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ABSTRACT. Higher-order models represent a computationally less expensive alternative to the Stokes
model for ice-sheet modeling. In this work, we develop linear and quadratic finite-element methods,
implemented on parallel architectures, for the three-dimensional first-order model of Dukowicz and
others (2010) that is based on the Blatter–Pattyn model, and for the depth-integrated model of Schoof
and Hindmarsh (2010).We then apply our computational models to three of the ISMIP-HOM benchmark
test cases (Pattyn and others, 2008). We compare results obtained from our models with those obtained
using a reliable Stokes computational model, showing that our first-order model implementation
produces reliable and accurate solutions for almost all characteristic length scales of the test geometries
considered. Good agreement with the reference Stokes solution is also obtained by our depth-integrated
model implementation in fast-sliding regimes and for medium to large length scales. We also provide
a comprehensive comparison between results obtained from our first-order model implementation and
implementations developed by ISMIP-HOM participants; this study shows that our implementation
is at least as good as the previous ones. Finally, a comparison between linear and quadratic finite-
element approximations is carried out, showing, as expected, the better accuracy of the quadratic
finite-element method.

1. INTRODUCTION
It is widely accepted that ice sheets behave like an
incompressible non-Newtonian fluid, modeled by the
Stokes equations with nonlinear rheology (Bengtsson, 1994;
Gregory and Huybrechts, 2006; Cuffey and Paterson, 2010).
Due to the high computational costs associated with the so-
lution of the Stokes equations over large, three-dimensional
(3-D) domains, such as Greenland or Antarctica, several
approximations have been considered (Hindmarsh, 2004).
These approximations exploit the fact that the aspect ratio,
δ, between the characteristic thickness and the characteristic
horizontal extent of an ice sheet is very small. In increasing
order of accuracy of the solution with respect to δ, we
have the zeroth-order (ZO) models, such as the shallow-ice
approximation (SIA; Hutter, 1983) and the shallow-shelf
approximation (Morland, 1987; MacAyeal, 1989), and
higher-order models, such as the depth-integrated L1L1 and
L1L2 models (Hindmarsh, 2004) and the 3-D Blatter–Pattyn
model (Blatter, 1995; Pattyn, 2003), hereafter referred to as
the first-order (FO) model.
Higher-order models can be regarded as a trade-off

between accuracy and computational costs. In this work,
we consider the FO model presented by Dukowicz and
others (2010), which is based on the Blatter–Pattyn model
(Blatter, 1995; Pattyn, 2003) and the modified version of the
L1L2 model of Schoof and Hindmarsh (2010). The resulting
mathematical models consist of a system of two nonlinear
elliptic equations for the horizontal velocities. The FO model
is a fully 3-D model, whereas the L1L2 is depth-integrated
and reduces to a two-dimensional (2-D) elliptic system in
the horizontal coordinates. Dukowicz and others (2010) and
Schoof and Hindmarsh (2010), respectively, show that there
exist variational principles associated with both the FO and
the L1L2 models. In fact, the two problems are equivalent
to the unconstrained minimization of associated positive
functionals. In contrast, the Stokes model is equivalent to

a constrained minimization problem (Dukowicz and others,
2010) in which the pressure plays the role of a Lagrange
multiplier. Therefore, besides the reduction in the number of
variables (from four to two), the higher-order models have
mathematical properties which are more favorable than the
Stokes model from a numerical point of view. Moreover, the
L1L2 model has the clear advantage of being a 2-D model.
In this work, we propose a finite-element (FE) approx-

imation of the higher-order models at hand. Using finite
elements, complex geometries and unstructured and an-
isotropic meshes can be naturally handled, as can several
physical boundary conditions. Moreover, finite elements
are particularly suited for the solution of the problems at
hand. In fact, when the bilinear form associated with the
weak formulation of the linearized problem is symmetric
and coercive, as in the case of the considered higher-order
models, Galerkin FE methods become projection methods
(Bochev and Gunzburger, 2009). This means that the com-
puted solution is the ‘best’ approximation to the exact model
solution among all possible functions in the chosen FE space.
We implement the higher-order models using the C++ FE

library LifeV (www.lifev.org). We compare our implementa-
tion against tests A, C and E of the ISMIP-HOM benchmark
experiments (Pattyn and others, 2008). In particular, we
compare our results with the reference Stokes solutions
provided by Gagliardini and Zwinger (2008). We also
compare our solutions with those obtained by the higher-
order methods presented in the ISMIP-HOM benchmark.
It turns out that our FO solutions are in general closer to
the reference Stokes solutions than most of the FO solution
methods discussed in the ISMIP-HOM benchmark. Also, for
medium to small values of the aspect ratio, δ, the proposed
L1L2 model presents good agreement with the Stokes
solution in the presence of sliding boundary conditions.
In this work, we use both linear (P1) and quadratic (P2)

finite elements. Linear elements provide a second-order
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accurate approximate solution, whereas quadratic elements
provide third-order accuracy (in L2 norm). A comparison
between the solutions obtained with linear and quadratic
finite elements is carried out for the FO model. As expected,
quadratic elements provide better solutions than linear ones,
the improvement being more pronounced in the presence of
sliding boundary conditions.
The paper is organized as follows. In section 2, we

introduce the FO and L1L2 mathematical models includ-
ing boundary conditions and weak formulations. A brief
derivation of the models as an approximation of the Stokes
model is also presented. In section 3, we define the FE
discretization of the problems at hand. In section 4, we
report on the results of the numerical experiments using three
ISMIP-HOM benchmark tests. In particular, we compare
our L1L2 and FO models against a Stokes model, compare
our FO model to other implementations of the FO model
and compare our L1L2 model against other depth-integrated
higher-order models. Also we compare the Newton and
Picard approaches and the use of structured meshes versus
locally refined unstructured meshes. Finally we compare the
use of linear and quadratic FE approximations.

2. MATHEMATICAL MODEL
2.1. Stokes model
Ice-sheet flows are typically modeled as non-Newtonian
incompressible fluids obeying the Stokes equations. A
quasi-static approximation is generally adopted because
inertial terms (time derivatives and advective terms) can be
neglected, due to the slow movement of the ice. Denoting
the ice velocity as u and the Cauchy stress tensor as σ, the
Stokes model is given by

−∇ · σ = ρg and ∇ · u = 0, (1)

where ρ denotes the ice density and g the gravitational
acceleration, g ≈ {0, 0,−|g|} = {0, 0,−g}. The Cauchy
stress tensor is given by

σ = τ − pI = 2με̇− pI, (2)

where τ denotes the deviatoric stress tensor, μ the ice
effective viscosity, p the ice pressure, I the identity tensor
and ε̇ the strain-rate tensor defined as

ε̇ij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3)

The effective viscosity, μ, is given by Glen’s law (Nye, 1957;
Cuffey and Paterson, 2010)

μ =
1
2
A−

1
n ε̇(

1
n−1)
e =

1
2
A−1τ1−ne , (4)

where the effective strain rate, ε̇e, and the effective stress, τe,
are given by

ε̇e =

√
1
2

∑
ij

ε̇2ij and τe =

√
1
2

∑
ij

τ2ij (5)

and where A denotes the flow rate factor which is strongly
dependent on the ice temperature.

Stokes boundary conditions
Let the ice domain, Ω, be bounded by the upper surface,
Γs, the lower surface, Γb, and the vertical lateral surface, Γl,
defined as

Γs = {(x, y , z) | z = s(x, y )}, Γb= {(x, y , z) | z = b(x, y )},
Γl = {(x, y , z) | l(x, y ) = 0}.

(6)
We require that Γs ∪ Γb ∪ Γl = ∂Ω, the whole boundary of
Ω. The lateral surface, Γl, can be void.
On the upper surface, a stress-free boundary condition is

prescribed:

σn = 0 on Γs, (7)

where n is the unit vector normal to the surface and outward-
pointing. On the lower surface, we consider no-slip or sliding
boundary conditions, i.e. if we partition Γb into Γ0 and Γβ ,
we have{

u = 0 on Γ0
u · n = 0 and (σn+ β u)‖ = 0 on Γβ ,

(8)

where β ≥ 0 is the sliding coefficient and the operator (·)‖
performs the tangential projection onto the surface.

2.2. First-order model
The FO model is derived as an approximation of the Stokes
model under the assumption that the aspect ratio, δ, is small
and that the normals to the upper and lower surfaces are
almost in the vertical direction, that is, n ∼ [O(δ),O(δ), 1]T.
Loosely speaking, the FO model is obtained neglecting those
terms of the Stokes model that are O(δ2) (Blatter, 1995;
Pattyn, 2003; Dukowicz and others, 2010).
We denote with u, v andw the components of the velocity

along the x, y and z directions, respectively. In the first-
order approximation, the terms ∂w/∂x and ∂w/∂y are
negligible with respect to ∂u/∂z; hence, ε̇xz and ε̇yz are
approximated as ε̇xz ≈ 1

2

(
∂u/∂z

)
and ε̇yz ≈ 1

2

(
∂v/∂z

)
,

respectively. Exploiting the fact that, due to incompressibility,
ε̇zz = −(ε̇xx + ε̇yy ), the effective strain rate reduces to

ε̇2e = ε̇2xx + ε̇2yy + ε̇xx ε̇yy + ε̇2xy + ε̇2xz + ε̇2yz . (9)

Moreover, the terms ∂σzx/∂x and ∂σzy/∂y are negligible
with respect to ∂σzz/∂z; therefore from the vertical com-
ponent of the momentum equation (Equation (1)), we have

∂

∂z

(
−2με̇zz + p

)
= −ρg . (10)

Integrating this equation along the vertical direction between
z and the top surface, s, and prescribing the stress-free
boundary condition on that surface, we obtain an expression
for the pressure:

p = 2με̇zz + ρg (s− z) = −2μ
(
ε̇xx + ε̇yy

)
+ ρg (s− z). (11)

Substituting Equation (11) into the horizontal components of
the momentum equation (Equation (1)), we obtain the first-
order equations⎧⎪⎪⎨⎪⎪⎩

−∇ · (2μ ε̇1) = −ρg
∂s
∂x

−∇ · (2μ ε̇2) = −ρg
∂s
∂y
,

(12)
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where

ε̇1 =

⎡⎢⎣ 2ε̇xx + ε̇yy

ε̇xy

ε̇xz

⎤⎥⎦ and ε̇2 =

⎡⎢⎣ ε̇yx

ε̇xx + 2ε̇yy

ε̇yz

⎤⎥⎦ .

(13)

Boundary conditions for the first-order equations
In the FO approximation, the boundary conditions (Equa-
tions (7) and (8)) reduce to

ε̇1 · n = 0, ε̇2 · n = 0 on Γs
u = 0, v = 0 on Γ0
2μ ε̇1 · n+ βu = 0, 2μ ε̇2 · n+ βv = 0 on Γβ .

(14)
These boundary conditions, proposed by Dukowicz and
others (2010), are slightly different from those pro-
posed by Pattyn (2003). Pattyn (2003) takes the normals,

n, as
[
− ∂s

∂x , −
∂s
∂y , 1

]T
on Γs and

[
∂b
∂x ,

∂b
∂y , −1

]T
on

Γβ , whereas we normalize them to have unit length,
i.e. we divide them by

√
(∂s/∂x)2 + (∂s/∂y )2 + 1 and√

(∂b/∂x)2 + (∂b/∂y )2 + 1, respectively.

Weak formulation of the first-order equations
We denote with V the Hilbert space defined as V = {ϕ ∈
H1(Ω) : ϕ|Γ0 = 0}. Here, H1(Ω) denotes the space of square-
integrable functions whose first derivatives are also square
integrable. The weak formulation of Equation (12) reads: find
u, v ∈ V such that⎧⎪⎪⎨⎪⎪⎩
∫
Ω
2μ ε̇1(u, v ) · ∇ϕ1dΩ+

∫
Γβ
βuϕ1dΓ +

∫
Ω
ρg

∂s
∂x

ϕ1dΩ = 0∫
Ω
2μ ε̇2(u, v ) · ∇ϕ2dΩ+

∫
Γβ
βvϕ2dΓ +

∫
Ω
ρg

∂s
∂y

ϕ2dΩ = 0

(15)
for all ϕ1, ϕ2 ∈ V (Ω). Whenever periodic boundary
conditions are applied on Γl, we require that the functions
in V be periodic. (Salsa, 2008, provides an introduction to
Sobolev spaces and weak formulation.)
We define the operatorF (u, v ; ϕ1,ϕ2) as the left-hand side

of the system given in Equation (15).
Then, the problem of Equation (15) is equivalent to finding

the root (u, v ) ∈ [V ]2 of the nonlinear equation

F (u, v ; ϕ1,ϕ2) = 0 ∀ (ϕ1,ϕ2) ∈ [V ]2. (16)

In order to find the roots of Equation (16), we use Newton’s
method. Details are given in the Appendix. Newton’s method
is an iterative algorithm and requires an initial guess, (u0, v0).
It is not possible to take (0, 0) as the initial guess because

in this case the effective viscosity, μ, would not be defined.
Instead, we compute (u0, v0) by solving Equation (15) for a
given viscosity, μ̃. (The value of μ̃ influences the convergence
of the iterative scheme. Here we take μ̃ = 0.5×108 Pa am−1,
which has been determined empirically. If an estimate of
the effective strain, ˜̇εe, is available, one can take μ̃ =
1
2A
− 1
n ˜̇εe( 1n−1).)

2.3. L1L2 approximation
The L1L2 model approximates the FO model, retaining
almost the same order of accuracy. It requires the solution
of 2-D nonlinear partial differential equations. The L1L2
model presented here is derived by Schoof and Hindmarsh
(2010), where it is shown to have the same accuracy as

the FO model for fast-sliding regimes. It is devised for
sliding boundary conditions and, in the limit case of no-
slip boundary conditions, it reduces to the zeroth-order
SIA model. The model proposed by Schoof and Hindmarsh
(2010) is limited to planar geometries living in the vertical
x-z plane. Here we present its natural extension to 3-D
geometries.
We define the norm | · |‖ as

|ε̇|2‖ = ε̇2xx + ε̇2yy + ε̇xx ε̇yy + ε̇xy ε̇yx (17)

and the norm | · |⊥ as

|ε̇|2⊥ = ε̇2xz + ε̇2yz . (18)

We also denote with ∇‖ the operator ∂
∂x i+

∂
∂y j.

The effective deviatoric stress reads τ2e = |τ |2‖ + |τ |
2
⊥. For

the L1L2 model, we use the SIA (Hutter, 1983) to estimate
|τ |2⊥ :

|τ̃ |2⊥ =
[
ρg (s − z)|∇‖s|

]2
. (19)

Hence, we have

τ2e ≈ |τ |2‖ + |τ̃ |
2
⊥. (20)

We then approximate the horizontal components of ε̇ at the
bedrock (z = b) with

ε̇ij
∣∣
z=b = A

(
|τ |2‖ + |τ̃ |

2
⊥
) n−1

2
τij for i, j ∈ {x, y}. (21)

Taking the norm |·|‖ of both sides of Equation (21), we obtain

|ε̇b|‖ = A
(
|τ |2‖ + |τ̃ |

2
⊥
) n−1

2 |τ |‖, (22)

where ε̇b = ε̇|z=b . Equation (22) implicitly defines |τ |‖
as a function of |ε̇b|‖ and |τ̃ |⊥. This allows us to solve
Equation (21) and determine the horizontal components of
τ :

τij = A
−1
(
|τ |2‖+|τ̃ |

2
⊥
)
1−n
2 ε̇ij |z=b= 2μ

(
|ε̇b|‖ , |τ̃ |⊥

)
˙εij |z=b .
(23)

Integrating the first-order equation (12) from z = b
to z = s, and applying the sliding boundary conditions
(Equation (14)1,3) we have⎧⎪⎪⎨⎪⎪⎩

−∇‖ ·
(
2μ̄ ε̇1,b

)
+ βub = −ρgH

∂s
∂x

−∇‖ ·
(
2μ̄ ε̇2,b

)
+ βvb = −ρgH

∂s
∂y
,

(24)

where

μ̄(x, y ) =

s∫
b

μ
(
|ε̇b|‖ , |τ̃ |⊥

)
dz (25)

and

ε̇1 =

[
2ε̇xx + ε̇yy

ε̇xy

]
and ε̇2 =

[
ε̇yx

ε̇xx + 2ε̇yy

]
. (26)

Solving these equations we obtain the basal velocities,
ub(x, y ) and vb(x, y ).
In order to obtain the velocities, u(x, y , z) and v (x, y , z),

we need to compute τxz and τyz . Integrating the first-order
equation (12), along the vertical direction, from z, and
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applying stress-free boundary conditions (Equation (14)1), we
have

τxz = ∇‖ ·
(
2μ̄s ε̇1,b

)
− ρg

∂s
∂x
(s − z)

τyz = ∇‖ ·
(
2μ̄s ε̇2,b

)
− ρg

∂s
∂y
(s − z),

(27)

where

μ̄s =

s∫
z

μ
(
|ε̇b|‖ , |τ̃ |⊥

)
dz. (28)

The effective stress, τe, can be recovered as

τ2e = |τ |2‖+ |τ |
2
⊥ = 4μ

(
|ε̇b|‖ , |τ̃ |⊥

)2
|εb|2‖+τ2xz+τ2yx . (29)

The horizontal velocity components, u and v , are obtained
by integrating εiz = A τn−1e τiz for i ∈ {x, y}

u = ub + 2

z∫
b

A τn−1e τxz dz, v = vb + 2

z∫
b

A τn−1e τyz dz.

(30)
Note that Equations (24) are only defined when sliding

boundary conditions are prescribed at the bedrock. In the
limit case of no-slip boundary conditions, the basal velocity
components are known (ub = vb = 0), and the stress terms,
τxz and τyz , as well as the velocities, u and v , reduce to the
SIA values. In this case, the horizontal velocity components
read

u = ρg G
∂s
∂x
, v = ρg G

∂s
∂y
, (31)

with G =
2A
n + 1

[
(s − z)n+1 −Hn+1

]
|ρg∇‖s|n−1.

Weak formulation of the L1L2 problem
The nonlinear elliptic equations (24) are solved in the
2-D domain, Σ, which is the projection of Ω onto the x-
y plane. Typically, stress-free or no-slip boundary conditions
are prescribed on ∂Σ.We denote with Λ0, Λs, Λl the portions
of ∂Σ where no-slip, stress-free and periodic boundary con-
ditions are prescribed, respectively. The weak formulation for
Equation (24) is similar to the FO one. We define the Hilbert
space, VΣ, as VΣ = {ϕ ∈ H1(Σ) : ϕ|Λ0 = 0}. The weak for-
mulation of the problem is given by: find u, v ∈ VΣ such that⎧⎪⎪⎨⎪⎪⎩
∫
Σ

(
2μ̄ ε̇1,b(u, v ) · ∇‖ϕ1+ βuϕ1

)
dΣ = −

∫
Σ
ρgH

∂s
∂x

ϕ1dΣ∫
Σ

(
2μ̄ ε̇2,b(u, v ) · ∇‖ϕ2+ βvϕ2

)
dΣ = −

∫
Σ
ρgH

∂s
∂y

ϕ2dΣ

(32)
for all ϕ1, ϕ2 ∈ VΣ. When periodic boundary conditions
are applied on Λl, we require that the functions in VΣ be
periodic, while stress-free boundary conditions (on Λs) are
naturally included in the weak formulation. As in the FO
case, we use Newton’s method to solve the problem. Details
are given in the Appendix.

3. NUMERICAL DISCRETIZATION AND
IMPLEMENTATION
In this section we briefly describe the FE discretization of
the weak formulation, Equation (15). (See, e.g., Quarteroni
and Valli, 1994; Quarteroni, 2009, for an introduction to FE
methods.) The discretization for the 2-D case, i.e. for the

formulation of Equation (32), is not provided here because it
can be inferred from the 3-D one. In particular, a triangular
mesh is considered instead of a tetrahedral one.
Let Th denote a tetrahedral triangulation of the ice domain,

Ω. Here, h is the maximum diameter of the tetrahedral
elements in Th . We consider the FE space Pk ,h (Th ) consisting
of continuous functions on Ω whose restriction to any
tetrahedron in Th is a polynomial of degree k . We denote
with P1 and P2 the FE space associated with P1,h and P2,h ,
respectively. The four (three in 2-D) degrees of freedom
(DOF) of P1 elements correspond to values at the vertices
of the tetrahedra (triangles in 2-D). The ten (six in 2-D) DOF
of P2 elements correspond to values at the vertices of the
tetrahedra and at the midpoints of the edges of the tetrahedra
(triangles in 2-D). We denote with Vh the finite-dimensional
subspace of V defined as Vh = {vh ∈ Pk ,h : vh |Γ0 = 0}
for k = 1 or 2, depending on the finite element chosen.
The discretized problem follows from the continuous weak
formulation, Equation (15), by replacing V with Vh .

Numerical implementation
The numerical model has been implemented using the
C++ parallel FE library ‘LifeV’, which interfaces with
‘Trilinos’ (http://trilinos.sandia.gov) for parallel solvers and
data structures. The discrete operators are assembled using
different quadrature rules. When using P1 elements, we used
a 1-point quadrature rule for assembling the stiffness matrix
because in this case the gradients of the basis functions
are constant on each element. We used a 15-point (6-point
in 2-D), fourth-order accurate quadrature rule in the P2
case. The meshes are partitioned using ‘Parmetis’ (http://
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview). The
Trilinos package ‘NOX’ is used to solve the nonlinear system
with Newton’s method. When the convergence of Newton’s
method is not monotonic, the solver uses a backtrack
algorithm which halves the Newton increment, (δk+1u , δk+1v ),
until the infinity norm of Fk+1 is less than that of Fk . The
stopping criterion is on the l2 norm of Fk+1. The tolerance
tol = 1 × 10−5 is used. An average of 6 iterations were
needed to reach convergence for tests A and C, whereas up
to 14 iterations were needed for test E. The initial guess,
(u0, v0), is computed solving the first-order equations with
the constant viscosity μ̃ = 0.5× 108 Pa am−1.
The inner linear Jacobian system is solved with GMRES,

preconditionedwith the Schwarz method.More precisely the

global preconditioner, Pg, is defined as P−1g =
N∑
i=1
RTP−1i R,

whereN is the number of processors, Pi is the preconditioner
at the local (processor) level and R is a restriction matrix
that extracts local DOF out of the global ones. Unless
otherwise specified, the local preconditioner, Pi , is chosen
to be the KLU factorization of the restriction of the system
matrix belonging to each processor, which means that at the
processor level the system is directly solved. GMRES and
KLU are implemented in the Trilinos packages ‘Belos’ and
‘Ifpack’, respectively. The tolerance tol = 1×10−6 was used
for the GMRES method. Most of the problems are solved
without overlap, but we had to use one row of overlap among
the processors to achieve convergence for tests A and C with
L = 5km (see section 4). We emphasize that computational
efficiency is not a goal of this paper; therefore, the choices
made for solvers and preconditioners are likely to be far
from optimal.
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Fig. 1. Test A. For each length, L, the surface velocity component, u, as a function of x, at y = L/4. (Dash-dotted curve: our L1L2 solution.
Solid curve: our FO solution. Dashed curve: reference Stokes solution.) From left to right, from top to bottom, L = 5, 10, 20, 40, 80 and
160 km.

4. NUMERICAL COMPARISONS USING THE
ISMIP-HOM BENCHMARK
We consider tests A, C and E described in the ISMIP-HOM
benchmark. In the following, we compare our solutions
against those obtained by the ‘oga’ group (Gagliardini and
Zwinger, 2008) participating in ISMIP-HOM. The numerical
results of the participants in the benchmarking can be down-
loaded from http://homepages.ulb.ac.be/∼fpattyn/ismip/.
The physical parameters used in all the experiments are given
in Table 1.Tbl 1
The geometry of tests A and C is a horizontal periodic

domain with a square unit cell of length L. The bedrock
surface, Γb, is given by z = b(x, y ) and the top surface,
Γs, by z = s(x, y ). In both the tests, the geometry is a regular
mapping of a cube. We construct a structured mesh of a
unit cube, consisting of nx × ny × nz sub-cubes. Each sub-
cube is divided into two right prisms with triangular bases
that are parallel to the x-y plane. In turn, each prism is then
divided into three tetrahedra. The cube is then mapped into
the geometry of the test cases by applying the transformation

x = LX , y = LY , z = s(x, y )Z+b(x, y )(1−Z ), (33)

where X , Y , Z are the coordinates of the unit cube and the
length, L, and functions b and s are specified in each test.
In the case of the L1L2 method, the geometry reduces to a
square, divided into nx × ny sub-squares which, in turn, are
split into two triangles.

4.1. Test A: comparison of the FO and L1L2 models
with the Stokes model
The bedrock and top surfaces (km) are characterized by

s(x, y ) = −x tan(α)

b(x, y ) = s(x, y )− 1 + 0.5 sin
(
2π
L
x
)
sin

(
2π
L
y
)

(34)

with α = 0.5◦. The no-slip boundary condition is prescribed
on Γb (Γ0 ≡ Γb and Γβ = ∅), stress-free boundary conditions
are prescribed on the top surface and periodic boundary
conditions horizontally (on Γl). Different domain sizes are

considered; namely we consider L = 5, 10, 20, 40, 80 and
160 km.
The results shown are obtained with P2 elements on a

40×40×10 mesh for the FO model and on a 40×40 mesh
for the L1L2 model. The velocity component, u, at the upper
surface plotted as a function of x for y = L/4 is shown
in Figure 1.Fig.1 Our FO solution (solid curve) and the
reference Stokes solution (dashed curve) are reported. The
L1L2 (SIA) solution is the same for all the length scales (after
normalization), therefore, for the sake of visualization, it is
reported (dash-dotted curve) only for L = 80 and 160 km.
The SIA solution is clearly not accurate for L < 160km. We
observe, instead, very good agreement in the FO solution
for L ≥ 20 km. As expected, the differences between the
FO and Stokes model increase as the aspect ratio increases
(L = 5km, L = 10km). In particular, for L = 5km, δ ≈
0.2 and, more importantly, the maximum deviation of the
bedrock normal from the z-axis is ∼32.5◦, which is clearly
not negligible. In Figure 2,Fig.2 the shear stress, τxz , at the
bedrock surface is plotted as a function of x for y = L/4.
Our FO solution (solid curve), L1L2 solution (dash-dotted
curve) and the reference Stokes solution (dashed curve) are
reported. The same observations as noted for Figure 1 also
hold in this case.

4.2. Test C: comparison of the FO and L1L2 models
with the Stokes model
The bedrock and top surfaces (km) are characterized by

s(x, y ) = −x tan(α), b(x, y ) = s(x, y )− 1, (35)

Table 1. Physical parameters used in the numerical experiments

Symbol Value Unit Description

A 10−16 Pa−n a−1 Flow rate factor
n 3 Glen’s flow law exponent
g 9.8 m s−2 Gravitational constant
ρ 910 kgm−3 Ice density
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Fig. 2. Test A. For each length, L, the shear stress, τxz , at the bed as a function of x, at y = L/4. (Dash-dotted curve: our L1L2 solution. Solid
curve: our FO solution. Dashed curve: reference Stokes solution.) From left to right, from top to bottom, L = 5, 10, 20, 40, 80 and 160 km.

with α = 0.1◦. Sliding boundary conditions are prescribed
on the bedrock (Γβ ≡ Γb and Γ0 = ∅) with β (kPa am−1)
defined as

β(x, y ) = 1 + sin
(
2π
L
x
)
sin

(
2π
L
y
)
. (36)

As before, stress-free boundary conditions are prescribed
on the top surface and periodic boundary conditions
horizontally. We consider the following values for the
domain length: L = 5, 10, 20, 40, 80 and 160km. As for
test A, we use P2 elements on a 40×40×10 mesh for the
FO model and on a 40×40 mesh for the L1L2 model. The
velocity component, u, at the upper surface plotted as a
function of x for y = L/4 is shown in Figure 3.Fig.3 We plot
the L1L2 solution (dash-dotted curve), the FO solution (solid
curve) and the reference Stokes velocity (dashed curve).
We observe good agreement between the L1L2 solution
and the Stokes solution for L ≥ 40 and good agreement

between the FO solution and the Stokes solution for all length
scales. Similar results for the shear stress, τxy , are shown in
Figure 4.Fig.4 We observe a remarkable agreement between
the FO and Stokes solutions and good agreement between
the L1L2 and Stokes solutions. In fact, even for small L, the
FO solutions are quite good, which is in contrast with what
is observed for test A. However, it should be noted that the
slope of the bedrock surface is typically smaller than that of
test A. Also, for test C, the bedrock surface is planar, whereas
for test A it is a sinusoidal function.

4.3. Test C: comparison of computational costs for
the FO and L1L2 models using Newton and
Picard methods
Here we compare the CPU times consumed for solving the
FO and L1L2 models and using Newton and Picard methods.
The Picard method consists of solving Equation (15) or (32),
using the viscosity, μ = μk , to obtain a new solution,

Fig. 3. Test C. For each length, L, the surface velocity component, u, as a function of x, at y = L/4. (Dash-dotted curve: our L1L2 solution.
Solid curve: our FO solution. Dashed curve: reference Stokes solution.) From left to right, from top to bottom, L = 5, 10, 20, 40, 80 and
160 km.
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Fig. 4. Test C. For each length, L, the shear stress, τxz , at the bed as a function of x, at y = L/4. (Dash-dotted curve: our L1L2 solution. Solid
curve: our FO solution. Dashed line: reference Stokes solution.) From left to right, from top to bottom, L = 5, 10, 20, 40, 80 and 160 km.

(uk+1, vk+1). We limit ourselves here to the serial case (a
future paper will give a detailed analysis of the performance
and scalability of numerical implementations). We use linear
FE (P1) and solve test C for L = 40km. The linear systems are
solved using GMRES preconditioned with ILU (incomplete
LU factorization). Tables 2Tbl and 3Tbl 3 report results
for the FO and L1L2 models, respectively. The two tables
report the CPU time consumed, the number of nonlinear
iterations and the residual depending on the nonlinear solver
(Newton or Picard). Two meshes are considered for both
the FO and L1L2 models. We used the same discretization
steps for the FO and L1L2 models. In particular, for the L1L2
model, the integrals in the z direction are performed using
the composite trapezoidal formula with sub-intervals equal,
in number, to the vertical layers of the corresponding 3-D
mesh. As expected, the L1L2 model is computationally much
cheaper than the FO models. Moreover, the Newton method
performs better than the Picard method, both in terms of
number of iterations and computational costs.

4.4. Test E: comparison of the FO and L1L2 models
with the Stokes model
Test E is a 2-D problem in the x-z plane. The geometry is
based on data from Haut Glacier d’Arolla, Switzerland; it
has a horizontal extension of 5 km, shown in Figure 5.Fig.5
In order to reproduce a 2-D test with 3-D code, we take one
layer of elements along the y direction and prescribe periodic
boundary conditions on the artificial lateral surfaces. Two
boundary conditions are considered. In the first case, no-

Table 2. Test C, FO. Number of iterations of the nonlinear
solver (Newton/Picard), CPU time and Newton/Picard residual. The
nonlinear iterations are stopped when the residual is lower than
1× 10−4 kPa km2

Mesh

20×20×5 (5292 DOF) 40×40×10 (36 982 DOF)

Iterations 5 /32 5 /32
CPU time (s) 10.4 /58.6 99 /528
Residual 5.1× 10−10 /9.7× 10−5 4.6× 10−10 /8.5× 10−5

slip boundary conditions are prescribed on the bedrock
surface (Γ0 ≡ Γb). In the second case, we prescribe sliding
boundary conditions, with β = 0 on the portion Γβ of the
bedrock surface while on the remaining part (Γ0), no-slip
conditions are prescribed; we set Γβ = {(x, z) ∈ Γb, 2.2 ≤
x ≤ 2.5 km}. As before, stress-free boundary conditions are
prescribed on the top surface.
We first consider the FO model. The results shown are

obtained with P2 elements on a 200 × 1 × 14 mesh. The
horizontal velocity component, u, is reported in Figure 5. A
one-dimensional plot of the surface velocity, u, as a function
of x is shown in Figure 6Fig.6 for the no-slip (left) and sliding
(right) cases. Both the FO solution (solid curve) and the Stokes
solution (dashed curve) are reported. In this case, the bedrock
has large slopes, hence the approximation hypotheses do not
hold. However, we still have good agreement between the
FO and Stokes solutions.
Similar plots for the shear stress, τxz , are shown in

Figure 7.Fig.7 In the presence of sliding (right), the differences
with the Stokes model are notable. However, it is worth men-
tioning that in the partial-sliding case, even the Stokes shear
stress solutions included in the ISMIP-HOM benchmark were
rather different from each other. This fact is clear from
Figure 8,Fig.8 which shows the surface velocities (left) and
basal shear stresses (right) computed by the Stokes models
presented in the ISMIP-HOM benchmark. It can be seen
that there is also a large variation in the velocity solutions.
However, there are three FE models, namely ‘oga1’, ‘aas1’
and ‘mmr1’, which produce the same solution (up to a small
tolerance). Moreover, the same Stokes velocity solution is
reported in a recently submitted paper by Leng and others

Table 3. Test C, L1L2. Same quantities are reported as for Table 2

Mesh

20×20(×5) (882 DOF) 40×40(×10) (3362 DOF)

Iterations 5 /25 7 /24
CPU time (s) 0.46 /2.10 2.57 /10.3
Residual 1.4× 10−7 /5.6× 10−5 1.6× 10−7 /8.8× 10−5
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Fig. 5. Test E, FO model. The velocity component, u, on the x-z plane. The plot has been stretched by a factor 4 in the z direction for the
sake of visualization. Left: no-slip. Right: partial sliding.

Fig. 6. Test E, FO model. The velocity component, u, on the surface as a function of x. (Dashed curve: reference Stokes solution. Solid
curve: our FO solution.) Left: no-slip. Right: partial sliding.

Fig. 7. Test E, FO model. The shear stress, τxz , on the bed as a function of x. Left: no-slip. Right: partial sliding.

(personal communication from Lili Ju, 2011). Therefore, we
believe that, even in the partial-sliding case, the surface
velocity solution provided by the ‘oga’ group is reliable and
it is reasonable to compare our model against it.
We next consider the L1L2 model approximation. The

velocity component, u, at the surface and shear stress, τxz ,
are reported in Figures 9Fig.9 and 10,Fig.10 respectively.
The reference Stokes solution is also reported. It is clear
from these figures that the L1L2 model proposed is not
adequate to solve test E. This could be partly expected

since the problem features quite large aspect ratio and
slope. We note that the shear stress, τxz , at the bedrock
has reasonable agreement with the Stokes solution, while
the surface velocity is totally wrong. This could be due to
the fact that in slow-sliding regimes, the L1L2 model cannot
properly solve the boundary layer close to the free surface
(see Schoof and Hindmarsh, 2010). Moreover, in the partial-
sliding case, the fast transition between slow- and fast-sliding
regimes is difficult to account for by approximations of the
Stokes model.

Fig. 8. Test E. Comparison between different Stokes solutions in the partial-sliding case. Left: the velocity component, u, on the surface.
Right: the shear stress, τxz , on the bed.
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Fig. 9. Test E, L1L2 model. The velocity component, u, on the surface as a function of x. (Dash-dotted curve: L1L2 solution. Dashed curve:
reference Stokes solution.) Left: no-slip. Right: partial sliding.

Fig. 10. Test E, L1L2 model. The shear stress, τxz , on the bed as a function of x. Left: no-slip. Right: partial sliding.

4.5. Test E: comparison between structured grids
and a locally refined unstructured grid
Here we stress the fact that finite elements naturally
handle nonuniform, unstructured grids. In order to show
the potential of this feature, we compare the solutions
computed with structured grids and an unstructured grid
(Fig. 11,Fig.11 top left) which is refined in proximity to that
part of the bedrock where free-slip boundary conditions are
prescribed (partial-sliding case). The coarse-structure grid
(Fig. 11, bottom left) has about the same number of nodes
as the unstructured grid; precisely, the unstructured grid has
428 nodes while the structured grid has 394 nodes. However,
the solution computed on the unstructured mesh is much
more accurate than that computed with the coarse-structured
mesh, and it is almost superimposed on the solution
computed with the fine-structured grid (2978 nodes).

4.6. Comparison between different first-order models
Here we compare our FO solutions with the solutions
obtained using the FO approximation of the authors of
the ISMIP-HOM paper (Pattyn and others, 2008). Some
of the ISMIP-HOM participants did not compute all the
tests. Most of the FO models presented in the ISMIP-
HOM were implemented using finite-difference methods,
with the following exceptions: group ‘rhi’ uses spectral
elements, while groups ‘cma’ and ‘bds’ use finite elements.
We compare the models by looking at the usual plot of the
velocity component, u, at the surface as a function of x for
y = L/4 for test A (Fig. 12),Fig.12 test C (Fig. 13)Fig.13 and
test E (Fig. 14).Fig.14 Unfortunately, the ‘rhi’ group did not
perform test E.
In the cases of tests A and C, we considered only the

extremal lengths L = 5 and 160 km. On the 5 km geometry,
test A (Fig. 12, left), no FO solution is close to the Stokes one.
However, the ‘tpa1’ and ‘fpa1’ solutions are distinguished
by being particularly far from it. The same phenomenon is

Fig. 11. Test E, partial-sliding case. Left: unstructured mesh (top) and coarse-structured mesh (bottom). Right: the velocity component, u,
on the surface as a function of x, computed with FO model and P2 finite elements on different grids. (Dashed curve: unstructured mesh.
Solid curve: fine-structured mesh (200 × 1 × 14). Curve with diamonds: medium-structured mesh (100 × 1 × 10). Curve with asterisks:
coarse-structured mesh (50× 1× 7).)
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Fig. 12. Test A. Comparison between our FO solution, the reference Stokes solution and the ISMIP-HOM FO models. The upper surface
velocity component, u, is plotted as a function of x at y = L/4 for the two extremal lengths L = 5km (left) and L = 160 km (right).

Fig. 13. Test C. Same quantities are plotted as for Figure 12.

present in test C (Fig. 13, left), where the ‘tpa1’ and ‘fpa1’
solutions are completely wrong, while the remaining models
are quite close to the Stokes solution. For L = 160km, test
C (Fig. 13, right), we can see that most of the FO models are
close to the Stokes solution with the exception of the ‘mtk1’,
‘cma2’ and ‘fsa1’ solutions. The ‘rhi2’ model and our model
are the only ones that show good accuracy in both test A and
test C on every length scale.
For test E (Fig. 14), most of the models give accurate

solutions in the no-slip case. However, in the partial-sliding
case a large variation in the solutions is registered. In this
case, the only two FO solutions that are close to the Stokes
solution are the ‘fpa1’ solution and our solution.

4.7. Comparison between different depth-integrated
higher-order models
Here we compare the proposed L1L2 model with the depth-
integrated higher-order models of the authors of the ISMIP-
HOM paper (Pattyn and others, 2008). Namely, we compare
it with the L1L1 and L1L2 models of group ‘rhi’ that are
based on the work of Hindmarsh (2004) and solved with
spectral elements, the L1L2 model by group ‘dpo’ (Pollard
and Deconto, 2007) solved with finite differences and the

L1L1 model by group ‘lpe’ based on MacAyeal (1989) and
Pattyn (2003) and solved with finite differences. Because our
L1L2 method is devised for sliding boundary conditions, we
only consider Test C. As before, we compare the models
by plotting the velocity component, u, at the surface as a
function of x for y = L/4. Figure 15Fig.15 shows that our
proposed L1L2 model performs well when compared with
other higher-order models, for L ≤ 40. For L = 5, only the
L1L1 and L1L2 models of group ‘rhi’ have good agreement
with the reference solution, while our model presents a
spurious bump in the solution.

4.8. Comparison between linear and quadratic
approximations
Here we compare the FE solutions of the FO model obtained
using different finite elements (P1 and P2) and different mesh
sizes. We first consider test C (Fig. 16),Fig.16 for L = 5km
(left) and L = 160 km (right). The coarse mesh consists of
20 × 20× 5 sub-cubes, for a total of 12 000 tetrahedra and
2624 vertices, whereas the fine mesh consists of 60×60×15
sub-cubes, for a total of 324 000 tetrahedra and 59 536
vertices. When using P1 elements, we have 5292 DOF for
the coarse mesh and 119072 DOF for the fine mesh. Using

Fig. 14. Test E. Comparison between our FO solution, the reference Stokes solution and those of the ISMIP-HOM FO models. The upper
surface velocity component, u, is plotted as a function of x, at y = L/4 in the no-slip case (left) and in the partial-sliding case (right).
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Fig. 15. Test C. Comparison between our L1L2 solution (dash-dotted curve), the reference Stokes solution (dashed curve) and the L1L1,
L1L2 models presented in the ISMIP-HOM benchmark. The upper surface velocity component, u, is plotted as a function of x at y = L/4
for different length scales. From left to right L = 5, 40 and 160 km.

P2 elements, we have 36 982 DOF for the coarse mesh, and
907 742 DOF for the fine mesh.
The upper surface velocity (Fig. 16, top) and shear stress,

τxz , on the bed (Fig. 16, bottom) are reported as a function
of x at y = L/4. The velocity solutions are quite close to
one another, even if the differences between the solutions
are clear when the velocity scale is enlarged (Fig. 16, top
left). Solutions on the coarse grid with P2 elements are
comparable to those obtained with P1 elements on the
fine mesh, but with one-third the number of DOF. Similar
comparisons can be made for the shear stress. In the case
L = 160 km, the peak of the P2 shear stress on the coarse grid
is lower than the correct one; however the overall P2 solution
on the coarse grid is comparable with the P1 solution on the
fine grid.We consider now test E (Fig. 17).Fig.17We solve the
problem on the coarse mesh, 50×1× 7, and the fine mesh,
200×1×14. Remarkable differences between the solutions
appear in the partial-sliding case (Fig. 17, right). Again, the
solution computed with P2 elements on the coarse grid is
comparable with the P1 solution on the fine grid.

5. CONCLUDING REMARKS
In this paper we have presented a parallel FE implementation
of the FO model (Blatter, 1995; Pattyn, 2003; Dukowicz

and others, 2010) and of the L1L2 model (Hindmarsh, 2004;
Schoof and Hindmarsh, 2010). We used three of the ISMIP-
HOM tests to compare our results against a Stokes model.We
showed that, in the case of the FO model, our solutions are
very close to the Stokes solutions, except when the geometry
featured large variations within a few kilometers (e.g. test A
with L = 5, 10 km). Good agreement with the Stokes solution
occurred also when performing the glacier test case, where
the FO hypotheses (low aspect ratio, δ, and small slope)
are only partially fulfilled. In the comparison with other FO
models participating in ISMIP-HOM benchmarks, we find
our FO model provides accurate results in the presence of
sliding boundary conditions, whereas most of the others
failed in at least one of tests C or E (section 4.6). The L1L2
model features good accuracy properties, again compared
with other higher-order models, in the sliding case (test C)
for L ≥ 40 km. However, the solutions can be very inaccurate
for large aspect ratios and in the presence of no-slip boundary
conditions (in this case the L1L2model reduces to the zeroth-
order SIA model). Overall, the FO model showed itself to be
more reliable than the L1L2 model, while the latter has the
obvious advantage of being computationally much cheaper.
Our model features both linear and quadratic finite

elements. As expected, P2 elements produce more accurate
solutions than P1 elements, in particular in the presence

Fig. 16. Test C. Comparison between solutions obtained using different finite elements (P1 and P2) and different meshes (40× 40× 10 and
60× 60× 15). Surface velocity component, u (top), and shear stress, τxz , on the bed (bottom), as a function of x at y = L/4, for L = 5km
(left) and L = 160 km (right).
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Fig. 17. Test E. Comparison between solutions obtained using different finite elements (P1 and P2) and different meshes (50 × 1 × 7 or
200× 1× 14). Top: velocity component, u, on the surface. Bottom: shear stress, τxz . Left: no-slip. Right: partial-sliding.

of large variations in the solution. This property can be
exploited using coarser grids than those needed when
using P1 elements. However, P1 elements feature fewer
degrees of freedom, sparser matrices and do not need
higher-order quadrature rules. Therefore, a comparison of
the computational costs when using P1 and P2 elements
is of paramount importance and will be addressed in a
forthcoming paper.
Future work will consist of investigating the behavior of

both our L1L2 and FO higher-order models and the use
of linear and quadratic finite elements on real geometries
such as Greenland or Antarctica. The use of more realistic
boundary conditions as well as a flow rate factor, A,
dependent on the ice temperature will be considered.
Although no substantial implementation-related difficulties
are expected, a study of the possible effects on, for example,
model stability and computational efficiency and accuracy,
is called for. Future efforts will also be devoted to improving
the efficiency and scalability of the solvers.
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APPENDIX. NEWTON’S METHOD
The FO and L1L2 models can be reduced to the solution of a
nonlinear equation of the form F (u, v ) = 0. In order to find
the roots, (u, v ), we use Newton’s method, which reads:

〈DF (uk , vk ), (δk+1u , δk+1v )〉 = −F (uk , vk ), k = 0, 1, . . . ,
(A1)

with δk+1u = uk+1 − uk and δk+1v = vk+1 − vk . Given an
initial guess, (u0, v0), one solves Equation (A1) iteratively
until ‖F (uk , vk )‖, in some norm, is less than a given toler-
ance (other stopping criteria are possible). The expression
〈DF (uk , vk ), (δk+1u , δk+1v )〉 denotes the Gâteaux derivative
of F in the direction (δk+1u , δk+1v ) evaluated at (uk , vk ).
The Gâteaux derivative is a generalization of the concept
of directional derivative. In particular if F were a vector
function from R

2 to R2, DF would be the Jacobian matrix in
R
2×2 and the pairing 〈·, ·〉 would represent the usual matrix
vector product. We define the Gâteaux derivative as〈
DF

(
uk , vk

)
,
(
δk+1u , δk+1v

)〉
=

lim
h→0

F
(
uk + h δk+1u , vk + h δk+1v

)
−F

(
uk , vk

)
h

.

(A2)

In the following we derive the expression of the Gâteaux
derivative for the FO and L1L2 models.

Gâteaux derivative for the FO model
Let F be defined as in Equation (16) (the dependence of F
on (ϕ1,ϕ2) is understood). A direct computation of the limit
in Equation (A2), gives〈
DF

(
uk , vk

)
, (δu , δv )

〉
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω
2(μ′)k

(
ε̇k1 · ∇δu + ε̇k2 · ∇δv

)
ε̇k1 · ∇ϕ1 dΩ+∫

Ω
2μk ε̇1(δu , δv ) · ∇ϕ1 dΩ +

∫
Γβ

βδu ϕ1 ds∫
Ω
2(μ′)k

(
ε̇k1 · ∇δu + ε̇k2 · ∇δv

)
ε̇k2 · ∇ϕ2 dΩ+∫

Ω
2μk ε̇2(δu , δv ) · ∇ϕ2 dΩ +

∫
Γβ

βδv ϕ2 ds

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
(A3)

where ε̇kλ = ε̇τ (uk , vk ) for λ ∈ {1, 2, e}, μk = μ(ε̇ke ) and

(μ′)k =
∂μ

∂(ε̇2e )

∣∣∣∣
(ε̇e=ε̇ke )

=
1− n
4n

A−
1
n (ε̇ke )(

1
n−3) =

1− n
2n

μk

(ε̇ke )2
.

(A4)

Gâteaux derivative for the L1L2 model
We consider the L1L2 model, withF defined as the left-hand
side minus the right-hand side of the system of Equation (32),

namely⎡⎢⎢⎣
∫
Σ

(
2μ̄ ε̇1,b(u, v ) · ∇‖ϕ1 + βuϕ1

)
dΣ +

∫
Σ
ρgH

∂s
∂x

ϕ1dΣ∫
Σ

(
2μ̄ ε̇2,b(u, v ) · ∇‖ϕ2 + βvϕ2

)
dΣ +

∫
Σ
ρgH

∂s
∂y

ϕ2dΣ

⎤⎥⎥⎦ .

(A5)
A direct computation of the limit in Equation (A2) gives〈
DF (uk , vk ), (δu , δv )

〉
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Σ
2(μ̄′)k

(
ε̇k1,b · ∇‖δu + ε̇k2,b · ∇‖δv

)
ε̇k1,b · ∇‖ϕ1 dΣ+∫

Σ
2μ̄k ε̇1,b(δu , δv ) · ∇‖ϕ1 dΣ +

∫
Σ
βδu ϕ1 dΣ∫

Σ
2(μ̄′)k

(
ε̇k1,b · ∇‖δu + ε̇k2,b · ∇‖δv

)
ε̇k2,b · ∇‖ϕ2 dΣ+∫

Σ
2μ̄k ε̇2,b(δu , δv ) · ∇‖ϕ2 dΣ +

∫
Σ
βδv ϕ2 dΣ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A6)

where ε̇kb = ε̇b(u
k , vk ), τ k = τ (uk , vk ), μk = μ

(
|ε̇kb|‖, |τ̃ |⊥

)
and

(μ̄′)k =
∂μ̄

∂(|ε̇b|2‖)

∣∣∣∣∣
(ε̇b=ε̇kb )

=
1− n
2A2

s∫
b

μk

(
|τ k |2‖ + |τ̃ |

2
⊥
)1−n

n |τ k |2‖ + |τ̃ |
2
⊥

dz.

(A7)
In the following we detail the calculation of (μ̄′)k . Differ-
entiating both sides of |τ k |2‖ = 4(μk )2|ε̇b|2‖ with respect to
|ε̇b|2‖

∂(|τ k |2‖)
∂(|ε̇b|2‖)

= 8μk |ε̇b|2‖
∂μ

∂(|ε̇b|2‖)
+ 4(μk )2, (A8)

and exploiting Equation (22) we have

∂μ

∂(|ε̇b|2‖)
=

μk

2A2|τ k |2‖

[
A2

∂(|τ k |2‖)
∂(|ε̇b|2‖)

−
(
|τ k |2‖ + |τ̃ |

2
⊥
)1−n]

.

(A9)
In order to have an explicit expression for ∂μ

∂(|ε̇b|2‖)
we need

to calculate
∂(|τ k |2‖)
∂(|ε̇b|2‖)

. To this aim we differentiate the squares

of both sides of Equation (22) with respect to |ε̇b|2‖:

1 = A2
(
|τ k |2‖ + |τ̃ |

2
⊥
)n−2 (

n|τ k |2‖ + |τ̃ |
2
⊥
) ∂(|τ k |2‖)
∂(|ε̇b|2‖)

.

(A10)
Combining Equations (A9) and (A10) we get

∂μ

∂(|ε̇b|2‖)
=
1− n
2A2

μk

(
|τ k |2‖ + |τ̃ |

2
⊥
)1−n

n |τ k |2‖ + |τ̃ |
2
⊥

. (A11)

The result, Equation (A7), follows straightforwardly since ε̇b
does not depend on z.
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