem and estimate the amount of work that will be required to

carry out an optimization using our original algorithm. We then consider several variations

of this algorithm that strive to reduce the amount of work involved.

We also investigate how the computational expense will grow as the Reynolds number is

increased, which makes the nonlinear terms more prominent, and the problem harder to

solve.

196

16.2 A Standard Test Problem and Algorithm

To investigate methods for speeding up the optimization, we will find it useful to pick a

standard problem, carry out the optimization procedure, and carefully record the computa-

tional effort required, paying particular attention to the assembly and factorization of the

Jacobian matrix.

As a standard problem, we take a four parameter case, with one inflow parameter and

three bump parameters. We fix the Re parameter at 1. Target data is generated using the

parameter values λT = 0.5, αT = (0.375, 0.5, 0.375).

For the discretized problem, we will use a mesh parameter h = 0.125, resulting in 960

elements, 2025 nodes, and 4190 unknowns. The Jacobian matrix is banded, with a bandwidth

of 225 entries.

For the low Reynolds numbers we will be examining, it is usually not necessary to employ Pi-

card iteration. Therefore, we will usually rely exclusively on Newton’s method, using Picard

iteration only as a fallback. We will use a Newton convergence tolerance of TolNew=1.0E-9.

The optimization will be carried out with an optimization tolerance of TolOpt=1.0E-9. We

will start from the usual zero initial estimate, which has a cost functional value of 0.436.

To carry out the computation, let us begin with a simple-minded approach, which we will

call Algorithm 1. Algorithm 1 will re-evaluate and refactor the Jacobian on every step of the

Newton process. Once the main solution point is computed, finite coefficient differences will

be made to get approximations of the sensitivities. The proper computation of these finite

difference points will require yet another Newton process for each parameter component; we

will update the Jacobian during these subsidiary Newton processes as well.

If we apply this algorithm to our problem, 34 optimization steps are required, after which

197

the optimization code declares satisfactory convergence to the parameters λ = 0.499999, α =

(0.374365, 0.500065, 0.375045). At this point, the cost functional J h
2 (λ, α) = 0.363E− 9 and

the estimated gradients are
∂J h

2

∂λ
= 0.6E−05 and

∂J h
2

∂α
= (−0.2E−06, 0.4E−05, 0.6E−05).

During this run we computed flow solutions at 169 separate sets of parameter values, which

in turn required a total of 187 Newton iteration steps, as well as 187 Jacobian evaluations

and factorizations. The optimization of our standard problem required 1112 seconds of CPU

time on a DEC Alpha.

16.3 Expensive Computational Tasks

A timing analysis of the program reveals that the most expensive operations are:

• The evaluation of the finite element basis functions;

• The evaluation and factorization of the Jacobian;

• The solution of linear systems.

with the Jacobian factorization being the single most expensive item.

We have already attempted to economize on the basis function evaluations; we precompute

the values at all quadrature points, and then simply look them up when needed. However,

if there are geometric parameters, then for each new set of parameters these quantities must

be recomputed, reducing our efficiency gain. No further improvement is likely here, since the

number of evaluations on the finite element basis functions depends in turn on the number

of evaluations of the Jacobian.

Our Jacobian is symmetrically banded. We apply the LAPACK banded factorization routine

DGBTRF to compute its LU factors. The amount of work required for this operation is

198

Table 16.1: Matrix work required for various values of h.
Work is measured in millions of floating operations.

h MBand Neqn Factor Solve
(MegaOps) (MegaOps)

0.2500 66 1166 10 0.2
0.1666 93 2555 44 0.7
0.1250 120 4484 129 1.6
0.0833 174 9962 603 5.2
0.0625 228 17600 1829 12.0

roughly O(2 ∗Neqn ∗Mband2), where Neqn is the number of equations represented by the

matrix, and Mband is the half bandwidth.

To solve a particular linear system, we use the corresponding LAPACK routine DGBTRS.

The cost for a single linear solution from this routine is roughly O(3 ∗Neqn ∗Mband).

The number of equations and the bandwidth depend, in turn, on the mesh parameter h.

As the mesh parameter is halved, for instance, we expect roughly that Mband will double,

and Neqn quadruple. This means that the computational work goes up by a factor of 16.

If we halve h twice, it will take us roughly 256 times as long to factor the corresponding

Jacobian. No other operation in the program will have this explosive growth with decreasing

h. Therefore, as h decreases, it is vital that we be able to reduce the number of Jacobians

we need. In some cases, reducing the number of Jacobians will increase the number of linear

solutions required.

Table 16.1 lists the amount of work required for factorizations and solutions for a sequence

of values of h. We can see, for instance, that in going from h = 0.25 to h = 0.0625, our

estimate of a 256-fold increase in factorization work is reasonably close to the actual 182-fold

increase. From this table, we can see that it takes quite a large number of linear solutions

to equal the cost of one factorization.

199

Of course, there are many hidden costs that this table cannot show. For instance, we have

not measured the costs of evaluating the Jacobian, which is roughly equal to the cost of

evaluating the Newton residual. To make a more accurate assessment of, say, the relative

cost of one Jacobian factorization versus several Newton steps, we would need to measure

the evaluation work as well.

However, this table has given us a clear indication of the large amount of work required for

Jacobian factorization, and its explosive growth as h decreases.

16.4 A Comparison of Algorithms at Re = 1

Since the evaluation and factorization of the Jacobian is our most costly computational task,

we will now investigate whether we can reduce the overall cost of the computation by trying

to reduce the amount of work devoted to the Jacobian.

The simplest change we can make to Algorithm 1 is to hold the Jacobian fixed when com-

puting flow solutions required as part of a finite difference calculation. This is surely a

reasonable economy; the last Jacobian calculated in the Newton iteration for a main solu-

tion point is likely to be quite close to the Jacobian at any of the finite difference points,

whose parameters differ in a minuscule way from those of the main solution point. We will

call this method Algorithm 2.

In fact, during a Newton iteration, the iterates are all likely to be close enough so that we

could actually use a single Jacobian to compute several or all of the Newton steps. For our

purposes, we will assume that at most 5 Newton steps in a row are computed with a fixed

Jacobian, and that the Jacobian is always reevaluated and factored at the beginning of each

Newton process. As before, we will hold the Jacobian fixed for Newton processes associated

with finite difference computations. We call this method Algorithm 3.

200

Table 16.2: Work carried out for various algorithms, Re = 1.
Pure Newton algorithm, tolerance TolNew=1.0E-9.

Algorithm Opt Flow Newton Matrix CPU
Steps Solves Steps Factors (sec)

1 34 169 187 187 1112
2 34 169 187 55 450
3 33 164 187 33 337
4 37 184 608 6 424
5 35 38 73 73 498
6 34 37 90 34 310
7 36 179 436 13 400

To see how far we can reduce the factorizations of the Jacobian, we also consider Algorithm

4, which never evaluates the Jacobian except on the very first Newton process, or if the

Newton process has failed to converge. Algorithm 7 is similar, but instead of waiting for the

Newton process to fail, we evaluate the Jacobian and then reuse it for the entire Newton

process, and for all Newton processes associated with “nearby” parameter sets.

Algorithm 5 is similar to Algorithm 2, except that we use discretized sensitivities instead

of finite coefficient differences. Algorithm 6 is the same as Algorithm 3, except that we use

discretized sensitivities instead of finite differences.

We applied these algorithms to our standard problem, and display the results in Table 16.2.

What may we conclude from these results? At the moment, we wish primarily to consider

questions of efficiency. If we consider the CPU measurement to be a reasonable measure of

the overall work performed by the algorithm, then we may take our task to be the explanation

of the timing results in terms of the underlying algorithms.

The first remarks then go to the longest run by far, our basic algorithm. We know that

matrix factorization is the most expensive single operation in our algorithm; this correlates

well with the very high number of factorizations carried out by Algorithm 1.

201

Surely the number of factorizations cannot be the only factor, else Algorithm 4 would have

been our quickest, with only 5. The fact that Algorithms 3 and 6, with more matrix fac-

torizations, are substantially faster, means that there are other sources of work that must

also be controlled. Indeed, we can note that Algorithm 4 paid for its very low factorization

rate with a correspondingly high number of Newton iterations. Each Jacobian evaluation,

for instance, was preceded immediately by a Newton iteration that failed to converge after

taking the maximum number of steps, accounting for a total of 200 steps. Since each Newton

step requires the solution of a linear system, which is by no means a cheap process, we can

attribute the mediocre performance of Algorithm 4 to a failure to control the number of

linear system solves.

Algorithm 7, while similar to #4, manages to reduce the number of Newton steps by about

200, at a slight cost of 7 extra Jacobian evaluations. However, there is little improvement in

speed for this problem.

Now let us consider Algorithm 6, which produced the lowest time to solve the problem. It is

reasonable to attribute its speed to the combination of a low number of matrix factorizations

and a very low number of Newton iterations. Algorithm 6 has limits on its stinginess: it

reuses the Jacobian, but no more than 4 times. This seems to guarantee good Newton

convergence behavior at a significantly lower cost in factorizations.

We note that the second best timing was for Algorithm 3, which actually had a high number

of flow solves and Newton steps (because it used finite differences instead of sensitivities).

Apparently, the fact that it was able to keep the number of factorizations almost as low as

for Algorithm 6 was the decisive factor. The rule seems to be that factorizations are very

important; linear solves are only important if their number gets “out of hand”.

So far, our results at Re = 1 have suggested that we need to be aware of an appropriate

202

Table 16.3: Work carried out for various algorithms, Re = 100.

Algorithm Opt Flow Newton Matrix CPU
Steps Solves Steps Factors (sec)

1 36 180 218 218 6189
2 38 190 228 80 2639
3 37 185 292 43 1813
4 38 190 1029 9 1912
5 36 40 105 105 3146
6 49 58 292 96 3298
7 39 195 702 11 1514

error tolerance for the Newton iteration and that we need to use the Newton system matrix

wisely, neither updating it every step, nor reusing it to the point where the Newton process

is severely hampered.

16.5 A Comparison of Algorithms at Re = 100

Our efforts at improving the efficiency of the algorithm do not show as much profit as we

might like. But this may be that the flow problem is too easy to solve when the Reynolds

number is low. As Re increases, the problem becomes more nonlinear, the Newton process

requires more steps, and conservation of Jacobian evaluations will provide a bigger payoff.

Let us recompute our results using the same set of algorithms, but for a Reynolds number

of Re = 100, and a mesh spacing of h = 0.083. Table 16.3 shows the new timings.

Here we see a dramatic separation of the algorithms. Algorithm 1 is, as expected, the most

expensive. But now we can rate Algorithms 2, 5, and 6 as mediocre, Algorithms 3 and 4 as

good, and Algorithm 7 as superior.

We can find ready explanations for some of the results in the table. Our mesh parameter

h had to decrease because the Reynolds number had increased. The overall cost for each

algorithm is then multiplied by a factor of 4 to 10. The smaller mesh spacing means more

203

variables, and hence a bigger Jacobian. The cost of evaluating and factoring the Jacobian

matrix becomes relatively more important, and hence, algorithms that conserve on this single

cost will do better.

The fact that Algorithm 7 did better than Algorithm 4 emphasizes the importance of “pre-

ventive” Jacobian updating. It can be a bad idea to wait until the Jacobian is absolutely

useless before updating it; a very poor Jacobian may be usable, but very ineffective. Algo-

rithm 7’s technique of updating the Jacobian when the parameters have changed significantly

seems to pay off. Good, fresh Jacobian information is needed repeatedly in the beginning of

an optimization, but towards the end, when the iterates cluster around a single value, there

is much less need to reevaluate.

Algorithm 3, which updates the Jacobian on each Newton process, but then holds it fixed,

should be compared to Algorithm 2, which updates the Jacobian on every Newton step.

Algorithm 3 cut down the number of Jacobian evaluations by roughly half, and was able to

cut 800 seconds off its CPU time.

It is surprising that Algorithm 6 did so poorly. It was the best performer for Re = 1.

However, it had a failure of the Newton process early in the computation, which cost it 60

wasted Newton steps, and it then seems to have had optimization difficulties, because of the

use of discretized sensitivities, that made it compute 49 optimization steps, much above the

range of 36 to 39 required by the other algorithms.

16.6 Appropriate Newton Tolerances

Since the Newton iterations are our main expense, it might seem that an easy way to cut

down on work would be to loosen the Newton tolerance TolNew used for determining

convergence. It is surely true that this can have the effect of shortening any one Newton

204

process. However loosening the Newton tolerance means increasing the inaccuracy that we

will accept in our solution; this same inaccuracy then affects our calculations of the cost

function, the sensitivities, and the cost gradients. Inaccurate cost data can greatly prolong

the optimization process, particularly because descent directions will be inaccurate. And

once the inaccuracies in the computed cost functional become large enough, the formerly

smooth graph of the cost functional will behave as though it were covered by spurious local

minima, bringing the optimization process to a confused and incorrect halt.

Normally, one would simply choose the Newton tolerance to be a “small” value. We have

typically used values of the order of 1.0E-9 or 1.0E-10. However, working on higher Reynolds

number problems, we considered using a tolerance of 1.0E-7. We were surprised at certain

unexpected behaviors in the optimization process, and so we returned to a lower Reynolds

number where we had more experience and did some comparisons.

As a model problem for this study, let us take a four parameter problem, with one inflow

parameter λ and three bump parameters α, with target parameters λT = 0.5 and αT =

(0.375, 0.5, 0.375) and Re fixed at 1. A mesh parameter of h = 0.125 was used. Let us

use adjusted finite coefficient differences as estimates of the discrete sensitivities used to

compute the cost functional gradient. (Note that we don’t update the Jacobian for Newton

steps carried out on finite difference computations.) Then, if we vary the Newton tolerance

TolNew, leaving all other quantities fixed, we get the work estimates listed in Table 16.4.

The table indicates that an acceptable solution can be computed for TolNew=1.0E-9 or

less. The most efficient calculation occurs at TolNew=1.0E-10, where, it seems the cost

of accuracy in the Newton solution has been roughly balanced by the benefits of a rapid,

accurate optimization. As the tolerance grows above this range, the quality of the optimiza-

tion deteriorates very rapidly, because the data is too poor to work with. If instead, we

decrease the tolerance, the work slowly but relentlessly rises, as we waste time computing

205

Table 16.4: Work carried out for various Newton tolerances, Re = 1.
“PErr” is the L2 parameter error between the computed and global minimizers.

TolNew Opt Flow Newton Matrix CPU PErr
Steps Solves Steps Factors (sec)

1.0E-05 63 314 314 69 470 0.44
1.0E-06 40 199 192 36 265 0.23
1.0E-07 31 154 152 32 221 0.26
1.0E-08 36 179 193 52 318 0.0004
1.0E-09 34 169 187 55 316 0.001
1.0E-10 33 164 183 55 305 0.001
1.0E-11 34 169 193 61 330 0.001
1.0E-12 34 169 197 65 346 0.001
1.0E-13 34 169 198 66 349 0.001
1.0E-14 34 169 301 70 425 0.001
1.0E-15 34 169 335 77 471 0.001

over-accurate solutions. For a tolerance of TolNew=1.0E-16, the entire optimization fails

because the Newton iteration cannot converge to the given tolerance.

Note, however, what a very simple problem this must be. Up until TolNew=1.0E-14, the

number of flow solutions is roughly equal to the number of Newton steps. In other words, a

single Newton step is enough to correct the initial guess to the desired tolerance.

We repeat the calculations for a higher Reynolds value of 100, with the results shown in

Table 16.5. Certain features of our previous results persist. In particular, we see again that

the overall CPU time suddenly increases if the tolerances are too loose, while the CPU time

slowly rises as we decrease the tolerances. Again, there seems to be a discontinuous behavior

in the estimation of the parameters. Above a certain tolerance, the approximation is very

poor. Below it, the approximation seems to be about the same, regardless of the tolerance

used; only the work increases.

When comparing results at Re = 1 and Re = 100, we notice that the parameters for the

global minimizer are approximated better for Re = 100, by about a factor of 10, and that

206

Figure 16.1: CPU time as a function of Newton tolerance, Re = 1.

this better approximation begins for a higher tolerance. On the other hand, the amount of

work required to optimize the Re = 100 problem begins to rise at a much higher Newton

tolerance, suggesting that the gradients are well approximated already. This suggests that

while the higher Reynolds number flows are harder to solve as flow problems, they are easier

to solve as optimization problems. In other words, in a high speed flow, small differences in

the shape of the obstacle make a bigger difference in the downstream flow.

During a particular optimization, it may not at first be clear what an appropriate Newton

tolerance should be. Fortunately, the signs of an inappropriate Newton tolerance can be easy

to spot: an optimization that seems to drift aimlessly once the cost functional or gradient

values have dropped small enough, or a situation where the Newton iteration repeatedly fails

to reach the requested tolerance.

207

Table 16.5: Work carried out for various Newton tolerances, Re = 100.
“PErr” is the L2 parameter error between the computed and global minimizers.

TolNew Opt Flow Newton Matrix CPU PErr
Steps Solves Steps Factors (sec)

1.0E-05 64 316 350 112 971 0.18
1.0E-06 38 186 193 59 529 0.44
1.0E-07 42 210 234 70 625 0.0002
1.0E-08 43 215 252 84 712 0.0002
1.0E-09 42 210 257 93 765 0.0005
1.0E-10 41 205 255 95 772 0.0001
1.0E-11 41 205 259 99 797 0.0001
1.0E-12 41 205 263 103 822 0.0001
1.0E-13 41 205 307 105 858 0.0001
1.0E-14 41 205 428 112 954 0.0002

208

Chapter 17

THE COMPUTATIONAL
ALGORITHM

17.1 Introduction

In this chapter, we look in detail at the algorithm used to produce the results discussed in

this thesis. We first give a logical outline of the order of operations in the algorithm. We

next discuss the names and meaning of some of the user input quantities. We then describe

the individual steps of the algorithm in terms of the variables that are used and altered at

each step.

Finally, we discuss our choice of optimization software, including the algorithm employed,

the input required from the user, and the types of stopping criteria.

17.2 Black Box Versus One-Shot Methods

The strategy we employ for our flow optimization is an example of the black box method.

We may consider our overall algorithm to comprise two sub-algorithms: the flow solver, and

the optimization code. The term “black box” is meant to suggest that the details of the flow

solving are not used in any way by the optimization code. We may summarize our algorithm

209

as repeated executions of:

Given parameters β : (17.1)

Solve for state variables F (uh(β), vh(β), ph(β), β) = 0 (17.2)

Evaluate the costJ (β) = J(uh(β), vh(β), ph(β), β) (17.3)

Accept β, or terminate, or repeat. (17.4)

The function F is meant to represent the Navier Stokes system.

To understand that this is not the only possible approach, one might consider the follow-

ing method, which seeks to solve the same problem, though using the cruder optimization

technique of seeking a zero of the gradient of J .

Given (uh0 , v
h
0 , p

h
0 , β0) (17.5)

Find (uh, vh, ph, β) satisfying the pair of equations (17.6)

F (uh, vh, ph, β) = 0 (17.7)

∇J(uh, vh, ph, β) = 0 (17.8)

where J is the original cost functional that is written in terms of the flow functions as well

as the parameters. Notice that the flow functions u, v and p used as arguments of J are not

required beforehand to be actual flow solutions. This method would start with the arbitrary

set of flow functions and parameters (uh0 , v
h
0 , p

h
0 , β0), and try to solve F = 0 and ∇J = 0

simultaneously. Thus, the optimization and flow portions of the calculation would be done

simultaneously. Such an approach is called a one-shot method.

17.3 Black Box Flow Optimization Algorithm

Our algorithm carries out some initializations, and then repeatedly executes an optimization

loop. It begins the loop with some set of parameter values, finds the corresponding flow

210

solution, evaluates the cost functional and the approximate cost gradient, and reports to

the optimization code for further instructions. The simplified version of our algorithm that

is described here assumes that our cost functional depends only on the horizontal velocity

discrepancy, that the cost functional target data is computed in the usual way as sampled

data of a flow generated by target parameters, and that discretized sensitivities are used to

estimate the cost gradient.

Algorithm 17.1 (Black Box Flow Optimization)

Get user input.

Compute Utar, the target horizontal velocities.

Initialize optimal parameter estimate Para to zero.

Begin optimization loop:

Estimate flow solution (U, V, P) for current parameters Para.

Use Picard iteration to “improve” (U, V, P) for use by Newton.

Use Newton iteration to produce correct flow solution (U, V, P).

Compute discretized flow sensitivities dUdP at Para.

Compute Cost =
∫

(Utar(XProf , y)−U(XProf , y)) dy

If finite difference sensitivities are desired, find nearby flow solutions.

Compute cost gradient vector dCdP.

Report current values of Para, Cost and dCdP to optimization code.

Optimization code makes one of the following recommendations:

Current parameters acceptable. Stop with success.

Optimization must be abandoned. Stop with failure.

New estimate of parameters in Para. Repeat optimization loop

End optimization loop

211

In the succeeding sections, we discuss portions of this algorithm in detail.

17.4 User Input

The program accepts at runtime a file of user input. This allows the user to specify infor-

mation about the following matters:

• the physical problem to be solved;

• the flow region discretization;

• the cost functional;

• starting parameter values;

• the Newton iteration;

• the cost gradient calculation;

• the optimization.

We will now list the exact information that may be specified by the user.

17.4.1 Physical Problem Input

The basic flow region is assumed to be a rectangle. The user gives the dimensions of this

rectangle as follows:

XLngth The length of the flow region.

YLngth The height of the flow region.

212

The number of parameters used must be specified by the user:

NParB The number of bump parameters.

NParF The number of inflow parameters.

Note that there are a total of NPar=NParB+NParF+1 parameters, because the Reynolds

number Re is always considered a parameter, although it need not be varied in a particular

problem.

17.4.2 Discretization Input

The flow region is covered by a grid of nodes. The columns of nodes are evenly spaced in

the x direction. The nodes are then evenly spaced in the y direction, bearing in mind that

the flow region may have a bump, and that the y coordinate of nodes over the bump must

be adjusted each time the bump parameters change. Two parameters specify the density of

nodes:

NX The number of x grid lines will be 2*NX-1.

NY The number of y grid lines will be 2*NY-1.

The mesh parameter h may be determined by the computations:

HX = XLngth/(2 ∗ (NX− 1)) (17.9)

HY = YLngth/(2 ∗ (NY − 1)) (17.10)

H = Min(HX,HY) (17.11)

Of course, this calculation ignores the fact that, for various bump parameter values, the y

mesh spacing will differ from HY in the region above the bump.

213

17.4.3 Cost Functional Input

In our usual formulation, the cost functional is determined by picking a set of target pa-

rameters, generating the corresponding flow solution, and sampling the flow field along some

specified vertical profile line. Then the integrals of the discrepancy between the components

of the target flow and the current flow are computed. Certain penalty integrals may also be

computed. The cost functional is then computed as a weighted sum of these integrals. The

input that specifies this process includes:

ParTar The target parameters.

WateB Multiplier for the bump slope penalty integral.

WateP Multiplier for p discrepancy integral.

WateU Multiplier for u discrepancy integral.

WateV Multiplier for v discrepancy integral.

XProf The x coordinate of the profile line.

17.4.4 Initial Parameter Input

We generally prefer to initialize our parameters to zero. However, this choice is left up to the

user. The user also specifies which parameters are allowed to vary during the optimization.

Typically, for instance, the Reynolds number is held fixed.

Para1 The initial parameter values.

Iopt Indicates which parameters may be varied.

214

17.4.5 Simple and Newton Iteration Input

For each new set of parameters, an estimate of the flow solution is made. The true flow

solution would satisfy F (U, V, P) = 0, where F represents the discretized Navier Stokes

equations and the boundary conditions. Assuming our flow solution estimate does not satisfy

this requirement, we apply a hybrid algorithm involving Picard iteration followed by Newton

iteration to try to reduce the discrepancy. The user controls this scheme through the following

variables:

IJac The Jacobian matrix will be updated every IJac steps.

MaxNew The maximum number of Newton steps per iteration.

MaxSim The maximum number of Picard iteration steps.

TolNew The Newton convergence tolerance.

TolSim The Picard convergence tolerance.

17.4.6 Cost Gradient Input

The cost gradient
∂J h(β)

∂βi
must be approximated for the optimization. The user controls

how this is done:

IGrad 0, no gradient estimate is made

1, use the chain rule on discretized sensitivities.

2, use chain rule on finite coefficient differences.

3, use chain rule on adjusted finite coefficient difference differences.

4, use finite cost function differences.

215

17.4.7 Optimization Input

The user controls the optimization.

MaxStp The maximum number of optimization steps.

TolOpt The optimization convergence tolerance.

17.5 Algorithm Details

After reading the user input, the program must set up the data defining the cost functional.

To do so, the program must produce the flow solution for the target parameters ParTar. It

makes an initial guess of

UTar = 0. (17.12)

A Newton iteration then begins with this starting point, and proceeds until the convergence

criterion is met. The resulting flow field is saved in its entirety for use in the cost functional.

The current estimate ParNew for the optimizing parameters is initialized to the user values

in Para1. The loop expects “old” quantities evaluated at the previous solution, and we

initialize them as

ParOld ← ParNew (17.13)

UOld ← 0 (17.14)

dUdPOld ← 0 (17.15)

Inside of the optimization loop, our task is to compute the flow solution, and associated

quantities, for the current set of parameters. We assume that we have the flow solution

UOld corresponding to some previous parameter values ParOld, and some approximation

216

to the sensitivities of that solution, dUdPOld. Our initial estimate of the new value of U

is then:

U(I)← UOld(I) +
∑

J=1,NPar

dUdPOld(I,J) (ParNew(J)−ParOld(J)). (17.16)

We now may take several steps of Picard iteration. On each step, we use the current esti-

mate of the solution U to linearize the function F(U)=0, replacing it by the linear system

H(U,UNew)=0. We solve for UNew, set U to UNew, and repeat.

The Newton iteration begins at the improved starting point U returned by Picard iteration.

The Newton iteration seeks an approximate solution of the set of equations:

F(U) = 0. (17.17)

To do so, it requires the formation and factorization of the Jacobian matrix FPrime(U,Para).

A factored value of FPrime from a previous step may be re-used, for efficiency, as specified

by the user input quantity Jac. The Newton iteration terminates successfully when the

maximum norm of F(U) is less than TolNew. If the Newton iteration does not terminate

after MaxNew steps, then a fatal error occurs, and the program halts.

We may now evaluate the cost functional at the new solution. To do so, we typically are

required to evaluate the integral of (U(x,y)-UTar(x,y))**2 along the line x=XProf. (In

some cases, we may need to compute other terms as well). The integral is estimated using

Gaussian quadrature, and saved as Cost.

It is now necessary to estimate the cost functional gradient. If the discretized sensitivities

are to be used, then for each varying parameter component J, we set up RHS(J), the right

hand side of the sensitivity system, and solve the set of equations:

FPrime · dUdP = RHS (17.18)

217

for the J-th component of the sensitivities, dUdP.

If a finite coefficient difference approach is being used, then for each varying parameter

component J, we temporarily set

Par2 ← ParNew, except that

Par2(J) ← ParNew(J) + Del(J)

U2 ← U

and carry out a Newton iteration on U2 to get a satisfactory flow solution. Then the finite

difference sensitivities are computed as

dUdP(I,J)← (U2(I)−U(I))

Del(J)
(17.19)

although, if shape parameters are involved, we may also want to add the adjustment term

to account for movement of the nodes associated with the coefficients.

We may now use the approximated sensitivities, plus the partial derivatives of the cost

functional with respect to the state variables, dCdU, to estimate the partial derivatives of

the cost with respect to parameter J, using the chain rule:

dCdP(J)←
∑

I=1,Nw

dCdU(I) ∗ dUdP(I,J) (17.20)

Alternatively, we may approximate the partial derivatives of the cost functional directly by

finite differences. In that case, one at a time, we vary a single parameter, compute the cost

functional, and form the appropriate finite difference quotient that estimates the derivative.

Our cost function Cost and cost gradients dCdP are now passed to the optimization code,

which makes the determination of whether the optimization loop should be continued with

a new estimate of the minimizer, or terminated because of convergence or errors.

218

17.6 Computational Optimization

Well-written software is available to treat numerical optimization problems of the type we

have considered. The program we are using incorporates a minimization package written

by Gay [12], published as ACM TOMS Algorithm 611. Attractive features of this package

include:

• Its status as an ACM Algorithm;

• The user can choose to provide the gradient and Hessian, or have the Hessian, or both

Hessian and gradient, approximated internally. This allows us to compare the use

of optimization with no derivatives, or with approximate derivatives using sensitivi-

ties or finite differences. It also means we can later try to exploit second derivative

approximations if we can make them;

• It may be called in “reverse communication mode”. This makes it very easy to work

with functions that require extensive preprocessing before evaluation;

• The source code was publicly available through netlib[11];

• The program is easily portable to a variety of computers.

The program may be categorized as a BFGS model/trust region method.

The program requires that the user supply a starting point β0, a tolerance ε and an evaluation

procedure for J(β). If the user does not supply an evaluation procedure for the gradient

of J , then this will be estimated using finite differences. The program also maintains an

internal estimate of the Hessian matrix H(β).

The point β0 is taken as the initial estimate for the minimizer. The program will proceed

in a series of steps, with each step being an attempt to replace the current estimate for the

219

minimizer by a better estimate, that is, by a point with a lower functional value.

Naturally, some times the program will find, instead, a point with a higher functional value.

These points will be rejected, and the program will repeat its search based at the old point,

using greater caution, to produce a new candidate. This insistence on progressive functional

decrease means that the program cannot “climb up” out of a depression corresponding to a

local minimum.

On each step of the iteration, the program uses recent functional values and exact or ap-

proximate information about the gradient and Hessian to construct a quadratic model of the

functional’s behavior in a small neighborhood of the current estimate. This neighborhood, in

which the program believes its model to be a good approximation, is called the trust region.

It then analyzes the model, and estimates the direction and distance of a minimizer of this

model. If the estimated minimizer lies outside the trust region, the program chooses instead

the point within the trust region that is closest to the estimated minimizer.

Having determined its candidate for a better minimizer, the program then requires the user

to evaluate the functional at this new point. The new functional value is used to update

the model. If the functional value is higher than the lowest value seen so far, then the point

is not accepted, the current trust region is reduced in size, the model is revised, and a new

prediction is made. Otherwise, the estimated minimizer is accepted, a new trust region and

model are constructed around the new point, where the new prediction is made.

The tolerance ε is used in order to determine when to halt the iterative optimization, which

could otherwise continue forever, assuming perfect computational accuracy. The code stops

when it finds that certain things are “small” compared to ε. Such criteria include:

• the gradient vector of the cost functional is small;

• the distance between the current point and the minimizer is believed to be small;

220

• the latest steps have produced only small changes in the estimated minimizer;

• the latest steps have produced only small changes in the value of the functional.

Normally, an optimization is fairly uneventful; the optimization software might proceed

slowly, or make a series of poor choices for the minimizer, but it is very rare that it is unable

to proceed. One case that will cause problems, and which the optimization code will notice,

occurs if the user supplies incorrect gradient information. If the gradient is quite wrong, then

the optimization code will find that for points in the direction of the negative gradient, the

functional actually increases rather than decreases, and that this problem persists even for

very small steps. In such a case, the optimization code will return with the message “False

convergence”. In this case, the word “convergence” is only meant to convey the fact that no

further progress can be made.

221

Chapter 18

SUMMARY AND CONCLUSIONS

In this study, our primary interest has been to demonstrate, in a finite element method

setting, the use of discretized sensitivities of geometric parameters to approximate the cost

gradient in a flow optimization.

For the problems we have studied, we have seen that the finite element form of the discretized

sensitivity equations are quite simple to formulate, inexpensive to solve, and practical to use.

In particular, the discretized sensitivities can be computed at almost no cost at the end of the

Newton iteration that solves the current state equation. These discretized sensitivities may

then be used in place of the true sensitivities of the discrete solution. However, discretized

sensitivities are only an approximation to the discrete sensitivities, and in our case, we

expect shape parameter sensitivities to have an approximation error that depends on the

discretization size h.

We have seen that the finite coefficient differences, (if properly adjusted in the case of shape

parameters), are another valuable approximation to the discrete sensitivities. An advantage

of finite coefficient differences is that higher accuracy can be achieved simply by decreasing

the parameter perturbation ∆α, rather than by decreasing the mesh parameter h. A second

advantage is that finite coefficient differences are good approximations whether or not the

222

differentiation and discretization operators commute.

In contrast, the computation of the discrete sensitivities can be a daunting task. The sen-

sitivity equation will include not merely the expected terms with a physical interpretaion,

but also terms that arise from changes in the discretization process itself, such as changes in

node placement and element shape. These terms have no physical meaning, and their proper

treatment requires tedious effort.

Although the discretized sensitivities were inexpensive to compute and generally sufficiently

accurate for our purposes, we have seen cases where the limited approximation power caused

the optimization algorithm to fail. Since our horizontal velocities u were solved with an

accuracy of O(h2), the spatial derivatives have an accuracy of O(h), and this in turn limits

the accuracy of our discretized sensitivities to O(h). The same reasoning suggests that, for

our particular problem and boundary conditions, if we improved the velocity approximation

to order O(hn), the shape parameter sensitivities would be accurate to order O(hn−1).

A number of successful computations were made with the discretized sensitivities. These

computations involved shape optimization at a variety of Reynolds numbers. In cases where

accuracy problems did not intrude, the discretized sensitivities did indeed show themselves to

be an efficient tool for making linear estimates of the solution behavior and, in optimization,

for approximating cost gradients.

On the other hand, the discretized sensitivities can be poor approximants of the discrete

sensitivities, even in cases where the finite element method has done a good job approximat-

ing the solution of the continuous problem. The errors in such a case can best be analyzed

by also computing the finite coefficient differences, or the finite cost gradient differences for

comparison.

There is a reason we have explored discretized sensitivities and finite coefficient differences

223

as means of approximating the discrete sensitivities. It is because the discrete sensitivities

contain so much useful information; they provide the cost gradient in an optimization, they

show when the cost functional is well conditioned; they give physical insight into the rela-

tionship between parameters and flow solutions; they are needed when using continuation

to reach higher Reynolds number solutions; and they are useful in making linear estimates

of the solution or cost function for nearby parameter values.

As the Reynolds number increases, and the finite element mesh parameter h is reduced,

the size of the Jacobian increases, and the cost of evaluating and factoring it predominates

the cost of computing a flow solution, and hence of carrying out an optimization. Our

efficiency studies suggest that the effectiveness of some simple techniques, such as holding

the Jacobian fixed during a particular Newton process, or only evaluating the Jacobian when

the parameters have changed by more than some given tolerance.

A number of questions remain open as fruitful areas of further research:

• First, further study of the behavior of the discretized sensitivities at higher Reynolds

numbers is needed, but computing limitations restricted our investigations to values

no higher than Re = 1000.

• Secondly, it would be useful to have a carefully worked out estimate of the approx-

imation error between the discrete sensitivities and the discretized sensitivities. In

this connection, it is vital to examine the errors in the boundary condition for the

discretized sensitivities, to quantify the influence these errors have on the computed

discretized sensitivities, and to produce estimates of the behavior of this error as the

mesh parameter h goes to zero.

• Finally, practical algorithmic procedures are needed for estimating the approximation

error in the discretized sensitivities and reducing it when necessary, perhaps by local

224

refinement of the grid or the local use of higher order elements.

225

Bibliography

[1] J Boland and R Nicolaides, The Stability of Finite Elements Under Divergence Con-

straints, SIAM Journal on Numerical Analysis, Volume 20, Number 4, pages

722-731, August 1983.

[2] Jeff Borggaard, The Sensitivity Equation Method for Optimal Design, PhD The-

sis, Virginia Polytechnic Institute and State University, Department of Mathematics,

1994.

[3] Jeff Borggaard, John Burns, Gene Cliff and Max Gunzburger, Sensitivity Calculations

for a 2D, Inviscid Supersonic Forebody Problem, in Identification and Control of

Systems Governed by Partial Differential Equations, H T Banks, R Fabiano, K

Ito, editors, SIAM Publications, pages 14-24, 1993.

[4] John Burkardt and Janet Peterson, Control of Steady Incompressible 2D Channel Flow,

Flow Control, The IMA Volumes in Mathematics and Its Applications, Volume 68,

Springer Verlag, New York, 1995.

[5] John Burkardt and Janet Peterson, The Role of the Cost Functional in a Shape Op-

timization, Proceedings of the Fourth Bozeman Conference on Computation

and Control, Birkhaeuser, to appear 1995.

226

[6] John Burns, Eugene Cliff, Max Gunzburger, Equations for the Sensitivities for the

2D, Inviscid, Supersonic Forebody Problem, ICAM Report 91-07-05, Interdisciplinary

Center for Applied Mathematics, Virginia Polytechnic Institute and State University,

Blacksburg, VA, July 1991.

[7] Hayri Cabuk and Vijay Modi, Optimum Plane Diffusers in Laminar Flow, Journal of

Fluid Mechanics, Volume 237, pages 373-393, April 1992.

[8] R G Carter, On the Global Convergence of Trust Region Algorithms Using Inexact

Gradient Information, SIAM Journal on Numerical Analysis, Volume 28, Number

1, pages 251-265, February 1991.

[9] Carl DeBoor, A Practical Guide to Splines, Springer Verlag, New York, 1978.

[10] J E Dennis and Robert Schnabel, Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, 1983.

[11] Jack Dongarra and Eric Grosse, Distribution of Mathematical Software Via Electronic

Mail, Communications of the ACM, Volume 30, pages 403-407, 1987.

[12] David Gay, Algorithm 611, Subroutines for Unconstrained Minimization Using a

Model/Trust Region Approach, ACM Transactions on Mathematical Software,

Volume 9, Number 4, pages 503-524, December 1983.

[13] Vivette Girault and Pierre-Arnaud Raviart, Finite Element Methods for Navier-

Stokes Equations, Springer Verlag, Berlin, 1986.

[14] Ph Guillaume and M Masmoudi, Computation of High Order Derivatives in Optimal

Shape Design, Numerische Mathematik, Volume 67, pages 231-250, 1994.

[15] Max Gunzburger, Finite Element Methods for Viscous Incompressible Flows,

Academic Press, San Diego, 1989.

227

[16] Max Gunzburger and Janet Peterson, On Conforming Finite Element Methods for the

Inhomogeneous Stationary Navier-Stokes Equations, Numerische Mathematik, Vol-

ume 42, pages 173-194, 1983.

[17] J Haslinger and P Neittaanmäki, Finite Element Approximation for Optimal

Shape Design, John Wiley and Sons, Chichester, 1988.

[18] D Huddleston, Development of a Free-Jet Forebody Simulator Design Optimization

Method, AEDC-TR-90-22, Arnold Engineering Development Center, Arnold AFB, TN,

December 1990.

[19] Ohannes Karakashian, On a Galerkin-Lagrange Multiplier Method for the Stationary

Navier-Stokes Equations, SIAM Journal on Numerical Analysis, Volume 19, Num-

ber 5, pages 909-923, October 1982.

[20] Hongchul Kim, Analysis and Finite Element Approximation of an Optimal

Shape Control Problem for the Steady-State Navier-Stokes Equations, PhD

Thesis, Virginia Polytechnic Institute and State University, Department of Mathemat-

ics, 1993.

[21] O A Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible

Flow, Second Edition, Gordon and Breach, New York, 1969.

[22] L Landau and E Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987.

[23] Werner Rheinboldt and John Burkardt, A Locally Parameterized Continuation Process,

ACM Transactions on Mathematical Software, Volume 9, Number 2, pages 215-

235, July 1983.

[24] Werner Rheinboldt and James Ortega, Iterative Solution of Nonlinear Equations

in Several Variables, Academic Press, New York, 1970.

228

[25] Roger Temam, Navier-Stokes Equations, Revised Edition, North-Holland, Amster-

dam, 1979.

229

VITA

The author’s improbable career may bring hope to those still struggling to find their proper

place in life.

He went to MIT with a vague interest in Mathematics, only to be blighted by a course in

number theory. An attempt at a physics major came to an end in the lab, when he managed

to make a vacuum tube with two anodes. He started a computer course, but couldn’t get

the hang of it. Almost every term, though, he took courses in German and in writing. It

was only by the purest luck that he was able to graduate, as the first recipient of a degree

in the newly blessed field of “Science and Humanities”.

Graduated, jobless, planless, he decided to take some summer classes at the University

of Pittsburgh. He enjoyed his course in sophomore calculus so much that, at the end, he

practically begged his instructor, “Is there some way I could do more of this?” The instructor

arranged for him to meet Professor Jim Fink, who got him provisional admission, conditional

on surviving a term of catchup work. That first term involved back-to-back classes from 9

AM to 3 PM, with no lunch break, but was the first time he had enjoyed school in years.

He was so excited he wrote to two old MIT classmates who were currently returning cars for

Avis, and they both also enrolled in graduate school, also in Mathematics.

After two years of abstract mathematics, including topology, set theory and logic, he felt

unprepared to take the preliminary exams and simply didn’t show up, forfeiting all further

230

departmental support. It was only by a miracle that he found himself saved, working on

a one year grant with Professor Andras Szeri of the Mechanical Engineering Department,

who required him to learn FORTRAN, the use of a timesharing computer, and numerical

analysis.

The course in numerical analysis, taught by Professors Charles Hall and Tom Porsching,

is fixed in his mind for all time. He had enjoyed the preliminary material, but expected

things were about to go downhill when ordinary differential equations arrived. But then the

professor sketched the field of derivatives and said “Suppose we’re at point X, where the

solution is equal to Y, and we want to estimate the value of the solution at point X + ∆ X.

What’s a simple estimate we can make, using this picture?” This was the moment when he

fell in love with numerical analysis.

Gradually, he drifted from graduate work into full time computer support for Hall and

Porsching’s research group in the Mathematics department. He worked on a variety of fluid

codes for the Air Force and EPRI, and a sheet metal forming program for GM. He was lucky

enough to work with Professor Werner Rheinboldt in developing a version of his continuation

program suitable for submission as an ACM algorithm. He also spent a great deal of time

writing educational software for Professor Charles Cullen, from whom he learned a lot about

proper computer educational techniques.

He then took a job at the newly opened Pittsburgh Supercomputing Center, as a “mathe-

matical software librarian”, which initially meant supporting the IMSL and NAG libraries.

Gradually this job came to include installing, testing, and documenting software, porting

software to a variety of Cray computers, debugging and optimizing user programs, team-

teaching workshops for users, both on site and at a number of universities, and working on

an outreach program that brought the joys and headaches of computing to students and

teachers in local high schools.

231

However, after five years, he was ready for something new. Professor Janet Peterson, who

had known him at the University of Pittsburgh and was now at Virginia Tech, had urged

him several times to return to graduate school and finish his degree. Now she suggested he

come down to Virginia Tech and do so. Professor Max Gunzburger also applied some gentle

charm, offering to supervise his work, and introducing him to Professors John Burns, Gene

Cliff, and Terry Herdman, the likely members of his defense committee.

It seemed like the last chance of a lifetime, and so he quit his job, sold his house, rode down

to Blacksburg with six boxes of belongings, and hasn’t looked back.

232

