
����������
�������

Citation: Garvie, M. R.; Burkardt, J. A

New Algorithm Based on Colouring

Arguments for Identifying

Impossible Polyomino Tiling

Problems. Algorithms 2022, 15, 65.

https://doi.org/10.3390/a15020065

Academic Editor: Yuri N. Sotskov

Received: 17 January 2022

Accepted: 13 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A New Algorithm Based on Colouring Arguments
for Identifying Impossible Polyomino Tiling Problems

Marcus R. Garvie 1,* and John Burkardt 2

1 Department of Mathematics & Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
2 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA; jvb25@pitt.edu
* Correspondence: mgarvie@uoguelph.ca

Abstract: Checkerboard colouring arguments for proving that a given collection of polyominoes
cannot tile a finite target region of the plane are well-known and typically applied on a case-by-case
basis. In this article, we give a systematic mathematical treatment of such colouring arguments, based
on the concept of a parity violation, which arises from the mismatch between the colouring of the tiles
and the colouring of the target region. Identifying parity violations is a combinatorial problem related
to the subset sum problem. We convert the combinatorial problem into linear Diophantine equations
and give necessary and sufficient conditions for a parity violation. The linear Diophantine equation
approach leads to an algorithm implemented in MATLAB for finding all possible parity violations of
large tiling problems, and is the main contribution of this article. Numerical examples illustrate the
effectiveness of our algorithm. The collection of MATLAB programs, POLYOMINO_PARITY (v2.0.0)
is freely available for download.

Keywords: tiling with polyominoes; colouring arguments; parity violation; linear Diophantine
equations; MATLAB

1. Introduction

A polyomino is constructed from a finite number of edge-connected cells (or ‘squares’)
in the plane. The n-ominoes are polyominoes with area n and we refer to the cases for
n = 1, 2, 3, 4, 5, 6 as monominoes, dominoes, triminoes, tetrominoes, pentominoes and
hexominoes, respectively. We focus on free polyominoes, which we can rotate, reflect (‘flip’),
or translate. For example, there are exactly 12 free pentominoes. We can rotate or translate,
but not reflect, one-sided polyominoes, while the fixed polyominoes can only be translated.

There is a large amount of literature on the mathematics of polyominoes. Golomb
wrote a classic work on polyominoes in a 1965 book [1], which was revised and reissued in
1994 [2]. Many other mathematicians and computer scientists have since studied tiling with
polyominoes. For example, see the comprehensive text by Grünbaum and Shephard [3]
(revised and updated in 2016 [4]) and the many references there. The recreational math-
ematics of tiling with polyominoes became popular after a series of articles in Scientific
American by Martin Gardner [5–7], which also stimulated serious mathematical research
into this area.

In 1954, Golomb [8] introduced the following famous problem, discussed by oth-
ers [9–11], which motivates the type of colouring arguments used in this article. Remove
the two opposite corners of an 8× 8 chessboard (see Figure 1). Can the 62 squares be exactly

covered by 31 dominoes, with both orientations permitted?
Each domino placed on the chessboard covers exactly one black square and one white

square. Thus, if the dominoes exactly tile the board they must cover a total of 31 black
squares and 31 white squares. However, the ‘mutilated chessboard’ has 32 white squares
and 30 black squares. Thus, the answer is clearly ‘no’.

Algorithms 2022, 15, 65. https://doi.org/10.3390/a15020065 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4980-0514
https://orcid.org/0000-0003-0273-2769
https://doi.org/10.3390/a15020065
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020065?type=check_update&version=1

Algorithms 2022, 15, 65 2 of 21Algorithms 2022, 1, 0 2 of 21

Figure 1. Mutilated checkerboard.

The focus of this article is the decision problem of whether or not a given set of
polyominoes tiles a finite region of the plane called the ‘target region’. The general decision
problem is NP-complete [13] and so large problems rapidly become intractable. To help
tackle this problem we apply ‘checkerboard’ colouring arguments to the polyominoes
and target region, which in certain cases prove the polyominoes do not tile the region.
To this end we consider the ‘parity’ of the checkerboard coloured polyominoes or target
region, which for a given region is the difference between the number of black squares and
the number of white squares. Although checkerboard colouring arguments are common
in the literature, a systematic mathematical treatment without using a more theoretical
algebraic approach is lacking. The colouring arguments we use yield sufficient, but not
necessary conditions for a tiling problem to have no solution, and are generally weaker
than the more theoretical tools of Combinatorial Group theory [11,12,14–16]. Our main
contribution is to tackle this problem algorithmically using colouring arguments, which
leads to an efficient numerical method implemented in MATLAB. In addition to developing
a systematic method for finding impossible tiling problems we also prove some interesting
associated results about polyominoes and their parity values.

Our checkerboard colouring technique identifies impossible tiling problems using
polyominoes of arbitrary shape. In graph theory, there is a well-known related approach,
which is limited to tiling with dominoes. In that case, black and white squares of the
checkerboard coloured region to be tiled are represented by black and white vertices of
a graph. A link is made between any two adjacent squares of the region. Then Hall’s
marriage theorem gives necessary and sufficient conditions for the existence of a tiling of
the region using dominoes, requiring the construction and examination of every possible
subset of the white vertices [17].

A checkerboard colouring is not the only way two colours can help prove a tiling
problem has no solution. Other colouring schemes have been successfully used in specific
cases (see Figure 2 for colouring schemes applied to an 8× 8 square [3,9]). However, using
two colours, it is only a checkerboard colouring that seems to have wide applicability and
hence is amenable to a systematic mathematical description.

(a) (b) (c)

Figure 2. Three different black-white colouring schemes for the 8× 8 square: (a) Checkerboard
colouring, (b) Row-wise colouring, (c) Diagonal colouring.

The rest of this article has the following structure. In Section 2 we define the basic
terminology and concepts. We also prove a number of theoretical results about polyominoes

Figure 1. Mutilated checkerboard.

The focus of this article is the decision problem of whether or not a given set of
polyominoes tiles a finite region of the plane called the ‘target region’. The general decision
problem is NP-complete [12] and so large problems rapidly become intractable. To help
tackle this problem we apply ‘checkerboard’ colouring arguments to the polyominoes
and target region, which in certain cases prove the polyominoes do not tile the region.
To this end we consider the ‘parity’ of the checkerboard coloured polyominoes or target
region, which for a given region is the difference between the number of black squares and
the number of white squares. Although checkerboard colouring arguments are common
in the literature, a systematic mathematical treatment without using a more theoretical
algebraic approach is lacking. The colouring arguments we use yield sufficient, but not
necessary conditions for a tiling problem to have no solution, and are generally weaker
than the more theoretical tools of Combinatorial Group theory [10,11,13–15]. Our main
contribution is to tackle this problem algorithmically using colouring arguments, which
leads to an efficient numerical method implemented in MATLAB. In addition to developing
a systematic method for finding impossible tiling problems we also prove some interesting
associated results about polyominoes and their parity values.

Our checkerboard colouring technique identifies impossible tiling problems using
polyominoes of arbitrary shape. In graph theory, there is a well-known related approach,
which is limited to tiling with dominoes. In that case, black and white squares of the
checkerboard coloured region to be tiled are represented by black and white vertices of
a graph. A link is made between any two adjacent squares of the region. Then Hall’s
marriage theorem gives necessary and sufficient conditions for the existence of a tiling of
the region using dominoes, requiring the construction and examination of every possible
subset of the white vertices [16].

A checkerboard colouring is not the only way two colours can help prove a tiling
problem has no solution. Other colouring schemes have been successfully used in specific
cases (see Figure 2 for colouring schemes applied to an 8× 8 square [2,8]). However, using
two colours, it is only a checkerboard colouring that seems to have wide applicability and
hence is amenable to a systematic mathematical description.

Algorithms 2022, 1, 0 2 of 21

Figure 1. Mutilated checkerboard.

The focus of this article is the decision problem of whether or not a given set of
polyominoes tiles a finite region of the plane called the ‘target region’. The general decision
problem is NP-complete [13] and so large problems rapidly become intractable. To help
tackle this problem we apply ‘checkerboard’ colouring arguments to the polyominoes
and target region, which in certain cases prove the polyominoes do not tile the region.
To this end we consider the ‘parity’ of the checkerboard coloured polyominoes or target
region, which for a given region is the difference between the number of black squares and
the number of white squares. Although checkerboard colouring arguments are common
in the literature, a systematic mathematical treatment without using a more theoretical
algebraic approach is lacking. The colouring arguments we use yield sufficient, but not
necessary conditions for a tiling problem to have no solution, and are generally weaker
than the more theoretical tools of Combinatorial Group theory [11,12,14–16]. Our main
contribution is to tackle this problem algorithmically using colouring arguments, which
leads to an efficient numerical method implemented in MATLAB. In addition to developing
a systematic method for finding impossible tiling problems we also prove some interesting
associated results about polyominoes and their parity values.

Our checkerboard colouring technique identifies impossible tiling problems using
polyominoes of arbitrary shape. In graph theory, there is a well-known related approach,
which is limited to tiling with dominoes. In that case, black and white squares of the
checkerboard coloured region to be tiled are represented by black and white vertices of
a graph. A link is made between any two adjacent squares of the region. Then Hall’s
marriage theorem gives necessary and sufficient conditions for the existence of a tiling of
the region using dominoes, requiring the construction and examination of every possible
subset of the white vertices [17].

A checkerboard colouring is not the only way two colours can help prove a tiling
problem has no solution. Other colouring schemes have been successfully used in specific
cases (see Figure 2 for colouring schemes applied to an 8× 8 square [3,9]). However, using
two colours, it is only a checkerboard colouring that seems to have wide applicability and
hence is amenable to a systematic mathematical description.

(a) (b) (c)

Figure 2. Three different black-white colouring schemes for the 8× 8 square: (a) Checkerboard
colouring, (b) Row-wise colouring, (c) Diagonal colouring.

The rest of this article has the following structure. In Section 2 we define the basic
terminology and concepts. We also prove a number of theoretical results about polyominoes

Figure 2. Three different black–white colouring schemes for the 8× 8 square: (a) Checkerboard
colouring, (b) Row-wise colouring, (c) Diagonal colouring.

The rest of this article has the following structure. In Section 2, we define the basic
terminology and concepts. We also prove a number of theoretical results about polyominoes

Algorithms 2022, 15, 65 3 of 21

and their parity values. Section 3 concerns what we call a ‘parity violation’, which is a
sufficient condition involving the concept of parity for a given set of polyominoes to not
tile a target region. We also discuss the combinatorial problem of finding parity violations.
In Section 4, we convert the combinatorial problem into the problem of solving a linear
Diophantine equation and illustrate our algorithmic approach in Section 5 with some large
examples computed in MATLAB. We make some concluding comments regarding possible
future work in Section 6. The appendices list some polyomino ‘families’ (Appendix A),
and details about our MATLAB solvers for linear Diophantine Equations (Appendix B).

2. Preliminaries

Consider a finite set of F free polyominoes (‘tiles’) in the lattice Z2, denoted {Pi}F
i=1,

F ≥ 1. We assume the polyominoes are simply-connected, i.e., have no ‘holes’. The area of
each polyomino Pi is denoted ci. Consider another arbitrary union of a finite number of
edge-connected cells in the lattice Z2 denoted R with area c. We assume R is connected,
but not necessarily simply-connected, thus the region R can have ‘holes’. We attempt
to tile the target region R with ni (ni ≥ 1) copies of each free polyomino Pi, i = 1, . . . , F,
without ‘gaps’ or tiles overlapping, i.e., we have an exact cover problem. Obviously a
necessary condition for a solution to a tiling problem is that the sum of the areas of the tiles
must equal the area of the target region, i.e., ∑F

i=1 cini = c.
Suppose we colour the cells of a polyomino, or the region we wish to tile, either

black or white in such a way that each black cell is edge connected only to white cells and
each white cell is edge connected only to black cells. We call this a checkerboard colouring.
A checkerboard colouring is rigorously defined using modular arithmetic by identifying
each black cell with the number 1 and each white cell with the number 0. If the centre of
each cell of a region has coordinates (i, j) ∈ Z2 then a map f : Z2 7→ Z given by f (i, j) =
i + j (mod 2) defines a checkerboard colouring [17]. If we have f (i, j) = i + j + 1 (mod 2)
then we reverse the colouring of cells. See Figure 3 for an example (we colour the ‘white’
cells of a checkerboard coloured region light grey, to distinguish them from any holes in
the region, which we colour white).

Algorithms 2022, 1, 0 3 of 21

and their parity values. Section 3 concerns what we call a ‘parity violation’, which is a
sufficient condition involving the concept of parity for a given set of polyominoes to not
tile a target region. We also discuss the combinatorial problem of finding parity violations.
In Section 4 we convert the combinatorial problem into the problem of solving a linear
Diophantine equation and illustrate our algorithmic approach in Section 5 with some large
examples computed in MATLAB. We make some concluding comments regarding possible
future work in Section 6. The appendices list some polyomino ‘families’ (Appendix ??),
and details about our MATLAB solvers for linear Diophantine equations (Appendix B).

2. Preliminaries

Consider a finite set of F free polyominoes (‘tiles’) in the lattice Z2, denoted {Pi}F
i=1,

F ≥ 1. We assume the polyominoes are simply-connected, i.e., have no ‘holes’. The area of
each polyomino Pi is denoted ci. Consider another arbitrary union of a finite number of
edge-connected cells in the lattice Z2 denoted R with area c. We assume R is connected,
but not necessarily simply-connected, thus the region R can have ‘holes’. We attempt
to tile the target region R with ni (ni ≥ 1) copies of each free polyomino Pi, i = 1, . . . , F,
without ‘gaps’ or tiles overlapping, i.e., we have an exact cover problem. Obviously a
necessary condition for a solution to a tiling problem is that the sum of the areas of the tiles
must equal the area of the target region, i.e., ∑F

i=1 cini = c.
Suppose we colour the cells of a polyomino, or the region we wish to tile, either

black or white in such a way that each black cell is edge connected only to white cells and
each white cell is edge connected only to black cells. We call this a checkerboard colouring.
A checkerboard colouring is rigorously defined using modular arithmetic by identifying
each black cell with the number 1 and each white cell with the number 0. If the centre
of each cell of a region has coordinates (i, j) ∈ Z2 then a map f : Z2 7→ Z given by
f (i, j) = i + j (mod 2) defines a checkerboard colouring [18]. If we have f (i, j) = i + j +
1 (mod 2) then we reverse the colouring of cells (see Figure 3 for an example (We colour
the ‘white’ cells of a checkerboard coloured region light grey, to distinguish them from any
holes in the region, which we colour white.)).

(2,1)

(2,2)

(2,3)

(1,1)

(3,2)
i + j (mod 2)

Figure 3. Defining a checkerboard colouring.

We define the parity (pl. parities) of a checkerboard coloured region as the number of
black cells minus the number of white cells. We start each tiling problem by assigning the
target region R a fixed checkerboard colouring with parity p, p ∈ N∪ {0}. A polyomino
placed in a checkerboard coloured region R acquires the colouring of the cells it covers. If the
parity of a polyomino is non-zero, then it has two parity values ±pi, pi ∈ N, depending
on its placement in R. Rotating, reflecting or translating the polyomino in the region may
reverse its parity. If a polyomino has zero parity then pi = 0. If a polyomino Pi has parity
+pi, then its parity becomes −pi by reversing the colouring of cells (and vice-versa).

Consider two distinct polyominoes P1 and P2, with the same area n and parities ±p1
and ±p2 respectively. Then P1 and P2 are parity equivalent n-ominoes if p1 = p2. Clearly, if P1
and P2 are parity equivalent n-ominoes then P1 can be transformed into P2 (and vice-versa)
by rearranging the black and white cells. Parity equivalence of n-ominoes is an equivalence
relation. An example of parity equivalent 8-ominoes is illustrated in Figure 4.

Consider a polyomino Pi with bi black cells and wi white cells. We state the following
simple results without proof, as they are immediate consequences of the equations for
area (ci = bi + wi) and parity (pi = bi − wi) of a polyomino (or region) and elementary
mathematical induction.

Figure 3. Defining a checkerboard colouring.

We define the parity (pl. parities) of a checkerboard coloured region as the number of
black cells minus the number of white cells. We start each tiling problem by assigning the
target region R a fixed checkerboard colouring with parity p, p ∈ N∪ {0}. A polyomino
placed in a checkerboard coloured region R acquires the colouring of the cells it covers. If the
parity of a polyomino is non-zero, then it has two parity values ±pi, pi ∈ N, depending
on its placement in R. Rotating, reflecting or translating the polyomino in the region may
reverse its parity. If a polyomino has zero parity then pi = 0. If a polyomino Pi has parity
+pi, then its parity becomes −pi by reversing the colouring of cells (and vice versa).

Consider two distinct polyominoes P1 and P2, with the same area n and parities ±p1
and ±p2, respectively. Then P1 and P2 are parity equivalent n-ominoes if p1 = p2. Clearly,
if P1 and P2 are parity equivalent n-ominoes then P1 can be transformed into P2 (and vice
versa) by rearranging the black and white cells. Parity equivalence of n-ominoes is an
equivalence relation. An example of parity equivalent 8-ominoes is illustrated in Figure 4.

Consider a polyomino Pi with bi black cells and wi white cells. We state the following
simple results without proof, as they are immediate consequences of the equations for
area (ci = bi + wi) and parity (pi = bi − wi) of a polyomino (or region) and elementary
mathematical induction.

Algorithms 2022, 15, 65 4 of 21Algorithms 2022, 1, 0 4 of 21

(a) (b)

Figure 4. Parity equivalent 8-ominoes: (a) P1, (b) P2.

Proposition 1.

(i) Parity equivalent n-ominoes have the same number of black squares and the same number
of white squares.

(ii) Consider the set of all free polyominoes. The parities of polyominoes in this set take on all
possible values in Z.

(iii) Consider an m× n rectangle in Z2. If mn is even the parity of the rectangle is 0. If mn is
odd the parity is ±1.

(iv) Consider a polyomino Pi with area ci and parity ±pi. Then ci is odd (resp. even) if and
only if ±pi is odd (resp. even). (We avoid using the term ‘parity’ here in the usual sense to
avoid confusion with its alternate definition in this article.)

(v) Let the number of black cells and white cells of a checkerboard coloured polyomino Pi
with area ci be bi and wi respectively. If the parity of Pi is ±pi, then bi = (ci ± pi)/2,
and wi = (ci ∓ pi)/2.

As we shall see in later sections, (iii) is useful when we consider the problem of fitting
a given set of polyominoes into a rectangle. Additional results for more general polyomino
constructions are given in Appendix A, where we give the explicit relationships between
area and parity. The results follow from elementary results for sequences and series and
mathematical induction.

Consider the sequence of free polyomino constructions shown in Figure 5. Starting
with a black square, at each stage we add the minimum number of black and white squares
to increase the parity by exactly one unit. (If necessary, we allow a re-arrangement of the
squares to create all possible parity equivalent n-ominoes at each level, as is the case with
the 2nd construction for p = +6). From the figure we see that we must initially add a

straight trimino , or an L-shaped trimino , (all orientations permitted) and then

in the next step a black square, and repeat, yielding the parity sequence {+1,+2,+3, . . .}.
At each level in the construction the shapes are parity equivalent n-ominoes.

The following result clarifies the relationship between the areas and the parities of the
polyominoes constructed in Figure 5.

Theorem 1. Consider the sequence of polyominoes constructed in Figure 5 together with a domino.
If the areas of the polyominoes are denoted by cp with parities p ∈ Z, then

cp =

{
2|p| −mod(p, 2) if |p| ∈ N,
2 if p = 0.

(1)

Furthermore, every polyomino in the sequence has minimal area with respect to its parity,
or equivalently, maximal parity with respect to its area.

Figure 4. Parity equivalent 8-ominoes: (a) P1, (b) P2.

Proposition 1.

(i) Parity equivalent n-ominoes have the same number of black squares and the same number
of white squares.

(ii) Consider the set of all free polyominoes. The parities of polyominoes in this set take on all
possible values in Z.

(iii) Consider an m× n rectangle in Z2. If mn is even the parity of the rectangle is 0. If mn is
odd the parity is ±1.

(iv) Consider a polyomino Pi with area ci and parity ±pi. Then ci is odd (resp. even) if and
only if ±pi is odd (resp. even) (we avoid using the term ‘parity’ here in the usual sense to
avoid confusion with its alternate definition in this article).

(v) Let the number of black cells and white cells of a checkerboard coloured polyomino Pi
with area ci be bi and wi, respectively. If the parity of Pi is ±pi, then bi = (ci ± pi)/2,
and wi = (ci ∓ pi)/2.

As we shall see in later sections, (iii) is useful when we consider the problem of fitting
a given set of polyominoes into a rectangle. Additional results for more general polyomino
constructions are given in Appendix A, where we give the explicit relationships between
area and parity. The results follow from elementary results for sequences and series and
mathematical induction.

Consider the sequence of free polyomino constructions shown in Figure 5. Starting
with a black square, at each stage we add the minimum number of black and white squares
to increase the parity by exactly one unit. (If necessary, we allow a re-arrangement of the
squares to create all possible parity equivalent n-ominoes at each level, as is the case with
the 2nd construction for p = +6). From the figure we see that we must initially add a

straight trimino , or an L-shaped trimino , (all orientations permitted) and then in
the next step a black square, and repeat, yielding the parity sequence {+1,+2,+3, . . .}.
At each level in the construction the shapes are parity equivalent n-ominoes.

The following result clarifies the relationship between the areas and the parities of the
polyominoes constructed in Figure 5.

Theorem 1. Consider the sequence of polyominoes constructed in Figure 5 together with a domino.
If the areas of the polyominoes are denoted by cp with parities p ∈ Z, then

cp =

{
2|p| −mod(p, 2) if |p| ∈ N,
2 if p = 0.

(1)

Furthermore, every polyomino in the sequence has minimal area with respect to its parity,
or equivalently, maximal parity with respect to its area.

Algorithms 2022, 15, 65 5 of 21Algorithms 2022, 1, 0 5 of 21

p = +1

p = +2
p = +2

p = +3

p = +4 p = +4

p = +5

p = +6 p = +6 p = +6

p = +7

p = +6
(dead-end) p = +6

(dead-end)

p = +4
(dead-end)

Figure 5. Illustration of Proposition 1 (ii) and Theorem 1. Starting with the top black square with
parity p = +1, as we descend each level of the tree the parity increases by +1. At each level the
shapes are parity equivalent n-ominoes, and have minimal area with respect to their parity. Cells
with a red border indicate which cells were added to the polyomino in the previous level to construct
the corresponding polyomino at the current level.

Proof. We assume throughout the proof that p > 0. Similar arguments apply for the
case p < 0 and the result is clearly true for p = 0. (The case with p = 0 corresponds
to a domino with parity zero.) We use induction on p. The result is clearly true for
p = 1. Assume the result is true for p, then we have two cases to consider. If p is
even, then cp = 2p −mod(p, 2) = 2p. By construction we get the next polyomino in
the sequence with a parity of p + 1 by adding a single black square, yielding an area
of 2p + 1 = 2(p + 1) − 1 = 2(p + 1) −mod(p + 1, 2) as p + 1 is odd. If p is odd, then
cp = 2p−mod(p, 2) = 2p− 1. By construction we get the next polyomino in the sequence

Figure 5. Illustration of Proposition 1 (ii) and Theorem 1. Starting with the top black square with
parity p = +1, as we descend each level of the tree the parity increases by +1. At each level the
shapes are parity equivalent n-ominoes, and have minimal area with respect to their parity. Cells
with a red border indicate which cells were added to the polyomino in the previous level to construct
the corresponding polyomino at the current level.

Proof. We assume throughout the proof that p > 0. Similar arguments apply for the
case p < 0 and the result is clearly true for p = 0 (the case with p = 0 corresponds
to a domino with parity zero). We use induction on p. The result is clearly true for
p = 1. Assume the result is true for p, then we have two cases to consider. If p is
even, then cp = 2p −mod(p, 2) = 2p. By construction, we get the next polyomino in

Algorithms 2022, 15, 65 6 of 21

the sequence with a parity of p + 1 by adding a single black square, yielding an area
of 2p + 1 = 2(p + 1) − 1 = 2(p + 1) −mod(p + 1, 2) as p + 1 is odd. If p is odd, then
cp = 2p−mod(p, 2) = 2p− 1. By construction we get the next polyomino in the sequence
with a parity of p + 1 by adding two black squares and one white square. So the area
becomes cp = 2p− 1 + 3 = 2(p + 1) = 2(p + 1)−mod(p + 1, 2) as p + 1 is even.

At each stage of the construction procedure in Figure 5 we add the least number of
black and white squares to increase the parity by one unit. If the parity is odd, no white
squares are accessible, so we must add either an L-shaped trimino or a straight trimino.
There are various ways to do this and the resulting even parity constructions are parity
equivalent n-ominoes. Although all the odd parity polyominoes have minimal area with
respect to their parity, some of them cannot be continued in the sequence (labelled ‘dead-
end’). If a white square is not accessible, then the only way the parity can be increased by
one unit is by adding one white square and two black squares, resulting in a polyomino
that no longer has minimal area (e.g., the third polyomino with p = +4). Even if a white
square is accessible, we cannot always add a single black square to increase the parity by a
single unit. For example, in the fifth polyomino construction with p = +6, adding a black
square to the single accessible white square is not permitted as this yields a shape that
is not simply-connected, contradicting our definition of a polyomino. Thus, in this case,
and similar ones, the only way to legitimately increase the parity is by adding three squares
(two black and one white), again resulting in a polyomino that no longer has minimal area.
As we progress down more levels of the tree the same pattern of polyomino constructions
continue, although when the parity is even we get more parity equivalent n-ominoes.

The sequence of polyominoes also have maximal parity with respect to their area.
If this were not true then it would be possible to reduce the area of a polyomino without
changing its parity. To do this we would have to remove an equal number of black squares
and white squares. However, we cannot remove a single white square from any of the
polyominoes as the resulting shape would no longer be simply-connected, contradicting
our definition of a polyomino.

Theorem 1 leads to a simple upper bound for the parity of a polyomino with respect
to its area as shown in the following corollary.

Corollary 1. Consider a polyomino Pi with area ci and parity ±pi (pi ∈ N). Then for all pi ∈ N
we have

pi ≤
{

ci/2 if pi is even,
(ci + 1)/2 if pi is odd.

Proof. From Theorem 1 the least possible area for a polyomino Pi with area ci and parity
±pi is given by

cmin = 2pi −mod(pi, 2) ≤ ci for all pi ∈ N,

and if the parity is zero then ci ≥ 2. Thus, for all pi ∈ N

pi ≤
ci + mod(pi, 2)

2
=

{
ci/2 if pi is even,
(ci + 1)/2 if pi is odd,

as required.

A proof of the less sharp result pi ≤ (ci + 1)/2 is given in ([18], p. 42) using a
different argument.

Algorithms 2022, 15, 65 7 of 21

3. Parity Violations
3.1. A Sufficient Condition for a Non-Tileable Region

We describe a simple sufficient condition for a tiling problem to have no solution
based on the parity of the target region and the parities of the tiles.

We attempt to tile a region R with parity p using F free polyominoes {Pi}F
i=1 with

copies {ni}F
i=1, ni ≥ 1. Assume the polyominoes have parity values {±pi}F

i=1 (if the parity
value is zero then for ease of notation the parity is still represented as ±pi). Denote the
multiset of all possible sums of N = ∑F

i=1 ni parity values by {sj}M
j=1, M ≥ 1. The following

elementary result is key to the arguments that follow:

Proposition 2. A necessary (but not sufficient) condition for the polyominoes to tile a region R is
that sj = p for at least one j ∈ {1, 2, . . . , M}.

Proof. Assume the polyominoes {Pi}N
i=1 tile the target region R. For each polyomino Pk

with bk black cells and wk white cells the parity is given by ±pk = bk − wk and thus there
exists a j ∈ {1, 2, . . . , M} such that

sj =
N

∑
k=1

(±pk) =
N

∑
k=1

(bk − wk) =
N

∑
k=1

bk −
N

∑
k=1

wk = b− w = p.

When none of the possible parity sums equals the parity of the target region we call
this a parity violation which implies it is impossible for the given polyominoes to tile the
target region.

Example 1. Consider the problem of tiling the target regions R in Figure 6 with three dominoes,

both orientations permitted. The parity of a domino is zero and thus it is always the
case that sj = 0 for pure domino tiling problems. Furthermore, the parities of the checkerboard
coloured target regions in Figure 6a,b are zero, so the necessary condition of Proposition 2 is always
satisfied. However, Figure 6a illustrates that this condition is not sufficient.

Algorithms 2022, 1, 0 7 of 21

multiset of all possible sums of N = ∑F
i=1 ni parity values by {sj}M

j=1, M ≥ 1. The following
elementary result is key to the arguments that follow:

Proposition 2. A necessary (but not sufficient) condition for the polyominoes to tile a region R is
that sj = p for at least one j ∈ {1, 2, . . . , M}.

Proof. Assume the polyominoes {Pi}N
i=1 tile the target region R. For each polyomino Pk

with bk black cells and wk white cells the parity is given by ±pk = bk − wk and thus there
exists a j ∈ {1, 2, . . . , M} such that

sj =
N

∑
k=1

(±pk) =
N

∑
k=1

(bk − wk) =
N

∑
k=1

bk −
N

∑
k=1

wk = b− w = p.

When none of the possible parity sums equals the parity of the target region we call
this a parity violation which implies it is impossible for the given polyominoes to tile the
target region.

Example 1. Consider the problem of tiling the target regions R in Figure 6 with three dominoes,

both orientations

{
,

}
permitted. The parity of a domino is zero and thus it is always

the case that sj = 0 for pure domino tiling problems. And the parities of the checkerboard coloured
target regions in Figure 6a,b are zero, so the necessary condition of Proposition 2 is always satisfied.
However, Figure 6a illustrates that this condition is not sufficient.

(a) (b)

Figure 6. Illustration of Proposition 2: (a) A region R that is not tileable with dominoes, (b) A region
R that is tileable with dominoes.

We consider some simple tiling problems that lead to a parity violation.

Example 2. Apply a checkerboard colouring to the five free tetrominoes, yielding seven free checker-
board coloured tetrominoes, illustrated in Figure 7.

(a) (b) (c) (d) (e)

Figure 7. The seven free checkerboard coloured tetrominoes with parities: (a) p1 = 0, (b) p2 = 0,
(c) p3 = 0, (d) p4 = 0, (e) p5 = ±2.

Any rectangle tiled by the five free tetrominoes must have an area of 20 cells, and as the
area is even the parity of the target region must be zero; see Proposition 1 (iii). From Figure 7 we
see that the sum of parities of the five tetrominoes is given by s1 = +2 or s2 = −2, thus from
Proposition 2 we conclude that the tetrominoes do not tile any rectangle. This result is proved in
([3], p. 17) using a similar checkerboard colouring argument to the one presented here, but without
parity considerations.

Figure 6. Illustration of Proposition 2: (a) A region R that is not tileable with dominoes, (b) A region
R that is tileable with dominoes.

We consider some simple tiling problems that lead to a parity violation.

Example 2. Apply a checkerboard colouring to the five free tetrominoes, yielding seven free checker-
board coloured tetrominoes, illustrated in Figure 7.

Algorithms 2022, 1, 0 7 of 21

multiset of all possible sums of N = ∑F
i=1 ni parity values by {sj}M

j=1, M ≥ 1. The following
elementary result is key to the arguments that follow:

Proposition 2. A necessary (but not sufficient) condition for the polyominoes to tile a region R is
that sj = p for at least one j ∈ {1, 2, . . . , M}.

Proof. Assume the polyominoes {Pi}N
i=1 tile the target region R. For each polyomino Pk

with bk black cells and wk white cells the parity is given by ±pk = bk − wk and thus there
exists a j ∈ {1, 2, . . . , M} such that

sj =
N

∑
k=1

(±pk) =
N

∑
k=1

(bk − wk) =
N

∑
k=1

bk −
N

∑
k=1

wk = b− w = p.

When none of the possible parity sums equals the parity of the target region we call
this a parity violation which implies it is impossible for the given polyominoes to tile the
target region.

Example 1. Consider the problem of tiling the target regions R in Figure 6 with three dominoes,

both orientations

{
,

}
permitted. The parity of a domino is zero and thus it is always

the case that sj = 0 for pure domino tiling problems. And the parities of the checkerboard coloured
target regions in Figure 6a,b are zero, so the necessary condition of Proposition 2 is always satisfied.
However, Figure 6a illustrates that this condition is not sufficient.

(a) (b)

Figure 6. Illustration of Proposition 2: (a) A region R that is not tileable with dominoes, (b) A region
R that is tileable with dominoes.

We consider some simple tiling problems that lead to a parity violation.

Example 2. Apply a checkerboard colouring to the five free tetrominoes, yielding seven free checker-
board coloured tetrominoes, illustrated in Figure 7.

(a) (b) (c) (d) (e)

Figure 7. The seven free checkerboard coloured tetrominoes with parities: (a) p1 = 0, (b) p2 = 0,
(c) p3 = 0, (d) p4 = 0, (e) p5 = ±2.

Any rectangle tiled by the five free tetrominoes must have an area of 20 cells, and as the
area is even the parity of the target region must be zero; see Proposition 1 (iii). From Figure 7 we
see that the sum of parities of the five tetrominoes is given by s1 = +2 or s2 = −2, thus from
Proposition 2 we conclude that the tetrominoes do not tile any rectangle. This result is proved in
([3], p. 17) using a similar checkerboard colouring argument to the one presented here, but without
parity considerations.

Figure 7. The seven free checkerboard coloured tetrominoes with parities: (a) p1 = 0, (b) p2 = 0,
(c) p3 = 0, (d) p4 = 0, (e) p5 = ±2.

Algorithms 2022, 15, 65 8 of 21

Any rectangle tiled by the five free tetrominoes must have an area of 20 cells, and as the
area is even the parity of the target region must be zero; see Proposition 1 (iii). From Figure 7 we
see that the sum of parities of the five tetrominoes is given by s1 = +2 or s2 = −2, thus from
Proposition 2 we conclude that the tetrominoes do not tile any rectangle. This result is proved in ([2],
p. 17) using a similar checkerboard colouring argument to the one presented here, but without
parity considerations.

Example 3. Consider the problem of tiling any rectangle with the 35 free hexominoes [2]. Any
rectangle tiled by these polyominoes must have an area of 35× 6 = 210 cells, thus the parity of
the target region is zero. Of the 35 hexominoes, 11 polyominoes have a parity of ±2, while the
remaining 24 polyominoes have a parity of zero. Observe that the sum of 11 numbers from the set
{−2,+2} can never equal zero, thus application of Proposition 2 yields that the 35 free hexominoes
can never tile a rectangle. This result is proved in ([2], p. 10) using a similar checkerboard colouring
argument to the one presented here, but without parity considerations.

Example 4. Is it possible for 15 T-shaped tetrominoes (see Figure 8b) to tile the checkerboard
coloured region shown in Figure 8a? The target region is the 5th polyomino in the ‘diamond-shapes’
family (see Appendix A), but with a square removed from the middle. Thus, the target region has
area c5 − 1 = 36 + 25− 1 = 60 and parity p5 + 1 = 11 + 1 = +12. The parity values of the
tetrominoes are ±2. However, it is not possible for a one-dimensional walk along the integers with
15 steps from {−2,+2} to arrive at +12. Thus, the answer is ‘no’.

Algorithms 2022, 1, 0 8 of 21

Example 3. Consider the problem of tiling any rectangle with the 35 free hexominoes [3]. Any
rectangle tiled by these polyominoes must have an area of 35× 6 = 210 cells, thus the parity of
the target region is zero. Of the 35 hexominoes, 11 polyominoes have a parity of ±2, while the
remaining 24 polyominoes have a parity of zero. Observe that the sum of 11 numbers from the set
{−2,+2} can never equal zero, thus application of Proposition 2 yields that the 35 free hexominoes
can never tile a rectangle. This result is proved in ([3], p. 10) using a similar checkerboard colouring
argument to the one presented here, but without parity considerations.

Example 4. Is it possible for 15 T-shaped tetrominoes (see Figure 8b) to tile the checkerboard
coloured region shown in Figure 8a? The target region is the 5th polyomino in the ‘diamond-shapes’
family (see Appendix ??), but with a square removed from the middle. Thus the target region has
area c5 − 1 = 36 + 25− 1 = 60 and parity p5 + 1 = 11 + 1 = +12. The parity values of the
tetrominoes are ±2. However, it is not possible for a one-dimensional walk along the integers with
15 steps from {−2,+2} to arrive at +12. Thus the answer is ‘no’.

(a) (b)

Figure 8. Tiling a square shaped region using 15 T-shaped tetrominoes: (a) p = +12, (b) p5 = ±2.

These simple examples illustrate that when using a parity violation to prove a tiling
problem has no solution we must solve a combinatorial problem. We need to consider all
possible sums of the parities of the polyominoes and verify that none of them equals the
parity of the region we wish to tile.

3.2. Combinatorial Considerations

In the practical application of Proposition 2 to large tiling problems we must compute
all possible parity sums for a given set of polyominoes, i.e.:

(P1) find all possible sums {sj}M
j=1 given by:

n1 elements drawn from {−p1,+p1}, with
n2 elements drawn from {−p2,+p2}, with

...
...

nF elements drawn from {−pF,+pF},

where ni ∈ N and pi, p ∈ N∪ {0}, for i = 1, 2, . . . , F.

With N polyominoes we have 2N different ways to sum the parity values, assuming
the parities are distinct and non-zero. However, it is often the case that many of the
polyominoes have the same parity value, or are zero, which reduces the number of possible
sums of parities. We define the parity problem as the decision problem of whether any of the
parity sums equals p. This problem is similar to the general subset sum problem, which is
NP-complete [20]. The tree diagram in Figure 9 illustrates the possible ways of adding

Figure 8. Tiling a square shaped region using 15 T-shaped tetrominoes: (a) p = +12, (b) p5 = ±2.

These simple examples illustrate that when using a parity violation to prove a tiling
problem has no solution we must solve a combinatorial problem. We need to consider all
possible sums of the parities of the polyominoes and verify that none of them equals the
parity of the region we wish to tile.

3.2. Combinatorial Considerations

In the practical application of Proposition 2 to large tiling problems we must compute
all possible parity sums for a given set of polyominoes, i.e.:

(P1) find all possible sums {sj}M
j=1 given by:

n1 elements drawn from {−p1,+p1}, with
n2 elements drawn from {−p2,+p2}, with

...
...

nF elements drawn from {−pF,+pF},

where ni ∈ N and pi, p ∈ N∪ {0}, for i = 1, 2, . . . , F.
With N polyominoes we have 2N different ways to sum the parity values, assuming

the parities are distinct and non-zero. However, it is often the case that many of the

Algorithms 2022, 15, 65 9 of 21

polyominoes have the same parity value, or are zero, which reduces the number of possible
sums of parities. We define the parity problem as the decision problem of whether any of the
parity sums equals p. This problem is similar to the general subset sum problem, which is
NP-complete [19]. The tree diagram in Figure 9 illustrates the possible ways of adding
five elements from {−p,+p} (here, the arrow↘ denotes adding +p while the arrow↙
denotes adding −p).

Algorithms 2022, 1, 0 9 of 21

five elements from {−p,+p} (here, the arrow↘ denotes adding +p while the arrow↙
denotes adding −p).

0
↙↘

−p +p
↙↘ ↙↘

−2p 0 2p
↙↘ ↙↘ ↙↘

−3p −p p 3p
↙↘ ↙↘ ↙↘ ↙↘

−4p −2p 0 2p 4p
↙↘ ↙↘ ↙↘ ↙↘ ↙↘

−5p −3p −p p 3p 5p

Figure 9. Possible ways of summing five elements from {−p,+p}.

The following are some related results:

Proposition 3.

(i) All possible sums of nk elements drawn from {−pk,+pk} are given by

sj = pk(nk − 2j), nk ≥ 0, j = 0, 1, . . . , nk.

(ii) The number of sums we can form in the combinatorial problem (P1) is given by

M =
F

∏
k=1

(1 + nk).

(iii) Consider a tiling problem using nk copies of each free polyomino Pk for k = 1, 2, . . . , F,
where each polyomino has zk parity equivalent polyominoes. If the tiling problem yields a
parity violation then the number of equivalent parity violation problems is given by:

F

∏
k=1

(
zk + nk − 1

nk

)
.

Proof. (i): If the number of occurrences of −pk in the sum is j, j ∈ {0, 1, . . . , nk}, then the
number of occurrences of +pk in the sum is nk − j, yielding the sums

sj = j(−pk) + (nk − j)(+pk) = pk(nk − 2j), for j = 0, 1, . . . , nk.

(ii): From (i) we see that the total number of sums of nk elements drawn from the set
{−pk,+pk} is given by 1 + nk. The result then follows if we apply the Fundamental Count-
ing Principle over all sets for k = 1, . . . , F.

(iii): The number of combinations of zk parity equivalent polyominoes taken nk at a time

with repetition is given by
(

zk + nk − 1
nk

)
([21], p. 36). Thus applying the Fundamental

Counting Principle again over all F equivalence classes yields the result.

Proposition 3 (iii) is illustrated in the following example:

Example 5. Consider the problem of tiling the 8× 8 square with the following polyominoes

{
, ,

}
,

Figure 9. Possible ways of summing five elements from {−p,+p}.

The following are some related results:

Proposition 3.

(i) All possible sums of nk elements drawn from {−pk,+pk} are given by

sj = pk(nk − 2j), nk ≥ 0, j = 0, 1, . . . , nk.

(ii) The number of sums we can form in the combinatorial problem (P1) is given by

M =
F

∏
k=1

(1 + nk).

(iii) Consider a tiling problem using nk copies of each free polyomino Pk for k = 1, 2, . . . , F, where
each polyomino has zk parity equivalent polyominoes. If the tiling problem yields a parity
violation then the number of equivalent parity violation problems is given by:

F

∏
k=1

(
zk + nk − 1

nk

)
.

Proof.

(i) If the number of occurrences of −pk in the sum is j, j ∈ {0, 1, . . . , nk}, then the number
of occurrences of +pk in the sum is nk − j, yielding the sums

sj = j(−pk) + (nk − j)(+pk) = pk(nk − 2j), for j = 0, 1, . . . , nk.

(ii) From (i) we see that the total number of sums of nk elements drawn from the set
{−pk,+pk} is given by 1 + nk. The result then follows if we apply the Fundamental
Counting Principle over all sets for k = 1, . . . , F.

(iii) The number of combinations of zk parity equivalent polyominoes taken nk at a time

with repetition is given by
(

zk + nk − 1
nk

)
([20], p. 36). Thus, applying the Fundamen-

tal Counting Principle again over all F equivalence classes yields the result.

Algorithms 2022, 15, 65 10 of 21

Proposition 3 (iii) is illustrated in the following example:

Example 5. Consider the problem of tiling the 8× 8 square with the following polyominoes

,

all orientations permitted, using n1 = 3, n2 = 2, and n3 = 3 copies, respectively. The target
region has a parity of zero, and the total area of the tiles is 3(4) + 2(8) + 3(12) = 64 as required.
The polyominoes have parity values of 0,±4,±6, respectively, and it is easily verified that this
problem yields a parity violation. We note that z1 = 4, z2 = 3, and z3 = 5 (see Figures 5 and 7).
Thus, from Proposition 3 (iii) the number of equivalent parity violation problems is given by

3

∏
i=1

(
zi + ni − 1

ni

)
=

(
6
3

)(
4
2

)(
7
3

)
= 4200.

The parity sums sj are bounded by the maximum and minimum possible sums of
parity values, i.e.,

F

∑
k=1

(−pk) ≤ sj ≤
F

∑
k=1

(+pk), j = 1, . . . , M. (2)

Thus, we obtain a parity violation if p lies outside the bounds for sj given in Equation (2).
In this case we say we have a trivial parity violation as there is no combinatorial problem
to solve. A simple example of this type is when the parity of the target region is non-zero
and the parities of all the tiles are zero (as is the case with the first example in this article
involving a mutilated checkerboard). As a result, any region that is tileable by dominoes
must have zero parity, i.e., the number of black squares must equal the number of white
squares. Another example of a trivial parity violation is given below:

Example 6. Consider the problem of tiling the 4th member of the ‘diamond-shapes’ (see Appendix A)

using five L-shaped tetrominoes and seven straight triminoes , all orientations permitted.
The tetrominoes and triminoes have parity values of zero and ±1, respectively. The target region has
a parity of +9 and an area of 41. The total area of the tiles is 5(4) + 7(3) = 41 as required, however,
the parity of the target region lies outside the bounds for the maximum possible sum of the parities of
the tiles, namely ±7, which implies we have a trivial parity violation for this problem.

4. Linear Diophantine Equation Approach

In this section, we convert the combinatorial problem of finding parity violations
into the problem of solving linear Diophantine equations. The theoretical results form the
basis for a practical algorithm implemented in MATLAB for identifying all possible parity
violations of a given tiling problem, presented in Section 5.

Consider the problem of whether F free polyominoes {Pi}F
i=1 with areas ci and ni

(ni ≥ 1) copies of each polyomino Pi are able to tile a target region R with area c. The total
number of polyominoes used is N := ∑F

i=1 ni. If the number of copies of each polyomino
is not specified then we have the following linear Diophantine equation in F unknowns
{ni}F

i=1 to solve for:

c1n1 + c2n2 + · · ·+ cFnF = c, for ni ∈ N, i = 1, . . . , F. (3)

A well-known classical result (e.g., see (([21], p. 30)) is that a necessary condition for
the existence of integer solutions (and hence also positive integer solutions) of (3) is

gcd(c1, c2, . . . , cF) | c, (4)

Algorithms 2022, 15, 65 11 of 21

where gcd(c1, c2, . . . , cF) denotes the greatest common divisor of the numbers c1, c2, . . . , cF.
Now denote the solutions of (3) by the set of F-tuples

Sc := {(n1, n2, . . . , nF) : ni ∈ N}, (5)

which may be empty. The subscript c of Sc indicates that the solution set depends on
c in (3).

Assume the target region R has a fixed parity p ∈ N ∪ {0} and the polyominoes Pi
have parities ±pi, pi ∈ N∪ {0} and W.L.O.G. the first r polyominoes, 0 ≤ r ≤ F− 1 have
zero parity.

In the arguments below we will need the following simple lemma:

Lemma 1. Let O and E denote the set of odd and even integers, respectively. Then for all
ai, bi, ci ∈ Z

M

∑
i=1

(ai + bi)ci ∈ O (resp. E) ⇐⇒
M

∑
i=1

(ai − bi)ci ∈ O (resp. E).

Proof. Recall from the elementary properties of odd and even numbers that the sum of
two numbers a + b is odd (resp. even) if and only if the difference a− b is odd (resp. even).
After setting a := ∑M

i=1 aici and b := ∑M
i=1 bici the result follows.

The following theorem is the theoretical basis of Algorithm 1 presented in Section 4:

Theorem 2. Let the variable ai ∈ N ∪ {0} denote how many of the ni elements drawn from
{−pi,+pi} are +pi, 0 ≤ ai ≤ ni, i = r + 1, r + 2, . . . , F. A solution (n1, n2, . . . , nF) of the linear
Diophantine Equation (3) (if it exists) yields a parity violation if and only if one of the following
mutually exclusive conditions holds:

(i) gcd(pr+1, pr+2, . . . , pF) 6 | k, where

k := (p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF)/2 ∈ Z.

(ii) gcd(pr+1, pr+2, . . . , pF) | k but there is no solution to the following linear Diophantine
equation in F− r unknowns {ai}F

i=r+1:

pr+1ar+1 + pr+2ar+2 + · · ·+ pFaF = k.

(iii) There exists one or more solutions to the linear Diophantine equation in (ii), but none of the
solutions satisfy the bounds

0 ≤ ai ≤ ni, ai ∈ N∪ 0, i = r + 1, r + 2, . . . , F.

Proof. To find possible parity violations we need an equation that matches the sum of
the parities of the tiles to the parity of the target region. Our starting point is the parity
problem of Section 3.2. As we have ai choices for how many of the ni elements drawn from
{−pi,+pi} are +pi, we must have ni − ai choices of −pi, 0 ≤ ai ≤ ni, i = r + 1, r + 2, . . . , F
(recall, the parities of the first r polyominoes are zero). Then the equation sj = p becomes

(+pr+1)ar+1 + (−pr+1)(nr+1 − ar+1) + (+pr+2)ar+2 + (−pr+2)(nr+2 − ar+2)+

· · ·+ (+pF)aF + (−pF)(nF − aF) = p,

or after some simplification

2pr+1ar+1 + 2pr+2ar+2 + · · ·+ 2pFaF

= p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF, for r ∈ {0, 1, . . . , F− 1}, (6)

Algorithms 2022, 15, 65 12 of 21

which is a linear Diophantine equation in F− r unknowns {ai}F
i=r+1 (if all F polyominoes

have zero parity then we obtain a trivial parity violation if p 6= 0).
We claim that the right hand side of Equation (6) is an even number. To show this we

prove that p is even (resp. odd) exactly when p1n1 + p2n2 + · · ·+ pF is even (resp. odd),
and thus from the elementary property that the sum of two even (resp. odd) numbers is
even the result will follow. Recall that we denote the number of black and white squares
in a polyomino Pi by bi and wi, respectively. Assume p is even (resp. odd), then from
Proposition 1 (iv) we know c is even (resp. odd) and hence from (3)

c1n1 + c2n2 + · · ·+ cFnF = (b1 + w1)n1 + (b2 + w2)n2 + · · ·+ (bF + wF)nF

is also even (resp. odd). However, from Lemma 1

(b1 − w1)n1 + (b2 − w2)n2 + · · ·+ (bF − wF)nF

= 0 + 0 + · · ·+ pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF

is also even (resp. odd), and so the result follows. As a consequence we can safely divide
through by 2 in Equation (6) yielding

pr+1ar+1 + pr+2ar+2 + · · ·+ pFaF = k ∈ Z. (7)

where k := (p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF)/2,

for 0 ≤ ai ≤ ni, ai ∈ N∪ 0, i = r + 1, r + 2, . . . , F.

The appropriate necessary condition for the existence of integer solutions (and hence
also for non-negative integer solutions) of Equation (7) is

gcd(pr+1, pr+2, . . . , pF) | k. (8)

So for each value of k, depending on a solution from (5), we have the (possibly empty)
solution set given by

Sk := {(ar+1, ar+2, . . . , aF) : ai ∈ N∪ {0}}.

So if either the gcd condition (8) is not satisfied, or, when the gcd condition is satisfied,
but the linear Diophantine Equation (7) has no solution, then the solution (n1, n2, . . . , nF)
of the linear Diophantine Equation (3) yields a parity violation. Furthermore, in the case
that the linear Diophantine Equation (7) has one or more solutions, we also get a parity
violation if none of the solutions in the set Sk satisfy the bounds (7).

Algorithms 2022, 15, 65 13 of 21

Algorithm 1 An algorithm for finding all possible parity violations of a tiling problem

1: Input {pi}F
i=1, {ci}F

i=1, p, and c. Parities p1, p2, . . . , pr are zero (0 ≤ r ≤ F− 1).
2: Identify r from the user input of {pi}F

i=1.
3: S← positive integer solutions of (3), computed using DIOPHANTINE_ND_POSITIVE
4: ns← length of S
5: S1← ∅
6: S2← ∅
7: for i = 1 to ns do
8: si← ith solution of S
9: sp ← entries of si corresponding to nonzero parities {solution of form

(nr+1, nr+2, . . . , nF)}
10: max_sum←maximum possible sum of parities using (2)
11: if max_sum < p then
12: Add si to S1
13: Continue {Go to next iteration in For Loop}
14: end if
15: k← (p + pr+1nr+1 + pr+2nr+2 + · · ·+ pFnF)/2 as in (7)
16: T ← non-negative integer solutions of (7), computed using

DIOPHANTINE_ND_NONNEGATIVE
17: nt← length of T
18: f lag← 2
19: for j = 1 to nt do
20: tj← jth solution of T
21: if all tj ≤ sp then
22: f lag← 0
23: break {Leave current For Loop}
24: end if
25: end for
26: if f lag == 2 then
27: Add si to S2
28: end if
29: end for

5. Numerical Results

In this section, we illustrate the theoretical approach for finding large impossible tiling
problems with an efficient algorithm implemented in MATLAB.

The open-source MATLAB (R2021b) programs used in this section are freely available
in a repository, POLYOMINO_PARITY (v2.0.0) [22], and run on a Mac Pro (OS X 12.0.1)
with 32 GB of memory and a 3.5 GHz 6-core Intel Xeon E5. We describe an algorithm based
on Theorem 2 guaranteed to find all possible parity violations of a given tiling problem.
To this end we must solve linear Diophantine equations in n variables ∑n

i=1 aixi = b, where
the coefficients ai and the right hand side value b are strictly positive integers. We wish to
find all solutions xi which are either nonnegative or strictly positive integers. Under the
assumptions on a and b, there are only a finite number of nonnegative or strictly positive
integer solutions. We constructed the MATLAB functions DIOPHANTINE_ND_NONNEGATIVE
and DIOPHANTINE_ND_POSITIVE with the syntax

x = Diophantine_nd_nonnegative(a,b)
x = Diophantine_nd_positive(a,b)

which accept the coefficient n-vector a and right hand side b of a Diophantine equation,
and return the set of solutions in an n× k array x. Further details are given in Appendix B.

Our starting point is a given set of F free polyominoes {Pi}F
i=1 with areas {ci}F

i=1.
The numbers of copies of the free polyominoes {ni}F

i=1 is initially left unspecified. Once
we have chosen a target region (e.g., from the families of polyominoes in Appendix A) we
use Algorithm 1 implemented in MATLAB using the function PV_SEARCH with the syntax

Algorithms 2022, 15, 65 14 of 21

[S1, S2] = pv_search (par, ord, p, c),

which accepts the positive (or zero) parities of the polyominoes par, the areas of the
polyominoes ord, and the parity p and area c of the target region. PV_SEARCH returns S1,
the solutions to the area equation yielding trivial parity violations and S2, the solutions to
the area equation yielding non-trivial parity violation.

We illustrate this algorithm with several examples. In each problem we use PV_SEARCH
to find all possible parity violations. In the first three examples we also use the open-source
MATLAB programs, POLYOMINOES (v2.0.0) [23] (described in [24]), to yield successful
tiling of the target regions concerned, However, there were many possible solutions and
we made no attempt to enumerate them all, even for a particular choice of {ni}F

i=1.

Example 7. We consider the problem of tiling the checkerboard coloured region shown in Figure 10a
with copies of

.

The tiles have parities {0,±2,±3,±5} and areas {2, 4, 5, 9}, respectively. The target region
(see Appendix A) has an area of 256 and a parity value of zero. Solving the linear Diophantine
equation 2n1 + 4n2 + 5n3 + 9n4 = 256 yields 6896 solutions. PV_SEARCH found in 1.24 s that
only 26 of these solutions yielded parity violations (see Table 1):

Table 1. The 26 solutions of 2n1 + 4n2 + 5n3 + 9n4 = 256 yielding a parity violation.

1 2 3 4 5 6 7 8 9 10 11 12 13

n1 4 9 13 18 22 27 31 36 40 45 49 54 58

n2 1 2 1 2 1 2 1 2 1 2 1 2 1

n3 2 1 2 1 2 1 2 1 2 1 2 1 2

n4 26 25 24 23 22 21 20 19 18 17 16 15 14

14 15 16 17 18 19 20 21 22 23 24 25 26

n1 63 67 72 76 81 85 90 94 99 103 108 112 117

n2 2 1 2 1 2 1 2 1 2 1 2 1 2

n3 1 2 1 2 1 2 1 2 1 2 1 2 1

n4 13 12 11 10 9 8 7 6 5 4 3 2 1

With the particular choice (n1, n2, n3, n4) = (66, 17, 4, 4) the polyominoes tile the target
region (see Figure 10b).

Example 8. We consider the problem of tiling the checkerboard coloured region shown in Figure 10c
with copies of

.

We note that these tiles have parities {0,±1,±2,±5} and areas {4, 3, 6, 13}, respectively.
The target region (see Appendix A) has an area of 320 and a parity value of zero. Solving the linear
Diophantine equation 4n1 + 3n2 + 6n3 + 13n4 = 320 yields 5158 solutions. PV_SEARCH found in
1.50 s that only six of these solutions yielded parity violations (see Table 2):

Algorithms 2022, 15, 65 15 of 21

Table 2. The six solutions of 4n1 + 3n2 + 6n3 + 13n4 = 320 yielding a parity violation.

1 2 3 4 5 6

n1 3 16 29 42 55 68

n2 1 1 1 1 1 1

n3 1 1 1 1 1 1

n4 23 19 15 11 7 3

With the particular choice of (n1, n2, n3, n4) = (32, 22, 8, 6) the polyominoes tile the target
region (see Figure 10d).

Example 9. We consider the problem of tiling the checkerboard coloured region shown in Figure 10e
with copies of

.

We note that these tiles have parities {0, 0,±2,±1,±8} and areas {2, 4, 4, 5, 18}, respectively.
The target region (see Appendix A) has an area of 264 and a parity value of zero. Solving the linear
Diophantine equation 2n1 + 4n2 + 4n3 + 5n4 + 18n5 = 264 yields 51,923 solutions. PV_SEARCH
found in 12.91 s that 609 of these solutions yielded parity violations (see Table 3 for the ten solutions
with n1 = 36):

Table 3. Ten solutions of 2n1 + 4n2 + 4n3 + 5n4 + 18n5 = 264 yielding a parity violation.

1 2 3 4 5 6 7 8 9 10

n1 36 36 36 36 36 36 36 36 36 36

n2 3 4 12 13 21 22 30 31 39 40

n3 2 1 2 1 2 1 2 1 2 1

n4 2 2 2 2 2 2 2 2 2 2

n5 9 9 7 7 5 5 3 3 1 1

With the particular choice of (n1, n2, n3, n4, n5) = (36, 2, 3, 2, 9) the polyominoes tile the
target region (see Figure 10f).

Algorithms 2022, 1, 0 15 of 21

Example 9. We consider the problem of tiling the checkerboard coloured region shown in Figure 11e
with copies of

{
, , , ,

}
.

We note that these tiles have parities {0, 0,±2,±1,±8} and areas {2, 4, 4, 5, 18} respectively.
The target region (see Appendix ??) has an area of 264 and a parity value of zero. Solving the linear
Diophantine equation 2n1 + 4n2 + 4n3 + 5n4 + 18n5 = 264 yields 51, 923 solutions. PV_SEARCH
found in 12.91 s that 609 of these solutions yielded parity violations (see Table 3 for the ten solutions
with n1 = 36):

Table 3. Ten solutions of 2n1 + 4n2 + 4n3 + 5n4 + 18n5 = 264 yielding a parity violation.

1 2 3 4 5 6 7 8 9 10

n1 36 36 36 36 36 36 36 36 36 36

n2 3 4 12 13 21 22 30 31 39 40

n3 2 1 2 1 2 1 2 1 2 1

n4 2 2 2 2 2 2 2 2 2 2

n5 9 9 7 7 5 5 3 3 1 1

With the particular choice of (n1, n2, n3, n4, n5) = (36, 2, 3, 2, 9) the polyominoes tile the
target region (see Figure 11f).

(a) (b)

Figure 11. Cont.Figure 10. Cont.

Algorithms 2022, 15, 65 16 of 21Algorithms 2022, 1, 0 16 of 21

(c) (d)

(e) (f)

Figure 11. Target regions and tilings for Example 7 (a,b), Example 8 (c,d), and Example 9 (e,f).

6. Conclusions and Future Work

The main contribution of our article is to make some classical colouring techniques in
tiling theory algorithmic. Previous work in colouring theory for tiling was typically applied
on a case-by-case basis, or used theoretical algebraic techniques. Our article provides a sys-
tematic mathematical treatment of checkerboard colouring arguments and leads to a new algo-
rithm, implemented via a suite of MATLAB codes called POLYOMINO_PARITY (v2.0.0) [1].

For a given choice of target region and a set of polyominoes, with an unspecified num-
ber of copies of each polyomino, the algorithm presented in this article finds all associated
parity violations. Each parity violation corresponds to an impossible tiling problem.

The ideas presented in this article show promise in opening up new techniques
for the analysis of polyomino tiling problems that benefit from the power of modern
scientific computing.

There are several possible lines of inquiry we could pursue for future work. For tiling
problems where solutions are not excluded by parity arguments, backtrack algorithms
are often used to find solutions if they exist [25–28]. Such algorithms work by exploring
a tree of possible polyomino placements. For each polyomino placement, the remaining
untiled region and the remaining polyominoes define a new tiling sub-problem. The same
parity arguments can be applied to each sub-problem to decide if that branch of the search
tree is necessarily unsolvable. It would be interesting to explore by adding monitoring
for parity violations to backtrack algorithms if there is a reduction in solve times for some
problems. Matthew Busche [25] conducted preliminary investigations along these lines
using a modern backtrack algorithm called ‘POLYCUBE’, optimized in C++ (personal
communication, 8 June 2021).

Another promising line of inquiry that we are currently investigating is to use the
colouring techniques presented in this article to formulate an improved tiling procedure

Figure 10. Target regions and tilings for Example 7 (a,b), Example 8 (c,d), and Example 9 (e,f).

6. Conclusions and Future Work

The main contribution of our article is to make some classical colouring techniques in
tiling theory algorithmic. Previous work in colouring theory for tiling was typically applied
on a case-by-case basis, or used theoretical algebraic techniques. Our article provides a sys-
tematic mathematical treatment of checkerboard colouring arguments and leads to a new algo-
rithm, implemented via a suite of MATLAB codes called POLYOMINO_PARITY (v2.0.0) [22].

For a given choice of target region and a set of polyominoes, with an unspecified num-
ber of copies of each polyomino, the algorithm presented in this article finds all associated
parity violations. Each parity violation corresponds to an impossible tiling problem.

The ideas presented in this article show promise in opening up new techniques
for the analysis of polyomino tiling problems that benefit from the power of modern
scientific computing.

There are several possible lines of inquiry we could pursue for future work. For tiling
problems where solutions are not excluded by parity arguments, backtrack algorithms
are often used to find solutions if they exist [25–28]. Such algorithms work by exploring
a tree of possible polyomino placements. For each polyomino placement, the remaining
untiled region and the remaining polyominoes define a new tiling sub-problem. The same
parity arguments can be applied to each sub-problem to decide if that branch of the search
tree is necessarily unsolvable. It would be interesting to explore by adding monitoring
for parity violations to backtrack algorithms if there is a reduction in solve times for some
problems. Matthew Busche [25] conducted preliminary investigations along these lines
using a modern backtrack algorithm called ‘POLYCUBE’, optimized in C++ (personal
communication, 8 June 2021).

Another promising line of inquiry that we are currently investigating is to use the
colouring techniques presented in this article to formulate an improved tiling procedure

Algorithms 2022, 15, 65 17 of 21

for polyominoes. By combining the checkerboard colouring techniques with the linear
programming approach presented in [24] we are able to improve the computational ef-
ficiency of tiling in many problems. This technique relies on the fact that checkerboard
colouring can split large tiling problems into many smaller tiling subproblems that are
embarrassingly parallel, and hence solvable via a ‘divide-and-conquer’ strategy.

A famous open problem in the theory of polyominoes is to enumerate polyominoes
as a function of area, and sometimes as a function of perimeter [29–40]. In the context of
checkerboard colouring we ask how many distinct polyominoes there are with a given
(fixed) area c = b + w, where b and w denote the number of black and white squares,
respectively. We introduce a (new) related open problem:

Problem 1. Consider the set of checkerboard coloured polyominoes with b black squares and w
white squares. Enumerate the number of distinct (free, one-sided, or fixed) polyominoes as a function
of the (fixed) parity p = b− w.

Even with the simpler situation of a fixed area, i.e., we are enumerating parity equiva-
lent n-ominoes (see Section 2), this is a complicated combinatorial problem. Hopefully this
question stimulates further research.

While this article focuses on two-dimensional tiling problems on a square lattice,
the arguments and techniques presented here are easily extended to tiling problems in
higher dimensions, and to other lattice structures (e.g., polyiamonds, polyhexes, etc.).

Author Contributions: Conceptualization, M.R.G. and J.B.; methodology, M.R.G. and J.B.; software,
J.B.; validation, M.R.G. and J.B.; formal analysis, M.R.G.; writing—original draft preparation, M.R.G.;
writing—review and editing, M.R.G. and J.B.; funding acquisition, M.R.G. All authors have read and
agreed to the published version of the manuscript.

Funding: The research of M. Garvie was supported by NSERC Discovery Grant # 400159.

Institutional Review Board Statement: This work did not require an approval from a research
ethics board because only computational data analysis is performed, and no animal or human
experimentation was involved.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Some Polyomino Families

Table A1. Checkerboard coloured polyomino families (indexed by n = 1, 2, 3, . . .) with parity pn and
area cn. The first few members of each family with non-negative parity are illustrated.

‘staircase-shapes’: cn = (n+1)(n+2)
2 , pn = ± (n+1+mod(n+1,2))

2

‘pyramid-shapes’: cn = (n + 1)2, pn = ±(n + 1)

Algorithms 2022, 15, 65 18 of 21

Table A1. Cont.

‘diamond-shapes’: cn = (n + 1)2 + n2, pn = ±(2n + 1)

‘Aztec-diamond-shapes’: cn = 2(n + 1)(n + 2), pn = 0

‘4-notched-square-shapes’: cn = (n + 3)2 − 4, pn = ±3 mod(n + 1, 2)

‘2-notched-square-shapes’: cn = (n + 2)2 − 2, pn = ±[1 + mod(n + 1, 2)]

‘notched-square-shapes’: cn = n(n + 2), pn = ±mod(n, 2)

‘square-shapes’: cn = n2, pn = ±mod(n, 2)

‘cross-shapes’: cn = 5n2, pn = ±3 mod(n, 2)

Algorithms 2022, 15, 65 19 of 21

Table A1. Cont.

‘parallelogram-shapes’: cn = n2, pn = ±n

‘cross-in-square-shapes’: cn = 20n2, pn = ±4 mod(n, 2)

‘square-in-square-shapes’: cn = 16n2, pn = 0

‘minimal-area-shapes’: cn = 2n−mod(n, 2), pn = ±n

‘jagged-square-shapes’: cn = 4(n + 1)2, pn = ±4(n + 1)

Appendix B. MATLAB Solvers for Linear Diophantine Equations

When implementing Algorithm 1 we must solve linear Diophantine equations for all
nonnegative or positive solutions. As we could not find suitable MATLAB codes for solving
general linear Diophantine equations we constructed our own. Our solution procedure
is done in a straightforward and general way. Using a greedy strategy, we construct a
candidate solution by setting the first component to its maximum possible value, then
setting the second as large as possible given the first component, and proceeding in this
way to “fill in” each subsequence component. The resulting vector can never exceed
the right hand side of the equation, and if it is actually equal, we add it to the list of
solutions. After testing a candidate, the next candidate is found by locating the last nonzero
component, decrementing it, and then filling in the remaining components. The algorithm

Algorithms 2022, 15, 65 20 of 21

terminates after generating and testing a zero candidate vector. We generate the solutions
in reverse lexicographic order.

This method always finds the desired solutions, and is suitable for the problems being
dealt with here. It is more efficient and general than a brute-force approach, which would
simply generate every lattice point in a hypercube whose i-th dimension is the floor of the
right hand side divided by the i-th coefficient.

For the case of a very large right hand side, or a great number of variables, efficiency
can become a serious issue. In that case, it is possible to accept some partial vectors early,
if the equation has already been satisfied so that the remaining entries are set to zero; and
to reject some partial vectors because the current residual is not divisible by the greatest
common divisor of the remaining coefficients.

The technique of generating the candidate vectors is a weighted version of the scheme
for generating all lattice points in an n-dimensional simplex [41].

The two MATLAB programs are available from the repository POLYOMINO_PARITY
(v2.0.0) [22], which also provides a procedure for pre-checking the values of a and b,
and points to a related directory containing some tests.

References
1. Golomb, S. Polyominoes; Scribner: New York, NY, USA, 1965.
2. Golomb, S. Polyominoes, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1994. https://doi.org/10.1515/9780691215051.
3. Grünbaum, B.; Shephard, G. Tilings and Patterns; W.H. Freeman and Company: New York, NY, USA, 1987; Chapter 9.
4. Grünbaum, B.; Shephard, G. Tilings and Patterns, 2nd ed.; Dover Publications: New York, NY, USA, 2016.
5. Gardner, M. Time Travel and Other Mathematical Bewilderments; W. H. Freeman and Company: New York, NY, USA, 1988.
6. Gardner, M. Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi. Martin Gardner’s First Book of Mathematical

Puzzles and Games. In New Martin Gardner Mathematical Library; Cambridge University Press: Cambridge, UK, 2009; Volume 1.
7. Gardner, M. Sphere packing, Lewis Carroll, and Reversi. Martin Gardner’s new mathematical diversions. In New Martin Gardner

Mathematical Library; Cambridge University Press: Cambridge, UK, 2009; Volume 3.
8. Golomb, S. Checker boards and polyominoes. Amer. Math. Mon. 1954, 61, 675–682.

https://doi.org/10.1080/00029890.1954.11988548.
9. Ardila, F.; Stanley, R. Tilings. Math. Intell. 2010, 32, 32–43. https://doi.org/10.1007/s00283-010-9160-9.
10. Conway, J.; Lagarias, J. Tiling with polyominoes and combinatorial group theory. J. Combin. Theory Ser. A 1990, 53, 183–208.

https://doi.org/10.1016/0097-3165(90)90057-4.
11. Reid, M. The homotopy groups. Enseign. Math. 2003, 49, 123–155. https://doi.org/10.5169/seals-66684.
12. Lilly, D. Complexity of solvable cases of the decision problem for predicate calculus. In Proceedings of the 19th Annual

Symposium on Foundations of Computer Science, Ann Arbor, MI, USA, 16–18 October 1978; pp. 35–47.
13. Pak, I. Ribbon tile invariants. Trans. Amer. Math. 2000, 352, 5525–5561. https://doi.org/10.1090/S0002-9947-00-02666-0.
14. Pak, I. Tile invariants: New horizons. Theoret. Comput. Sci. 2003, 303, 303–331. https://doi.org/10.1016/S0304-3975(02)00495-4.
15. Thurston, W. Conway’s Tiling Groups. Amer. Math. Mon. 1990, 97, 757–773. https://doi.org/10.2307/2324578.
16. Hall, P. On representatives of subsets. J. Lond. Math. Soc. 1935, s1-10, 26–30.
17. Kirillovs, J. Polyomino coloring and complex numbers. Theoret. Comput. Sci. 2008, 400, 100–112.

https://doi.org/10.1016/j.tcs.2008.02.033.
18. Tulleken, H. Polyominoes: Shapes and Tilings. Self-Published Book (Version 3.3). Available online: https://www.researchgate.n

et/publication/333296614_Polyominoes (accessed on 13 January 2022).
19. Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Company: San

Francisco, CA, USA, 1979.
20. Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA,

1957; Volume 1.
21. Mordell, L. Diophantine Equations. In Pure and Applied Mathematics, 1st ed.; Academic Press: London, UK, 1969; Volume 30.
22. Burkardt, J. jvburkardt/polyomino_parity: Initial Release. 2022. Available online: https://zenodo.org/record/5851095#.Yg2y1JY

RWUk (accessed on 13 January 2022).
23. Burkardt, J. jvburkardt/polyominoes: Initial Release. 2022. Available online: https://zenodo.org/record/5851118#.Yg21vJYRW

Uk (accessed on 13 January 2022).
24. Garvie, M.; Burkardt, J. A new mathematical model for tiling finite regions of the plane with polyominoes. Contrib. Discret. Math.

2020, 15, 95–131. https://doi.org/10.11575/cdm.v15i2.62866.
25. Busche, M. Solving Polyomino and Polycube Puzzles. Algorithms, Software, and Solutions. Available online: http://www.matt

busche.org/blog/article/polycube/ (accessed on 13 January 2022).
26. de Bruijn, N.G. Programmeren van de pentomino puzzle. Euclides 1971, 47, 90–104.

https://www.researchgate.net/publication/333296614_Polyominoes
https://www.researchgate.net/publication/333296614_Polyominoes
https://zenodo.org/record/5851095#.Yg2y1JYRWUk
https://zenodo.org/record/5851095#.Yg2y1JYRWUk
https://zenodo.org/record/5851118#.Yg21vJYRWUk
https://zenodo.org/record/5851118#.Yg21vJYRWUk
http://www.mattbusche.org/blog/article/polycube/
http://www.mattbusche.org/blog/article/polycube/

Algorithms 2022, 15, 65 21 of 21

27. Fletcher, J. A program to solve the Pentomino problem by the recursive use of macros. Commun. ACM 1965, 8, 621–623.
https://doi.org/10.1145/365628.365654.

28. Knuth, D. Dancing Links. In Millennial Perspectives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in
Honour of Professor Sir Antony Hoare, Burlington, VT, USA, 13–18 June 1999; Davies, J., Roscoe, B., Woodcock, J., Eds.; Cornerstones
of Computing, Palgrave Macmillan: London, UK, 2000; p. 432.

29. Castiglione, G.; Frosini, A.; Restivo, A.; Rinaldi, S. Enumeration of L-convex polyominoes by rows and columns. Theoret. Comput.
Sci. 2005, 347, 336–352. https://doi.org/10.1016/j.tcs.2005.06.031.

30. Del Lungo, A.; Duchi, E.; Frosini, A.; Rinaldi, S. On the generation and enumeration of some classes of convex polyominoes.
Electron. J. Combin. 2004, 11, 1–46. https://doi.org/10.37236/1813.

31. Delest, M.P.; Viennot, G. Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 1984, 34, 169–206.
https://doi.org/10.1016/0304-3975(84)90116-6.

32. Feretić, S. A perimeter enumeration of column-convex polyominoes. Discret. Math. Theor. Comput. Sci. 2007, 9, 57–83.
https://doi.org/10.46298/dmtcs.390.

33. Golomb, S.; Klarner, D. Polyominoes. In Handbook of Discrete and Computational Geometry, 2nd ed.; Goodman, J., O’Rourke, J., Eds.;
Chapman & Hall/CRC: Atlanta, GA, USA, 2004; pp. 331–352. https://doi.org/10.1201/9781420035315.ch15.

34. Goupil, A.; Cloutier, H.; Nouboud, F. Enumeration of polyominoes inscribed in a rectangle. Discret. Appl. Math. 2010,
158, 2014–2023. https://doi.org/10.1016/j.dam.2010.08.011.

35. Guttman, A. (Ed.) History and introduction to polygon models and polyominoes. In Polygons, Polyominoes and Polycubes; Lecture
Notes in Physic; Springer: Dordrecht, The Netherlands, 2009; Volume 775.
https://doi.org/10.1007/978-1-4020-9927-4_1.

36. Klarner, D.; Rivest, R. A procedure for improving the upper bound for the number of n-ominoes. Can. J. Math. 1973, 25, 585–602.
https://doi.org/10.4153/CJM-1973-060-4.

37. Klarner, D.; Rivest, R. Asymptotic bounds for the number of convex n-ominoes. Can. J. Math. 1974, 8, 31–40.
https://doi.org/10.1016/0012-365X(74)90107-1.

38. Leroux, P.; Rassart, E.; Robitaille, A. Enumeration of symmetry classes of convex polyominoes in the square lattice. Adv. Appl.
Math. 1998, 21, 343–380. https://doi.org/10.1006/aama.1998.0601.

39. Bousquet-Mélou, M. Codage des polyominos convexes et équations pour l‘énumération suivant l‘aire. Discret. Appl. Math. 1994,
48, 21–43. https://doi.org/10.1016/0166-218X(92)00103-S.

40. Redelmeier, D. Counting polyominoes: Yet another attack. Discret. Math. 1981, 36, 191–203. https://doi.org/10.1016/0012-
365X(81)90237-5.

41. Chasalow, S.; Brand, R. Algorithm AS 299: Generation of Simplex Lattice Points. J. R. Stat. Soc. Ser. C 1995, 44, 534–545.
https://doi.org/10.2307/2986144.

	Introduction
	Preliminaries
	Parity Violations
	A Sufficient Condition for a Non-Tileable Region
	Combinatorial Considerations

	Linear Diophantine Equation Approach
	Numerical Results
	Conclusions and Future Work
	Some Polyomino Families
	MATLAB Solvers for Linear Diophantine Equations
	References

