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1. INTRODUCTION 

T h e  s t u d y  of  m a n y  e q u i l i b r i u m  p h e n o m e n a  l e a d s  to  n o n l i n e a r  e q u a t i o n s  w h i c h  
involve  a n u m b e r  of  i n t r in s i c  p a r a m e t e r s .  I n t e r e s t  t h e n  c e n t e r s  r a r e l y  on  t h e  
d e t e r m i n a t i o n  of  a few speci f ic  so lu t ions  of  t h e  e q u a t i o n s  for  f ixed  p a r a m e t e r  
va lues ,  b u t  r a t h e r  on  an  a s s e s s m e n t  of  t h e  b e h a v i o r  of  t h e s e  s o l u t i o n s  u n d e r  
gene ra l  v a r i a t i o n s  of  t h e  p a r a m e t e r s .  F o r  e x a m p l e ,  in  s t r u c t u r a l  a n a l y s i s  t h e  
p a r a m e t e r s  m a y  c h a r a c t e r i z e  l o a d  p o i n t s  a n d  l o a d  d i r ec t ions ,  m a t e r i a l  p r o p e r t i e s ,  
or  g e o m e t r i c a l  da ta .  T h e  se t  of  a l l  so lu t i ons  a n d  a s s o c i a t e d  p a r a m e t e r  v a l u e s  h a s  
been  ca l l ed  the  e q u i l i b r i u m  su r f ace  o f  t h e  s t r u c t u r e  (see, e.g,, [33]). T h i s  equ i l ib -  
r i u m  su r face  p r o v i d e s  c o n s i d e r a b l e  i n s igh t  i n to  t h e  b e h a v i o r  o f  t h e  s t r u c t u r e  a n d  
the  s t a b i l i t y  p r o p e r t i e s  {see, e.g., [25] a n d  [34] for  f u r t h e r  d i s cus s ions  a n d  v a r i o u s  
examples ) .  F r o m  a n u m e r i c a l  v i e w p o i n t  t h e  q u e s t i o n  t h e n  is to  a n a l y z e  c o m p u -  
t a t i o n a l l y  t he  s h a p e  a n d  c h a r a c t e r i z e  p a r t i c u l a r  f e a t u r e s  o f  t h i s  e q u i l i b r i u m  
surface.  
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In nonlinear mechanics the principal tools for such a computational analysis 
are the so-called incremental methods. These procedures were developed more 
or less independently in the engineering literature. But they are now also 
recognized to be closely related to the continuation methods used for some time 
in mathematics in general and in numerical analysis in particular. The literature 
in this area is extensive; we refer only to [23] for a discussion about the connection 
between incremental approaches for structural problems and continuation 
methods, to [9] for a historical overview of uses of continuation techniques in 
mathematics, and to [2] and [37] for some literature survey of numerical aspects 
of continuation methods. 

Not surprisingly there are differences between the methods used in structural 
engineering and numerical analysis, and neither is directly suited to the analysis 
of an equilibrium surface. In the numerical analysis literature continuation 
methods are usually considered only as tools for determining a specific solution 
y* of a given nonlinear operator equation Gy = 0. For this the equation is 
embedded into a one-parameter family H(y,  t) -- 0, which has a solution y -- y(t) 
for each fixed t in some interval, say, 0 _< t _< 1. (See, e.g., [16] for a survey of such 
embeddings.) If y(t) depends continuously on t and satisfies y(0) = yO and y(1) = 
y*, where y0 is a known point, then the numerical process constructs a sequence 
of points in the proximity of the path y(t), 0 - t _< 1, starting at y0 and ending at 
the desired point y*. On the other hand, in structural mechanics incremental 
methods usually are designed to follow numerically a specific load curve pa- 
rameterized by a load intensity. Hence, while in the embedding approach the 
parameter is essentially artificial, in the incremental procedures it has an intrinsic 
meaning for the application, and, even more important, there is no longer a fixed 
endpoint which is the aim of the computation, but the load curve itself is of 
interest. 

For a numerical analysis of a given equilibrium surface we need to consider 
continuation-methods in a broader sense as a collection of numerical procedures 
for completing at least the following three basic tasks: 

(i) Follow numerically any curve on the surface specified by a particular 
combination of parameter values with one degree of freedom. 

(ii) On any such curve determine the exact location of target points where a 
given state variable has a specified value. 

(iii) On such a curve identify and compute exactly the critical points where 
stability may be lost. 

Beyond this various more special tasks may arise as, for example, the following 
o n e s :  

(iv) 

(v) 

From any one of the critical points determined under (iii) follow a path in 
the critical boundary. 
On any one of the curves (i) determine the location of bifurcation points 
and the paths intersecting at that  point. 

Methods which are either directly applicable or can be readily adapted to 
completing these various tasks have been proposed by various authors. In 
particular, for (i) the literature is very large and we refer here only to the 
mentioned surveys [2, 37]. Methods relating to (iii) were described, for instance, 
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in [1], [22], [24], [35], and [36], and for (iv) and (v) we refer  to [30], and to [11] 
and [27], respectively, where fur ther  references are also given. 

So far only a few library programs for performing these various tasks have been 
published. Wi thout  claim for completeness we ment ion here  [15] and [40]. Each  
one of these programs has the objective of computing a specific solution of a 
nonlinear equat ion by a homotopy-cont inuat ion  approach along the lines 
sketched above. In this paper, we describe the design of a new l ibrary program, 
called PITCON,  specifically writ ten with the objective of completing the three  
basic tasks (i)-(iii). The  program itself is presented in a companion paper  (A 
program for a locally parameter ized continuation process, this issue, pp. 236-241). 
It  is writ ten in the form of a subroutine which can be incorporated into various 
main programs. For  instance, if little is known about  the problem, an interactive 
driver may  be desirable. However,  since such main programs are very  problem 
dependent  they  will not  be discussed here any further.  P I T C O N  may  be expanded 
to incorporate facilities for (iv) and (v), but  since these tasks are of a more  
specified nature,  it was decided not  to burden the programs with the  added 
complexity. The  algorithms are based on the continuation approaches int roduced 
in [28] and [29] and incorporate some of the concepts of step-length de terminat ion  
discussed in [8]. At the same time, new techniques of pa ramete r  adapta t ion are 
utilized here  based on a prediction of changes in the curvature  of the cont inuat ion 
path. 

2. BASIC FORMULATION 

Generally, after  suitable discretizations, the equilibrium problems ment ioned in 
the introduction lead to a finite-dimensional, nonlinear equat ion of  the  form 

G ( y , p )  = 0, (2.1) 

where y E R m is a vector  of state variables, p ~ R r a vector  of  parameters ,  and G: 
R m x Rr---> R m a given function. Then  we are interested in the features of  the set 

8(G) = {(y ,p)  ~ R m x R r ;  G ( y , p )  = 0} (2.2) 

of all solutions of {2.1). Under  well-known conditions 8(G) represents  an r- 
dimensional manifold in R m × R ~. 

In most  applications, interest  centers on tracing paths  on 8(G) which are 
characterized by r - 1 relations between the parameters .  In  order  words, we are 
given a suitable mapping K: R r -----> R r-l and wish to compute  the subset  of 8(G) 
defined by the augmented equations 

G ( y ,  p) = 0, 

K p  = 0. (2.3) 

In this formulat ion we should include the parameters  in the  list of variables, in 
which case (2.3} represents  a system with one more  variable than  equations. 
Then,  for ease of notation, it is reasonable to combine the vectors  y and p into 
one vector  x of dimension n = m + r. Moreover,  f rom the viewpoint  of our  
package of library programs it is natural  to assume tha t  bo th  mappings G and K 
of (2.3} are provided for by the user. In o ther  words, we may  write (2.3) as one 
equation, 

F x  = O, (2.4) 
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with a user-specified mapping F: R n ---, R n-1. Note, however, that  in this 
underdetermined equation (2.4) no one variable is explicitly identified as contin- 
uation variable as is typical in the incremental and continuation methods men- 
tioned in the introduction. 

We assume here that the given mapping F has the following properties: 

(i) F is continuously differentiable on Rn. 
(ii) The derivative D F ( x )  of F is locally Lipschitzian on R n. 

(iii) The regularity set ~ (F)  = (x E R"; rank D F ( x )  ffi n - 1} is nonempty and 
therefore an open subset of R". 

From (i)-(iii) it follows (see [28]) that  the tangent map specified by 

• [ D F ( x ) ' ~  
T : ~ ( F ) - - )  R n, D F ( x ) T x = O ,  IITxll2 = 1, d e t ~ ( T x ) W  ] > 0  (2.5) 

is uniquely determined and locally Lipschitzian on ~(F) .  Furthermore, (i)-(iii) 
imply that  the regular solution set 8(F)  f3 ~ t (F)  of F is either empty or a one- 
dimensional Cl-manifold in the open set ~(F) .  Our objective is to determine 
numerically a nonempty connected component 8" of 8(F)  n ~(F) .  It is well- 
known (see, e.g., [18]} that  such a component ~* is diffeomorphic either to the 
circle or to some interval (that is, some connected subset) of R ~. Hence, 8" is 
uniquely determined by any one of its points x ° ~ 8 (F)  A ~(F) ,  and we denote 
this by writing 8*(F, x°). Note that for any x I ~ 8*(F,  x °) we have 8*(F, x 1) = 
8*(F, x°). 

A parameterization by arc length of 8*(F, x °) is a solution of the initial-value 
problem 

= Tx,  x(O) = x °. (2.6) 

Note that, since T is locally Lipschitzian, (2.6) has a unique solution which cannot 
terminate inside ~(F).  Evidently standard ODE-solvers may be applied to solve 
(2.6) numerically. This has been pursued for some time in the literature (see, e.g., 
[4], [7], [14], [39]). Independent of this, the choice of the arc length for the 
parameterization of 8" (F, x °) has been proposed by many authors. Notably H. B. 
Keller and his co-workers (see, e.g., [11] and [12]) have advocated this choice for 
some time. It is also the basis of incremental procedures given in [6] and [31] and 
has been more or less implicit in various papers in the field. 

Our algorithms are based more generally on the structure of 8*(F,  x °) as a one- 
dimensional manifold and use a local parameterization at each point computed 
along 8" (F, x°). A natural class of such local parameters are the n components of 
the vector x. We call a process based on this choice of parameterization a locally 
parameterized continuation method. 

3. OUTLINE OF THE PROCESS AND BASIC STEPS 

As noted before, our objective is to determine numerically a nonempty component 
8*(F, x °) of the regular solution set 8(F) n ~(F) .  For the discussion it is useful 
to consider a parameterization by an arc length of 8" (F, x°), that  is, a function x: 
J--* 8*(F, x °) which maps some interval J C R ~ diffeomorphically onto some 
open subset of 8* (F, x°), such that  II ~(s)II 2 -- 1 for s ~ J. We may assume also 
that x(0) -- x °, 0 ~ J. 
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The process described here belongs to the class of predictor-corrector contin- 
uation methods. Starting from x ° it produces a sequence of approximations x k ---" 
x(sk), k = 0, 1 , . . . ,  corresponding to some sequence 0 -- so < sa < se < . . .  of arc 
length values. Note, however, tha t  in general the values s~, s2 . . . .  are only 
approximately computable and are of limited interest in most applications. 

In our algorithm the principal steps performed during one continuation step 
are as follows: 

(1) Initialization. 
(2) Check for and computat ion of target point, if desired. 
(3) Calculation of tangent  vector and determination of new local continuation 

parameter.  
(4) Check for and computation of limit point, if desired. 
(5) Step-length computation. 
(6) Computat ion of predicted point and corrector iteration. 
(7) Storage of data and return. 

The sequencing of these steps is dictated by the data  flow. For the description of 
the details it will be advantageous not  to adhere to this sequence. Instead, in the 
remainder of this section, we discuss the basic steps (3) and (6). Then  the next 
section introduces the new step-length computat ion used in step (5), and Section 
5 covers steps (2) and (4). The data-handling steps (1) and (7) should be self- 
explanatory from the documentat ion of the program itself. 

Let  e ~, . . . ,  e" be the natural  basis vectors of R n. Then  it is readily verified tha t  
(see, e.g., [28]) 

{DF(x)~  , W • { D F ( x ) ]  
det~ (e~) w ) = [(e) Tx]de~(Tx )W ], V x E ~ ( F ) ,  i =  1 . . . .  , n ,  (3.1) 

where the matrix occurring on the right is nonsingular. Hence, for any index i, 
1 _< i _< n, such tha t  (e')WTx ~ O, the solution v E R "  of the linear system 

DF(x) ~ e n 
(e~)T ] V = 

is uniquely defined. Evidently, then 

v 
T x = a  

II II ' 
and, in line with (2.5), we should set 

- [DF(x )~  
o = sgn(vWe')sgn det~ (e~) w ) .  

(3.2) 

(3.3) 

(3.4) 

As long as the solution path  remains completely in ~ (F) ,  this is satisfactory. But  
frequently, in applications, we may encounter a bifurcation point x* ~! ~ ( F )  
which appears to be the intersection of two solution paths (Figure 1). More 
specifically, using arc length representations, we have solution branches x~: J j  C 
R 1 --) ~ ( F ) , j  = 1 . . . . .  4, for which xJ(s) tends to x* when s tends to one of the 
endpoints of Jj ,  such tha t - -except  for their direct ion-- the derivatives are contin- 
uous when passing through x* from x ~ to x 2 or from x 3 to x4. In such a case, 
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Figure 1 

when the process moves along x ~ toward x*, it usually "jumps" over x* onto x 2. 
Then, unless we reverse the sign of o in (3.3), the tangent will again point toward 
x* and the process reverses direction. 

In order to avoid this problem, suppose that  the point x in (3.3) is the kth  
approximation computed along the curve. Then o is determined as follows: 

{ d+~ if k = O ,  
o = if sgn vTe ' = sgn(Txk-~)Te', (3.5) 

otherwise, 

where dir is a user-specified direction at the starting point. By comparing this 
value of o with that  of (3.4), we can detect if the process did jump over a 
bifurcation point of odd multiplicity. Obviously, bifurcation points of even mul- 
tiplicity cannot be found this way. 

Once the tangent Tx  k has been obtained we determine the indices j~ and j2 of 
the largest and second largest component of Tx  k in modulus, respectively. The 
relation (3.1) certainly suggests that  the index ik, 1 _< ik -< n, of the new local 
continuation variable be set equal to jl .  However, if we are approaching a limit 
point in the jl-th variable, then this choice may be disadvantageous. Accordingly, 
if the following three conditions are simultaneously satisfied 

(i) I(eJ')TTxk I < I(e~')TTxk-1 I, 
(ii) I(eJ')TTx~ I > [(e~gTTxk-~ I, (3.6) 

(iii) I(eJgTTxk[ > l~l(eJgTTxk[, 

with a fixed/~, 0 < # < 1, then we set ik = j2. Of course, if we do not have a 
previous tangent vector, this check has to be bypassed. The new continuation 
index ih will be used for the computation of the next point x k+l and its tangent 
Tx  k+l. For the tangent computation at x ° a continuation index/o is assumed to be 
given by the user. This choice of/o has to be such that  the i0th component of Tx  ° 
is nonzero. Moreover, in some cases x ° is only known approximately and the 
corrector, described later, has to be applied to improve the initial point. During 
this process the /oth component of the input point is kept fixed and hence the 
choice of/o has a strong influence on the convergence properties of the initial 
correction process. 

It should be noted also that  the conditions (3.6) are not invariant under any 
scaling of the variables. In the formulation of the original equations care should 
be taken to ensure that the variation of the different variables are about of the 
same order of magnitude. Otherwise the continuation index ik may remain fixed 
for long periods and failures may arise. 
ACM Transact]ons on Mathematical  Software, Vol 9, No 2, June 1983 
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With the tangent  Tx  k and the step length hk > 0 determined by the step length 
algorithm of Section 4, we now compute the predicted point .~k =. x ~ + hkTxk .  
Then any appropriate iterative method for the solution of the augmented equation 

I~X -~ (etk)T(x -- ~k) = 0 (3.7) 

starting from ~k may be used as a correcter process. We use either the regular 
Newton method or its modified form in which the Jacobian a t  the starting point 
is held fixed. 

Let  yO = £k, yl,  y 2  . . . .  be the iterates produced in this way. The  process has to 
incorporate provisions for monitoring the convergence and for aborting the 
iteration as soon as divergence is suspected. In the program nonconvergence is 
declared if any one of the following three conditions is true: 

(i) II 10yJ [I > 011 ~yj-1 II for some j >_ 1, 
(ii) I l y J - y j -11[>_811yJ - ' - y ] -2 [ [  for some j_>2 ,  (3.8) 

{iii) j >_ jmax. 

For the constant  0 we use 0 -- 1.05, except in the first check of (3.8) (i), where 0 
= 2 is chosen. The maximal iteration count jmax depends on the method. For the 
regular Newton process ~ve set jm~x -- 10 and double this for the modified method. 
In the case of nonconvergence the predictor step is reduced by a given factor, for 
example ~, unless the resulting step is below a given minimal step length. 

Convergence is declared if either one of two types of criteria are satisfied 
which--for  want  of a better name--we call the strong and the weak acceptance 
criteria. These tests use the smallest floating-point number  ~ h  defined by 1.0 
-- 1.0 4- e~,ch, as well as two user-specified tolerances ¢~bs, Eral, and the relative 
error measure 

~(y) = e~bs + ~[[y[[ .  (3.9) 

The strong acceptance criterion then requires tha t  

([I/~y~[[_<eab~) and ( [ [ y~ -yJ -~[ [<_e (y ) )  fo r some  j - ->l .  (3.10) 

This is a s tandard condition; but  in certain cases, an iterative process may  behave 
erratically near a solution due to ill-conditioning or unrealistic error tolerances. 
Typically, this manifests itself in one of the conditions (3.10) being repeatedly 
satisfied, while the other one holds only with a slightly larger tolerance. Accord- 
ingly, under the weak acceptance criterion, convergence is declared if either one 
of the following three conditions holds: 

(i) It FYJ II -< 8,,~oh 
for some j > 0, 

(ii) (llPY~ll + II#y~-'ll <_ E~b~) a n d  ( l ly  ~ - Y- ' I I  -< 8 ~ ( y ) )  (3.11) 
for some j > 1, 

(iii) ( lIFYll <- 8E~)  a n d  ( I lY - Y'-'II + IlY ~-' - Y'-2U --- E (y ' ) )  
for some j > 2. 

ACM Transactmns on Mathematical  Software, Vol. 9, No. 2, June 1983. 



222 • W.C. Rheinboldt and J. V. Burkardt 

Weak acceptance is always indicated by a special flag to allow the user to take 
different actions. Throughou t  (3.8)-(3.11) the maximum norm is used. 

I t  should be noted tha t  appropriate  choices for the error  tolerances are not  
only problem dependent  but  also pa th  dependent .  Thus,  a user may  have to 
experiment  with different tolerances for a specific problem. If  the equations under  
consideration are obtained by some discretization of an infinite-dimensional 
problem, then  it should be taken into account  tha t  the discretization error  also 
changes along the pa th  (see, e.g., [3]). 

4. THE STEP-LENGTH ALGORITHM 

For the points x k, k = 0, 1, . . . ,  approximating the continuat ion curve x: J --) 
8* (F, x °) the achievable error  ]] x k - x ( s D  II is solely de termined by the  terminat ion  
criterion (3.9) of the corrector  process. In contrast  to this the s tandard  ODE- 
solvers involve a corrector  equat ion obtained by  extrapolat ion for which the  
solutions are not, in general, on the exact curve. As a consequence the available 
error  for the ODE-solvers depends on the history of the process up to tha t  point, 
and this in turn  has a strong influence on the step selection. On the o ther  hand,  
for our continuation process any step hk > 0 along the Euler  line is acceptable in 
principle if only the corrector  converges f rom the predicted point  ~k. Moreover ,  
in [28] it was shown tha t  any compact  segment of the cont inuat ion curve in ~ ( F )  
has an e-neighborhood for some e > 0 in which Newton 's  me thod  will converge to 
the curve. 

This  suggests tha t  we est imate the radius of convergence of the corrector  
process at  the computed  points and extrapolate these radii to the next  point  
about  to be determined.  In practice, the est imate of a convergence radius at  some 
continuation point  would have to be based on the corrector  i terates which led to 
tha t  point. Unfortunately,  as was proved in [8], this represents  insufficient 
information for obtaining such an estimate. On the other  hand, an approach was 
presented in [8] which allows for an assessment of the convergence quali ty of the 
part icular  sequence of corrector  iterates. 

For  details of this approach we refer to the cited article. In brief, let  ( y ' )  be a 
given sequence with limit y* generated by an i terat ive process and denote  the 
errors by e, = U Y' - Y* ]], i -- 0, 1 . . . . .  The  definition of any convergence measure  
is based on a hypothet ical  model of the behavior  of the errors. For  example, if 
(y '}  converges linearly it is reasonable to assume tha t  

0 _< e,+l -< ke,, i -- 0, 1 . . . .  (4.1) 

with some constant  k, 0 < ~ < 1, depending on ( y'}. Suppose now tha t  the process 
was te rminated  with the i terate  y'*. T h e n  

X = I ly ' "  - Y ' - ' I I  i *  ___ 2, (4.2) 
I l y "  - y° l l  ' 

represents a computable est imate of  ~. 
In  the sett ing of our cont inuat ion process suppose now tha t  the y' ,  i = 0, 1, 

. . . .  are the corrector i terates leading f rom the cur rent  pred ic ted po in t  ~k = yO to 
the new continuation point  x k+i = y'*. T h e n  

--II  k - x k + ' l l - - I l y  ° - y " l l  (4.3)  
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is the correction distance. For the modified Newton method  the convergence is 
indeed linear, and a reasonable aim in the construction of the steps along the 
curve is to ensure that  the number  of corrector iterates remains about  constant.  
In other words, we aim at taking always, say, m* corrector steps. Hence, under  
the heuristic assumption tha t  the error model (4.1) remains valid for some interval 
of starting errors eo around t~k, we should have begun with an "ideal starting 
error" 3 ~ = 0k. 8k such tha t  

~ ' 6  ~ - ~ * &  ( 4 . 4 )  

and therefore 

0k = ~¢*-m" __ 5(,*-~*)/(,*~). (4 .5)  

In the algorithm we use m* -- 10 for the modified Newton method  and enforce 
always that  0.125 _< 8k -< 8. 

This technique is also readily applicable for Newton ' s  method.  In  [8] two 
different hypothetical  error models for the Newton process are discussed. Here 
we use only one of these models, namely, the one arising in the at t ract ion theorem 
formulated in [26]. In essence, under certain conditions about  the equation and 
the desired limit y* of the Newton process, there exists a radius r* > 0 such tha t  
for any starting point yO in the ball B ( y * ,  r*) the relative errors E, ~ e , / r* ,  i ---- O, 
1, . . . ,  satisfy 

t 2 
-- - - -  0 ___ t <_ 1. ( 4 . 6 )  0 _< e,+, _< 0(e,), i 0 , 1 , . . . ,  ~(t) 3 - 2 t '  

The  radius r* depends on global information about  the equation and is not  
accessible. If  0 < Eo < 1 and the {E,} satisfy (4.6), then we have 

3 
E, _< ~, -= ~'(~0) - 1 + 2 cosh 2'a ' i -- 0, 1 . . . . .  y0 -- Eo, (4.7) 

where a is the unique positive solution of 

= ( 4 . 8 )  
~(a) 70, ~(a) - 1 + 2 cosh a" 

Moreover, for any ~0, 0 < w < 1, and ~* _ 2 the equation 

1 1 + 2 cosh a 
~ ( ~ )  ~ ' * - ' ( ~ ( a ) )  --- = 
- -  1 + 2 cosh 2'*-1a ¢o (4.9) 

has a unique solution a > 0. 
Now suppose that  { y'} denotes the sequence of Newton iterates and tha t  the 

process was terminated at yk*. As in the linear case we use the approximation 

= Ily ~* - y'*-ll[ _. e,.______~ _ e,._~ _< ~,.___~ (4.10) 
[[y~* _ yO[[ eo eo 7o 

and compute with this ~ the solution & of (4.9) which gives the estimate ~ = 
q~(5) of Co. Now we proceed as before and obtain the factor 

0~ - (~ - ~ (4.11) 
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Table I 

05 E [a, b] 

i* a b 8k 

2 0.8735115 1 1 
0.1531947 0.8735115 0.9043128-0.7075675 ln w 
0.03191815 0.1531947 -4.667383-3.677482 ln w 

0 0.03191815 8 

3 0.4677788 1 1 
0.6970123(-3) 0 4 6 7 7 7 8 8  08516099-0.1953119 ln w 
0.1980863(-5) 06970123(-3) -4 830636-0.9770528 In 

0 0 1980863(-5) 8 

4 0 1 1 

5 0.3339946(-10) 1 1.040061 + 0.037933951nw 
0 0 3339946(-10) 0.125 

6 0.1122789(-8) 1 1.042177 + 0.044507061n 
0 0 1122789(-8) 0.125 

>--7 0 1 0.125 

for the ideal starting error by determining the unique solution ~ ,  0 < ~6 < 1, of 

~m*(~) __ 4)'*(~o). (4.12) 

Since the iterates 4)' are explicitly known, the various equations are not  difficult 
to solve numerically. However,  for the computa t ion it is more advantageous to 
introduce a least squares fit of 9k as a function of 05 for all relevant values of i*. In 
the program we use m* -- 4 and the approximations for 8k given in Table I. Note  
tha t  as before we restrict 0k to the interval 0.125 ___ 0k --- 8. 

We turn now to the algorithm for the determinat ion of the step length h~ > 0 
along the Euler line ~(t)  = x ~ + t T x  k used for the prediction. In  order to est imate 
the distance between ~(t) and the exact curve x = x(s )  we introduce the quadratic 
Hermite-Birkhoff  interpolation polynomial  

q( t )  = x k + t T x  k + ½t2w k, (4.13) 

wk = 1 ( T x  k - T x ' - I ) ,  A s k  = II X k - -  X k - ' l l 2 ,  

for which 

Since 

q(O) = x k, q'(O) = T x  k, q ' ( - h s D  -- T x  k-1. (4.14) 

1 / -  

w k  - Jo X"(Sk -- oAsD do  = x " ( s k  - jAsk), (4.15) 

the quant i ty  

IIw ll --h--gs  s i n ~ a k  , a k = a r c c o s ( ( T x k ) T T x  k-l)  (4.16) 
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Figure 2 

represents an approximation of the curvature of the exact point at some point 
between x(sk-1) and x(sD.  

It is tempting to derive from q a prediction of the curvature to be expected 
during the next continuation step. However, a closer computation shows that  the 
value of the curvature of q assumes its maximum I] wk ]12/c°s2 ½ak at t = --½Ask and 
that, for increasing t, this value decreases rapidly. For example, at t = 0 the 
curvature of q equals only Ilwkll21cos ½akl and for positive t no reasonable 
predictive information can be gained this way. 

The relation {4.15) suggests the use of the simple linear extrapolation 

Ask 
ytent = ][ Wk]]2 jff ASk "~" ASk-1 (11 wkH2 --H wk-1]12) (4 .17a )  

for a prediction of the curvature during the next continuation step. However, this 
value may become negative and accordingly we use instead 

yk = max(y . . . .  .~tent) (4.17b) 

with a given small ym,, > 0. 
Most of the data discussed so far are sketched in Figure 2. In order to derive a 

formula for the desired predictor step hk, we note that  

H q( t )  - It(t)112 = ½t211 wkll2 (4.18) 

represents an estimate of the distance between the Euler line and the exact curve. 
In fact, for smooth curves the error of this estimate is asymptotically of order 
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three in max( I t  I, Ask) as this quanti ty tends to zero. Hence, if we want  this 
distance to be at  most  equal to a tolerance E > 0, then  we should choose the next 
step as 

t = II wkll2 " (4.19) 

It  is natural  to replace the curvature ]]w kl]2 by the predicted value yk of (4.17) and 
to relate the tolerance • to the "ideal starting error" ~ ~ obtained earlier. As Figure 
2 indicates it is unreasonable to expect ~ > Ask. Hence, we use instead 

[ EmmhSk if 3 ~ < •m,,hSk, 
ek-- Ask if 3~>---Ask, (4.20) 

% otherwise, 

with a small Emm > 0, for example, Emm ---- 0.01. Then  a tentative predicted step is 
given by 

h(k ') X 2 ~  (4.21) 

From the form (3.7) of the augmented equation we see tha t  the corrector 
iterates remain in a hyperplane perpendicular to the basis vector e ~ through the 
predicted point. Then Figure 2 suggests tha t  we adjust  the predicted step length 
hk so as to ensure tha t  hk will be approximately equal to Ask+~. There is no need 
to enforce this too rigidly. I t  suffices to define a new tentat ive step by the 
requirement 

(e') T1r(h (k2)) = (e') T q(h (k 1)) 

whence 

hk(2)=h(1)[l+ h (1 ) (1  (e')TTxk-' l ) j. (4.22) 

This formula may  involve substractive cancellation and has to be evaluated in 
double precision. 

The final value hk of the step length is now obtained from hk (2) by enforcing 
three different bounding requirements. First of all, if the previous continuation 
step from x k-I to x k was obtained only after a failure of the correction process 
and a corresponding reduction of the predicted step, then  we should not  allow hk 
to exceed Ask. Second, as in the case of the ODE solvers, we need to control both  
the relative growth and the absolute size of the predictor step. Thus,  we require 
that  

1 Ask <- hk <-- ~ASk, hmm ~ hk <-- h . . . .  (4.23) 

where K is some factor, say, ~ -- 3, and h . . . .  hmax depend on the machine as well 
as the requirements of the problem. It  should be obvious how the final step hk is 
obtained from h~ 2) on the basis of these restrictions. 
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5. THE COMPUTATION OF TARGET AND LIMIT POINTS 

By generating a sequence of solution points on a given curve, the  cont inuat ion 
process reveals the shape of the curve, but  there  are often other  i tems of interest  
tha t  need to be studied as well. Our program is designed to pause during the 
continuation steps in order  to seek out  special points tha t  the  user  has requested,  
namely, target  and limit points. 

A target  point x E C*(F, x °) is a point  on the solution curve for which the  
component  x, = (e')Tx with given index i = IT  has a prescribed value ~, -- XIT.  
Limit  or turning points with respect  to a given index i -- L IM are points x E 
#*(F, x °) where the ith component  (e')VTx is zero. More  specifically, since it is 
computat ional ly unreasonable to a t t empt  to compute  zeros of even order,  we are 
concerned only with limit points on the continuation curve where (e')WTx(s) 
changes sign. 

I t  might be ment ioned tha t  bifurcation points represent  ano ther  interesting, 
special class of points. But  in tha t  case we are not  only interested in the specific 
location of the point  but  also in the solution curves tha t  branch off f rom it. This  
is exactly the task (v) listed in Section 1. The  corresponding procedures  (loc. cit.) 
would add considerably to the complexity of our program, and, since their  uti l i ty 
tends to be of a more specialized nature,  it was decided not  to cover  task (v) 
(nor {iv)). 

As indicated before, the determinat ion of a target  or limit point  represents  an 
interruption in the normal flow of the continuation program. After  at  least one 
step has been taken, the program has available an old point  x ~-1, a new point  x k, 
and the tangent  vector  Tx k-1. Normally,  then we turn  to the computa t ion  of Tx k, 
of the new step length, and finally of the next  point  x k+l. Bu t  if the index IT  or 
LIM is nonzero, then these computat ions are postponed for the search of a target  
or limit point, respectively. We discuss these cases separately.  

Target Points. Suppose tha t  a nonzero value of i -- IT  and associated value 
Y, = XIT  have been given. If E, lies between (e')Wx k-1 and (e')Wx k, then  it is 
assumed tha t  a solution point  x ~ #* (F, x °) with (e')Wx ---- 2, is nearby. In this case 
a point  

y(t)  = (1 - t)x k-1 + tx k, 0___ t_< 1, (5.1) 

on the secant between x k-~ and x k is determined such tha t  (e')Ty(t) = 2,. Now 
with the augmenting equation (e')Tx = 2, the corrector  process is applied, and, if 
it terminates  successfully, the resulting point  is taken as the desired target. 
Otherwise, a failure is indicated for the target  routine.  In e i ther  case, the rout ine 
returns  and on the next  call the continuation loop will pick up f rom where it  was 
interrupted.  Note tha t  in effect the target  rout ine uses the IT- th  variable for the 
local parameterizat ion of the curve between x k-~ and x k. This  may  be an inferior 
choice of parameter  for the corrector, but  it allows us to enforce tha t  the resulting 
target  point x E 5~*(F, x °) indeed satisfies (e')Tx = ~,. Clearly, for very  large 
continuation steps we have no guarantee tha t  all target  points will be detec ted  or 
tha t  a target  computat ion will succeed. Thus,  the util i ty of the target  rout ine will 
depend on the maximal allowed step size tha t  has been chosen. 
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L i m i t  Poin ts .  If  the limit point index i ffi LIM is nonzero, then  a limit point 
determination is carried out after a target point search has been successfully or 
unsuccessfully completed, provided it was called for at  all. Recall tha t  we still 
have as current information the vectors x ~-1, x k, and T x  k-~. Now the new tangent  
Tx  k is evaluated and if sgn(e')WTx k-1 # sgn(e')WTx k for i = L I M ( #  0), then  a 
limit point search is begun. For this the index t of the largest component  in 
modulus of the secant direction x k - x k-1 is chosen as a local parameterization of 
the curve between x k-1 and x k. However, if C = LIM, then  the index of the second 
largest component  is taken. If  x: [sk-1, sk] --) 8*(F, x °) represents the segment  of 
the curve between x k-1 and x k, then/" may  be assumed to consti tute the index of 
a local coordinate for which there exists a bijective parameter  t ransformation 
(~: [0, 1] --, [sk-~, sk], such tha t  (e~)Wy(t) ffi (e(eQWx(~(t)) ,  0 _< t _ 1, where y ( t )  
is defined by (5.1). 

Hence, we may  consider the function 

g: [0, 1] --, R ~, g ( t )  = (e ' )WTx(~(t)) ,  0 <_ t <_ 1, (5.2) 

and our problem is to determine a zero of g. Since by assumption sign g (0) # sgn 
g(1), a root finder of the Dekker-Brent  type can be applied. More specifically, for 
any current iterate t~, we have either sgn g(0) # sgn g(b)  or sgn g(1) # sgn g(b) .  
Suppose, for the moment,  tha t  the latter case applies. Then  the root finder 
produces a new value t~+l ~ (tj, 1). For the evaluation of x(~(tj+l )) and g(t~+l) we 
use the augmenting equation (e ~)Tx = (e ~)Ty (tj) and apply the modified Newton 
method with 

1 - t~+l t1+1 - tj xk 
z = x(t j )  4 (5.3) 

l - t ,  1 - t j  

as starting point. If  it terminates successfully, then  the final iterate is used as 
x(tj+l) ,  the tangent  Tx(t j+l)  is evaluated, and we set g(tj+l)  -- (e~TTx(t~+l). It  
should be clear how the formulas have to be modified for the case sgn g(0) # sgn 
g(t j ) .  

Certainly, g is costly to compute and we require an efficient root finder to speed 
the convergence of the limit-point routine. A specially modified version of the 
routine given in [5] is used here. Clearly, as in the case of target points, we may  
fail to detect a limit point if the continuation steps are too large, and in such a 
situation the root finder may  also fail to converge. In addition, the evaluation of 
g may  run into difficulties when the desired limit point is near  a bifurcation point. 

Some literature about other limit-point algorithms was cited in the Introduc- 
tion. A comparison of the performance of the above used method  with various 
other algorithms may  be found in [20]. 

6. SOME NUMERICAL EXAMPLES 

The programs described here have been used extensively with excellent success 
on problems from many  different areas. We include here only a few numerical 
examples to illustrate the operation of the programs. 

E x a m p l e  1. In order to present some details of the performance of the 
programs, we consider first a very small problem which was originally formulated 
in [10] and subsequently used as a test  case by many  authors. The mapping F 
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Table  II 

229 

Step x~ 

Cont inua t ion  point  To ta l  
Cont inua t ion  correct  

x2 xa varmble  s teps  C o m m e n t s  

0 15.000 -2.00000 0.00000 x3 - -  
1 14.710 -1.9421 0.065381 xx 2 
2 14 285 - 1  7291 0.26874 x3 3 
3 16 906 -1.2094 0.54684 x2 1 
4 24.918 -0.59908 0.55514 xl 3 
5 48 974 0 71803 -0.080761 x3 3 
6 57.988 1 2846 -0.40736 x~ 4 S tep  reduc t ions  
7 60.052 1.5709 -0.54036 xl 4 S tep  reduc t ions  
8 61.666 2.0010 -0.66684 x2 2 
9 -5.0546 4.1503 1.3447 x2 2 T a r g e t  passed  

To ta l  24 
C o m p u t a t m n  of target  3 

Table  III 

Cont inua t ion  point  To ta l  
Cont inua t ion  correct  

Step xl x2 x3 variable s t eps  C o m m e n t s  

0 15 000 -2 .0000 0.00000 x3 
1 14.710 -1.9421 0.065381 x~ 3 
2 14.285 -1.7291 0.26874 x3 4 
3 16.906 -1.2094 0 54685 x2 2 
4 24.918 -0.59905 0.55514 xl 5 
5 48.976 0.71811 -0.080806 xl 5 
6 57.289 1.2847 - 0  40742 xl 5 
7 60.053 1.5711 - 0  54043 xl 5 
8 61.666 2.0014 -0.66689 x2 2 
9 -4.4290 4.1408 1.3217 x~ 2 

W e a k  acceptance  

S tep  reduc t ions  
S tep  reduc t ions  

T a r g e t  passed  

To ta l  33 
Compu ta t i on  of target  8 

has here the form 

Fx = ( x l -  x~ + 5x~- 2x2 + 34x3- 47) Vx ~ R ~. (6.1) 
x l + x ~ +  x~ 14x2+10x3 39 ' 

For the starting point x ° = (15, -2, 0) T the solution curve passes through x* -- 
(5, 4, 1) T, and this point is chosen as target. 

Tables II and III show runs with the full Newton method and modified Newton 
method, respectively, as corrector process. A starting step ho = 0.3 and maximum 
step hm,x = 25.0 were used. The performance for the two correctors is practically 
the same, although the step prediction exhibits certain differences owing to our 
assessment of the corrector distance. Clearly, the use of the modified Newton 
process is much less expensive and hence preferable, as shown in Table IV, which 
summarizes the total number of function and Jacobian calls, including those for 
the target calculation. Comparative performance data given in [8] for this problem 
involved 22 continuation steps, 15 step reductions, and 128 Jacobian evaluations. 
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Table IV 

Corrector process 

Modified 
Newton Newton 

Function calls 39 54 
Jacob]an calls 36 21 

The procedure discussed in [21] required 25 continuation steps, but no further 
details were provided in the paper. 

It may be noted that the solution curve has two limit points each with respect 
to xl and x3. The two step reductions are almost unavoidable here, since the curve 
has a long, straight segment followed by a very sharp bend. The target compu- 
tation is relatively expensive, since the last step is extremely large due to another 
straight curve segment. 

E x a m p l e  2. Maneuvering airplanes, especially at high angles of attack, some- 
times undergo sudden jumps in their response to the pilot's control inputs. The 
problem has been discussed extensively in the literature {see, for example, [19], 
[32], [41]). Without going into further details we use here a simplified version of 
a system of five equilibrium equations involving the roll rate (xl), pitch rate (x2), 
yaw rate (x3), {incremental) angle of attack (x4), side slip angle (xs), elevator 
angle (x6), aileron angle (xv), and rudder angle (Xs). More specifically, for the 
particular aircraft discussed in [19], these equations have the dimensionless form 

F x  = A x  + ~(x) = 0, Vx E R 8, (6.2) 

where 

/ - 3 ~ 9 3 3  0 . 1 0 7  0.126 0 - 9 . 9 9  0 -45.83 

-0.987 0 -22.95 0 -28.37 0 
A = | 0.002 0 -0.235 0 5.67 0 -0.921 

\ o 1.0 0 -1.0 0 -0.168 0 

0 -1.0 0 -0.196 0 -0.0071 

and 

-0.727x2x3 + 8.39x3x4 - 684.4x4x5 + 63.5x4x7 t 
0.949xlx3 + 0.173xlx5 

~(x) =~ -0.716xlx2 - 1.578xlx4 + 1.132x4x7 

--XlX5 

\ x l  x4 

Figure 3 shows some solution curves on the three-dimensional equilibrium surface 
in R s. More specifically, in all cases we fixed a value of x6 (elevator deflection) 
and chose the rudder deflection xs = 0. The paths x6 > ~ol, Xs = 0 with ~ol = 
-0.0061771 have two limit points; for ~01 > x6 > ¢02, Xs -- 0, with ~2 = -0.012498 a 
third limit point appears; and for ~02 > x6, Xs = 0 only one limit point remains. A 
similar picture arises for negative roll rates. 
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i 

"\ 4 

2.0 

1.0 

i | i x7 

- I.O I.O 

F i g u r e  3 

In all cases the programs easily detected and computed  the  various limit points 
(see Table  V). But  the example also shows tha t  even with a large number  of 
search paths  it is difficult to provide a full picture of the location of the  critical 
boundary,  tha t  is, of the curves of limit points with respect  to x~ for xs = 0 and 
varying x6, XT. In Figure 3 the corresponding branches of l imit-point curves are 
shown as dot ted lines. T h e y  were obtained with a code for the earlier ment ioned 
task (iv) in Section 1 (see [28]). 
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Table  V 

X] X2 X3 X4 X5 X6 X7 

1 2.9649 0.8255 0.073661 0.0413 0.26735 -0 .05  0.50481 

2 2.8174 -0.17629 0.089926 0.026429 -0.071476 -0 .008  -0.20497 
3 3.7579 -0.65541 0.38658 0.092520 -0.19867 -0 .008  0.006201 
4 4.1638 0 089133 0.094805 0.022888 0.016232 -0 .008  -0 .37766 

5 2.5873 -0.22355 0 054683 0.013676 -0.091687 0.0 - 0  18691 
6 3.9005 -1.1482 0.58156 0.13352 -0 .32859 0.0 0.51016 

7 2.2992 -1 .4102 - 0  061849 -0.079009 -0.58630 0.1 -0 .68972 
8 4.4565 -4 .4909 1.6164 0.33091 - 1  0857 0.1 10.0212 

Example 3. As an example for the  numerical  investigation of the  equil ibrium 
surface of a mechanical  structure,  we consider a clamped, thin, shallow, circular 
arch which has been used as a test  case by various authors  (see, e.g., [13], [17], 
[38]). Le t  U and W be the radial and axial displacements,  R the arch radius, A 
the cross-sectional area, H the thickness, and E Young's  modulus. With the  
dimensional displacements u ffi U/H, w = W/H, the  total  potent ia l  ene rgy - -  
nondimensionalized by  dividing by EAR(H/R)2-- is  given by 

Here  p ffi p (0) is the dimensionless radial load, and al ,  a2 are dimensionless 
constants. Each  end is assumed to be pinned; tha t  is, we have the boundary  
conditions 

d2u 
u (  "]- 00) = O, W( "l" 00) = O, dO 2 ( +  0o) = 0.  (6 .4 )  

The  f ini te-element approximation int roduced in [38] was applied. More  specifi- 
cally, we used a uniform mesh with eight elements,  00 ffi 15 and the constants  al 
ffi 3.8716 × 10 -6, a2 = 1.65504 × 10 -1 corresponding to the data  in [17]. Moreover ,  
the following load function p ffi p (#, p) was chosen 

f#(1 + 7p) for e lement  4, 
P(#,  P) 

L#(1 - u) otherwise, (6.5) 

corresponding to a base load fl ffi #(1 - r) and an excess load 8/~ in e lement  4, 
such tha t  the average load is always #. 

Several  curves on the equilibrium surface corresponding to constant  values of 
# or u were computed.  Figure 4 shows the project ion of these curves into the (fl, 
6)-plane, where 6 represents  the radial displacement of the center  point. For  
uniform loads, tha t  is, p = 0, we encounter  two bifurcation points on the pr imary  
curve which are eonneeted by two "buckling" curves tha t  have the same projec- 
tion in the (fl, 6)-plane. 
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