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Abstract. This work proposes a hyperspherical sparse approximation framework for detecting jump
discontinuities in functions in high-dimensional spaces. The need for a novel approach re-
sults from the theoretical and computational inefficiencies of well-known approaches, such
as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyper-
spherical coordinate representation of the discontinuity surface of a function. Then sparse
approximations of the transformed function are built in the hyperspherical coordinate sys-
tem, with values at each point estimated by solving a one-dimensional discontinuity detec-
tion problem. Due to the smoothness of the hypersurface, the new technique can identify
jump discontinuities with significantly reduced computational cost, compared to existing
methods. Several approaches are used to approximate the transformed discontinuity sur-
face in the hyperspherical system, including adaptive sparse grid and radial basis function
interpolation, discrete least squares projection, and compressed sensing approximation.
Moreover, hierarchical acceleration techniques are also incorporated to further reduce the
overall complexity. Rigorous complexity analyses of the new methods are provided, as are
several numerical examples that illustrate the effectiveness of our approach.
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1. Introduction. Numerical approximation is an important tool used to define
solution techniques for physical, biological, social, and economic systems. In simu-
lations of such systems, the relationship between the inputs that drive the system
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and the outputs, i.e., the system responses, are described by a multivariate function
which is usually the target of the numerical approximation. Often the target function
exhibits jump discontinuities, which have motivated many research efforts devoted
to discontinuity detection. Traditionally, discontinuity detection has been associated
with capturing jump discontinuities in a process with respect to temporal and/or
spatial variables; thus, most efforts are restricted to low-dimensional problems. How-
ever, high-dimensional discontinuity detection is of significant importance in cases for
which the system outputs depend on a large number of input variables. For example,
this challenge arises in uncertainty quantification (UQ), where physical systems with
uncertainties are described by stochastic partial differential equations (SPDEs) with
random input data. It is well known that an output of interest derived from the
solution of an SPDE may depend on a large number of random variables. Outputs of
interest often contain jump discontinuities, sometimes because of irregular behavior
with respect to random coefficients, or because the output of interest itself is defined
in terms of nonsmooth functions, e.g., indicator functions. Such challenges also arise
in optimization and control problems where, again, the controls are characterized us-
ing a large number of parameters, and discontinuous cost functionals typically arise.
As such, the development of accurate and efficient numerical techniques for detecting
high-dimensional discontinuities is important to not only UQ and control, but to other
mathematics, engineering, and science research communities as well.

A straightforward approach to resolving the challenges faced when approximating
discontinuous functions is to first subdivide the high-dimensional domain of definition
into several subdomains, in each of which the target function is continuous or even
smoother. Then, in each subdomain, construct a piecewise continuous polynomial ap-
proximation using mature methods such as sparse interpolants [6, 24, 25] or orthogonal
polynomial expansions [12]. Obviously, these approaches require that the boundaries
of the subdomains follow the discontinuity manifolds of the target function. Although
such approaches are conceptually easy to understand, they are severely challenged nu-
merically when one requires accurate representations of the detected discontinuities
in even moderate dimensions.

Recently, several attempts have been made to alleviate the challenges in locating
discontinuities. In [1, 2], a polynomial annihilation approach, originally developed for
one- and two-dimensional edge detection, was extended to solve problems in higher
dimensions. However, such methods rely on the evaluation of the target function
based on a set of local tensor-product grids, so that the number of function eval-
uations grows exponentially as the dimension increases. Improvements were made
in [20] by incorporating an adaptive sparse grid (SG) interpolant in order to reduce
the computational cost. SG methods have been demonstrated to be effective in, for
example, high-dimensional function approximation [6, 31, 34], numerical integration
[5, 13, 14, 16, 26], finite difference methods [15], and Bayesian inference [22, 33, 35].
Moreover, SG methods also have successfully impacted a variety of important ap-
plications, including data mining [7], manifold learning [10], image processing [27],
and financial engineering [19]. However, the effectiveness of SG approximations in-
extricably relies on the smoothness of the target function. When approximating a
discontinuous function, mesh refinement is invariably needed in the vicinity of discon-
tinuities, resulting in a significant deterioration in the sparsity of the grid; i.e., using
an SG method, a discontinuity of an N -dimensional function, which typically occurs
across an (N − 1)-dimensional hypersurface, has to be approximated using a “dense”
grid, as illustrated by Example 3.1 in section 3.2. This disadvantage dramatically
limits the applicability of SG methods for high-dimensional discontinuity detection.
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To combat these challenges, in this work, we propose a novel hyperspherical sparse
approximation framework for capturing jump discontinuities of N -dimensional func-
tions. Our approach achieves the desired performance and retains most of the sparsity
of existing sparse approximation techniques that are known to be effective for recover-
ing smooth functions. The basic idea is to approximate the discontinuity hypersurface
directly instead of approximating the discontinuous function, motivated by observ-
ing that the hypersurface itself is often continuous or even smoother. Therefore, the
number of samples needed to approximate the hypersurface can be significantly re-
duced compared to the classic SG interpolation in the Cartesian coordinate system.
To achieve this, the first step is to define a function representation of the (N − 1)-
dimensional discontinuity hypersurface. Under a mild assumption about its geometry,
the hypersurface is transformed into a function in a hyperspherical coordinate system.
Note that the transformed function is defined in the subspace constituted by the N−1
angle coordinates; the function value at a certain point is the Euclidean distance be-
tween the origin of the hyperspherical coordinate system and the discontinuity along
the direction determined by the N − 1 angles. The next step is to develop an ap-
proach to evaluate the transformed function, i.e., calculating the desired Euclidean
distance at a given point. Fortunately, this is much easier to implement because it
reduces to a one-dimensional discontinuity detection problem along each of the direc-
tions determined by the N − 1 angles. Many existing techniques can be used to fulfill
this relatively straightforward task, such as the polynomial annihilation or an exist-
ing adaptive method. In particular, if the discontinuous function has a characteristic
property (defined in section 2), e.g., an indicator function, then root-finding methods
can be applied as well. Based on the above two steps, a sparse approximation of the
discontinuity hypersurface can be constructed in the (N − 1)-dimensional subspace,
with the use of the hyperspherical coordinate system. In this effort, our new strategy
is realized by incorporating two types of sparse approximations. The first one is based
on deterministic sampling, specifically an adaptive SG interpolation of the hypersur-
face; the second is based on random sampling, specifically radial basis function (RBF)
interpolation [4, 32], discrete least squares (DLS) projection [9, 23], and compressed
sensing (CS) approximation [8, 11, 30].1

The efficiency of our algorithm is characterized by the total number of function
evaluations required by the approximation. Thus, the computational complexity is
not the number of sample points, but is the sum of the number of function evalua-
tions consumed by all the one-dimensional discontinuity detection problems. Taking
the bisection method as an example, the number of iterations required to achieve a
prescribed accuracy is determined by the length of the initial search interval. Thus,
to further improve the computational efficiency, we incorporate the hierarchical ac-
celeration technique proposed in [12, 18] into the hyperspherical SG interpolation.
Specifically, the approximation on a coarse sparse grid is used to predict the value of
the transformed function at the newly added points on a finer sparse grid. In this way,
the length of the initial search interval for each bisection simulation is significantly
reduced, as is the necessary number of search iterations. It is worth noting that the
proposed method differs from existing efforts on manifold learning [10, 28], which
requires a set of data points that are on/near the target manifold, and the solution
procedure is to find the optimal approximation in the sparse polynomial subspace by

1The RBF, DLS, and CS approximations can also be constructed from deterministic abscissas,
but the goal of using random sampling in this effort is to handle the irregular geometry of the domain
of the transformed function in the hyperspherical system.
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minimizing objective functions. In our approach, we do not require a set of points
on/near the target hypersurface to run our algorithms. The sample points on/near
the hypersurface are captured using one-dimensional root-finding algorithms.

The main contributions of this paper are summarized as follows.
• A hyperspherical sparse approximation framework for high-dimensional dis-
continuity detection is constructed.

• The performance of several approaches for the evaluation of the transformed
function is investigated.

• The new framework is realized by incorporating existing sparse approximation
techniques based on either deterministic or random sampling.

• The computational efficiency of the hyperspherical SG interpolation is im-
proved by incorporating hierarchical acceleration techniques.

• Rigorous complexity analyses are provided for the proposed algorithms in the
context of using hyperspherical SG interpolation.

The rest of the paper is organized as follows. The specific problem definition and
preliminary notions are discussed in section 2. In section 3, classic adaptive SG in-
terpolation is briefly reviewed and an example is given to illustrate its disadvantages
when attempting to detect discontinuities in even moderate dimensions. In section 4,
we discuss how hyperspherical coordinates can be used to represent a surface across
which a multivariate function is discontinuous. Our main results are given in sec-
tions 5 and 6, where hyperspherical sparse approximations of a discontinuity surface
are constructed using sparse grids and random sampling, respectively. Numerical tests
are provided in section 7, and concluding remarks are provided in section 8.

2. Problem Setting. Let Γ denote an open bounded domain in R
N , N ≥ 1, and

let ∂Γ denote its boundary. We assume there exists an (N−1)-dimensional hypersur-
face in Γ, denoted by γ, separating the domain Γ into disjoint open subdomains Γ1

and Γ2, such that Γ = Γ1 ∪ γ ∪ Γ2, Γ1 ∩ Γ2 = γ, and Γ1 ∩ γ = Γ2 ∩ γ = Γ1 ∩ Γ2 = ∅.
We observe that the volume of γ in R

N is zero and Γ1 and Γ2 are both open along γ.
We consider a generic N -dimensional discontinuous function f(y) : Γ → R given by

(2.1) f(y) =

{
f1(y) if y ∈ Γ1,

f2(y) if y ∈ Γ2\γ,

where y = (y1, . . . , yN) ∈ R
N and f1(y) and f2(y) are continuous functions in Γ1

and Γ2\γ, respectively. Based on the fact that f(y) = f1(y) for y ∈ γ ⊆ ∂Γ1, we
assume f(y) has a jump discontinuity on γ such that f1(y

∗) = limΓ1�y→y∗∈γ f1(y) 	=
limΓ2�y→y∗∈γ f2(y) < +∞ for y∗ ∈ γ, which means the discontinuity only occurs
when approaching γ from the subdomain Γ2. The goal is to accurately capture the
discontinuity hypersurface γ. We also assume that ∂Γ1 is a continuous hypersurface
such that Γ1 and Γ2 are disjoint. As such, there exists a continuous function G(y)
defined in Γ such that γ =

{
y ∈ Γ |G(y) = 0

}
, i.e., γ is implicitly defined by the equa-

tion G(y) = 0, and such that f = f1(y) for G(y) > 0 (i.e., y ∈ Γ1\γ) and f = f2(y)
for G(y) < 0 (i.e., y ∈ Γ2\γ). Note that G(y) = 0 is only an abstract representation
of γ and that its availability is not necessary for detecting the discontinuity. Moreover,
for a specific γ, the function G(y) is not unique.

In one dimension (N = 1), γ reduces to one or two points in Γ ⊂ R, so that it
is relatively easy to capture the discontinuity of f(y). However, in higher dimensions
(N > 1), detecting discontinuities becomes difficult because γ is, in general, an (N−1)-
dimensional hypersurface with zero measure in R

N . What is worse, there is no direct



HYPERSPHERICAL SPARSE APPROXIMATION TECHNIQUES 521

information available about the location or geometry of γ, so that we can only rely
on indirect information about f(y) and G(y) to infer the location of γ. In this
work, f(y) in (2.1) is treated as a black-box function; i.e., given any y ∈ Γ as an
input, the function value can be obtained as an output without any knowledge about
the analytical expressions of f(y) or G(y). Before moving forward, we provide two
examples of discontinuous functions of interest.

Example 2.1. Consider the generic function f(y) : Γ → R defined by

(2.2) f(y) =

{
f1(y) if y21 + · · ·+ y2N ≤ μ2,

f2(y) if y21 + · · ·+ y2N > μ2,

where f1 and f2 are continuous functions and μ is a positive real constant. In this
case, the function G(y) is defined by G(y) = μ2 − ∑N

n=1 y
2
n. The discontinuity

γ =
{
y ∈ R

N |G(y) = 0
}
is a sphere in R

N with radius μ and ∂Γ1∪∂Γ = ∅, γ = ∂Γ1.
There are three specific scenarios one must consider:

(S1) f(y) can be evaluated as a black-box function;

(S2) f(y) is the characteristic function of Γ1, e.g., f1(y) = 1 and f2(y) = 0;

(S3) Both f(y) and G(y) can be evaluated as black-box functions.

Example 2.2 (probability of an event depending on the solution of a stochastic
model). Let the function u(y,x) : Γ×D → R denote the solution of an SPDE given by
L(a(y,x))[u(y,x)] = h(y,x), where the coefficient a(y,x) of the differential operator
L and the right-hand side h(y,x) are random fields, and x ∈ D ⊂ R

d (d = 1, 2, 3) and
y ∈ Γ ⊂ R

N denote physical and random variables, respectively. By assuming that y
has a joint probability density function �(y) : Γ → R+ with �(y) ∈ L∞(Γ), in practice,
we may be interested in quantifying the probability of an event about u(y,x). For
example, such an event may be the spatial average F (u) = 1

|D|
∫
D u(y,x)dx exceeding

a threshold value u, where |D| denotes the volume of the physical domain D. This
probability can be expressed as

(2.3) P
(
F (u) ≥ u

)
=

∫
Γ

X{F (u)≥u}(y)ρ(y)dy,

where X{F (u)≥u}(y) is the characteristic function. As such, the target function f(y)
is X{F (u)≥u}(y)ρ(y) and γ is determined by G(y) = F (u(y))− u = 0.

From the above examples, we observe that, in practice, there may be additional
indirect information available about f(y) andG(y) that can help one capture disconti-
nuities. For instance, in Example 2.2, when defining Γ1 = {y ∈ Γ | X{F (u)≥u}(y) = 1},
the function G(y) can be evaluated as well and the membership of a given y ∈ Γ in the
subdomain Γ1 can be determined by the computable value of f(y). Thus, we consider
discontinuity detection problems under one of the following three assumptions:

A1: given y ∈ Γ, only f(y) can be evaluated;

A2: given y ∈ Γ, the value f(y) can determine if f(y) = f1(y) or f(y) = f2(y),
i.e., if y ∈ Γ1 or y ∈ Γ2;

A3: given y ∈ Γ, both f(y) and G(y) can be evaluated.
It is easy to see that A2 is a sufficient condition for A1 and that A3 is a suffi-

cient condition for both A1 and A2. Under A1, it is known that there exist jump
discontinuities in Γ, but no information about the location of γ can be inferred from
the function values of f(y). In the context of A2, function values of f(y) can in-
dicate the membership of a given point y ∈ Γ in the subdomain Γ1 ∈ Γ, which is
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referred to as the characteristic property. Under A3, because G(y) can be evaluated
directly, detecting γ is equivalent to finding all the roots of the implicit equation
G(y) = 0. In one dimension (N = 1), this is straightforward to accomplish us-
ing classic root-finding algorithms, e.g., the bisection method. In higher dimensions,
classic root-finding methods might make it easy to find one root, but approximately
determining the whole surface γ is, in general, difficult. It is natural to look for more
efficient algorithms for dealing with discontinuous functions satisfying A2 or A3. Such
improved methods are discussed in detail in section 4.

Because it is almost impossible to solve for the analytical expression describing the
hypersurface γ, the main goal of our effort is to efficiently construct, in N dimensions,
an accurate approximate hypersurface, denoted by γ̃. To assess the performance of our
approaches, the accuracy of γ̃ as an approximation of γ is measured by the distance
between γ and γ̃ defined as

(2.4) e∞ = dist(γ, γ̃) = sup
x∈γ

inf
x′∈γ̃

|x− x′|.

In addition, as indicated in (2.3), we are also interested in estimating the integral of
f(y) over a subdomain of interest, i.e., either Γ1 or Γ2. Without loss of generality,
the accuracy of γ̃ is thus also assessed by the metric

(2.5) eint =

∣∣∣∣∫
Γ1

f(y)dy −
∫
˜Γ1

f(y)dy

∣∣∣∣ ,
where Γ̃1 is the approximation of Γ1 resulting from the approximation γ̃ of γ. On the
other hand, as shown in Example 2.2, the computational cost on evaluating f(y) or
G(y) often dominates the total cost of constructing γ̃, e.g., because of the complexity
of the PDE solver required to perform those evaluations. Thus, we use the number
of function evaluations of either f(y) or G(y) as the metric to assess the efficiency of
constructing γ̃.

As discussed in section 1, a straightforwardway to estimate the integral
∫
Γ1
f(y)dy

is to use Monte Carlo methods, but the computational cost may not be affordable due
to the slow convergence. Alternatively, an adaptive SG method has been employed to
approximate f(y) [20], but its efficiency deteriorates dramatically as the dimension N
increases. The new approach proposed in section 4 is a variant of the classic sparse ap-
proximation methods but features much improved efficiency. To set the stage, before
introducing our approach, we briefly review, in section 3, the standard SG method
and illustrate its unsatisfactory performance for discontinuity detection.

3. A Review of Adaptive Sparse Grid Approximations for Discontinuity De-
tection. In section 3.1, we briefly review hierarchical SG interpolation (see [6] for
details). In section 3.2, the adaptive SG method is introduced and its shortcomings
for high-dimensional discontinuity detection are illustrated via a numerical example.

3.1. Hierarchical Sparse Grid Interpolation. The goal is to construct a La-
grange interpolant to a function η(y) : Γ → R using hierarchical piecewise polynomi-
als [6]. We begin with the one-dimensional hat function having support [−1, 1], given
by ψ(y) = max{0 , 1−|y|}. An arbitrary hat function with support (yl,i−hl, yl,i+hl)
can be generated by dilation and translation, i.e., ψl,i(y) = ψ

(
y+1−ihl

hl
), where l de-

notes the resolution level, hl = 2−l+1 for l = 0, 1, . . . denotes the grid size of the level l
grid, and yl,i = i hl − 1 for i = 0, 1, . . . , 2l denotes the grid points. The basis function
ψl,i(y) has local support with respect to the level l grid and is centered at the grid
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point yl,i; the number of grid points in the level l grid is 2l + 1. The space spanned

by the nodal basis {ψl,i(y)}2li=0 is the standard piecewise-linear finite element space.
For each grid level l > 0, the interpolant of a continuous function η(y) in terms of the

nodal basis {ψl,i(y)}2li=0 is given by Ul(η) =
∑2l

i=0 η(yl,i)ψl,i(y). By observing that
Ul−1(η) = Ul

(Ul−1(η)
)
, we define the incremental operator

(3.1) Δl = Ul − Ul−1 for l ≥ 0 with U−1 = 0,

where Δl(η) only involves the basis functions ψl,i(y) for i = 1, 3, 5, . . . , 2l − 1. Then
the interpolant Ul(η) can be represented in the hierarchical form

(3.2) Ul(η) = Ul−1(η) + Δl(η) = · · · = U0(η) +

l∑
l′=1

Δl′(η),

where the basis functions needed by U0(η) and Δl′(η) for l
′ = 1, . . . , l constitute the

one-dimensional hierarchical basis of level l.
Next, we consider the hierarchical SG interpolation of a multivariate function

η(y) defined, without loss of generality, over the unit hypercube Γ = [−1, 1]N ⊂ R
N .

The one-dimensional hierarchical basis can be directly extended to the N -dimensional
domain Γ using tensorization. Specifically, the N -variate basis function ψl,i(y) asso-
ciated with the point yl,i = (yl1,i1 , . . . , ylN ,iN ) is defined using tensor products, i.e.,

ψl,i(y) :=
∏N

n=1 ψln,in(yn), where l = (l1, . . . , lN ) ∈ N
N is a multi-index indicating

the resolution level of the basis function. Note that the resolution level can be dif-
ferent in each of the N directions. Then the level L hierarchical SG approximation
ηL(y) of the target function η(y) is given by

(3.3)

ηL(y) =

L∑
l=0

∑
|l|=l

(Δl1 ⊗ · · · ⊗ΔlN ) (η)(y)

= ηL−1(y) +
∑
|l|=L

(Δl1 ⊗ · · · ⊗ΔlN ) (η)(y)

= ηL−1(y) +
∑
|l|=L

∑
i∈Bl

[η(yl,i)− ηL−1(yl,i)]ψl,i(y)

= ηL−1(y) +
∑
|l|=L

∑
i∈Bl

ωl,iψl,i(y) =

L∑
l=0

∑
|l|=l

∑
i∈Bl

ωl,iψl,i(y),

where the multi-index set Bl is given by

(3.4) Bl :=

⎧⎪⎨⎪⎩i ∈ N
N

∣∣∣∣∣
iN ∈ {0} for n = 1, . . . , N if ln = 0

iN ∈ {0, 2} for n = 1, . . . , N if ln = 1

iN ∈ {1, 3, 5, . . . , 2lN − 1} for n = 1, . . . , N if ln > 1

⎫⎪⎬⎪⎭ ,

|l| ≡ l1 + · · · + lN ≤ l defines the resolution level of the incremental operator Δl1 ⊗
· · · ⊗ ΔlN , and ωl,i = η(yl,i) − ηL−1(yl,i) denotes the multidimensional hierarchical
surplus. This interpolant is a direct extension, via the Smolyak algorithm, of the
one-dimensional hierarchical interpolant. The definition of the surplus wl,i is based
on the facts that ηl(ηl−1(y)) = ηl−1(y) and ηl−1(yl,i)− η(yl,i) = 0 for |l| = l.
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We denote byHl(Γ) = {yl,i|i ∈ Bl} the set of points corresponding to the operator
Δl1 ⊗ · · · ⊗ ΔlN with l = (l1, . . . , lN). Then the sparse grid corresponding to the
interpolant ηl is given by

Hl(Γ) =
⋃
|l|≤l

Hl(Γ),

where Hl(Γ) is nested, i.e., Hl−1(Γ) ⊂ Hl(Γ). In addition, with ΔH0(Γ) = H0(Γ), we
denote by ΔHl(Γ) = Hl(Γ)\Hl−1(Γ) the set of newly added grid points on level l.

3.2. Adaptive Sparse Grids. By virtue of the surpluses ωl,i, the interpolant in
(3.3) can be represented in a hierarchical manner, i.e.,

ηL(y) = ηL−1(y) + ΔηL(y),

where ηL−1(y) is the SG interpolant and ΔηL(y) is the hierarchical surplus inter-
polant. According to the analyses in [6], for smooth functions, the surpluses ωl,i of
the sparse grid interpolant ηL(y) tend to zero as L tends to infinity. For example,
in the context of using piecewise-linear hierarchical bases and η(y) having bounded
mixed second-order derivatives, the surplus ωl,i can be bounded by

(3.5) |ωl,i| ≤ Csurp2
−2·|l| for i ∈ Bl,

where the constant Csurp is independent of the level |l| and the dimension N (see
Lemma 3.3 in [6]). This provides a good avenue for constructing adaptive sparse
grids using the magnitude of the surplus as an error indicator, especially for irregular
functions having, e.g., steep slopes or jump discontinuities. An alternative adaptive
SG approach based on wavelet basis is described in [17].

Specifically, the one-dimensional hierarchical grid has a tree-like structure where
each grid point yl,i on level l has two children on level l + 1, namely, yl+1,2i−1 and
yl+1,2i+1. At each successive interpolation level, the basic idea of adaptivity is to use
the hierarchical surplus as an error indicator to refine the grid by adding two new
points on the next level for each point on the current level for which the magnitude
of its surplus is larger than the prescribed error tolerance. Then it is straightforward
to extend the adaptivity from the one dimension to the multidimensional adaptive
sparse grid. In general, a grid point in an N -dimensional space has 2N children which
are also the neighbor points of the parent point. We start with an isotropic sparse
grid of level Lmin > 0 and build an approximation ηLmin(y) in order to capture the
main profile of η(y). Thus, for L ≥ Lmin, we only add those grid points on level L
whose parent on level L − 1 has a surplus greater than the prescribed tolerance. In
this way, the N -dimensional adaptive sparse grid interpolant of level L with the error
tolerance being α > 0 can be represented by

(3.6) ηL,α(y) =

L∑
l=0

∑
|l|=l

∑
i∈Bα

l

ωl,iψl,i(y),

where the multi-index set Bα
l ⊆ Bl is defined by Bα

l =
{
i ∈ Bl | |ωl,i| ≥ α

}
. The

corresponding adaptive sparse grid can be represented by HL,α(Γ) = ∪L
l=0ΔHl,α(Γ),

where ΔHl,α(Γ) = ΔHl(Γ) for l ≤ Lmin, and ΔHl,α(Γ) for l > Lmin only contains the
sparse grid points added by the mesh refinement.

In the literature, the adaptive SG method has been used to approximate irregular
functions [6, 21] in low-dimensional spaces (N ≤ 3). However, in these cases, the SG
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Fig. 1 The error in the approximations of the integral of f(y) given by (3.7) vs. the number of func-
tion evaluations, using the SG and Monte Carlo (MC in figure) methods with N = 1, 2, 3, 4
for (a) the SG approximations with a piecewise-linear hierarchical basis and (b) the SG
approximations with a piecewise-quadratic hierarchical basis.

method cannot achieve the desired efficiency as in approximating smooth functions.
What is worse, it will eventually converge more slowly than a simple Monte Carlo
method, even for a moderate four-dimensional discontinuous function, as shown in
the following example.

Example 3.1. The target f(y) is the characteristic function in R
N given by

(3.7) f(y) =

{
1 if 1− y21 − · · · − y2N ≥ 0,

0 otherwise,

where the discontinuity hypersurface γ is the unit hypersphere in R
N . For N =

1, 2, 3, 4, Lmin = 4, and Lmax = 100, we build the SG approximation fL,α(y) with
α = 0.01. The error is measured by the metric eint defined in (2.5). Because the
surplus will not decay to zero around the hypersphere, mesh refinement will not stop
until the level L reaches Lmax. Thus, we compute and plot, in Figure 1, the error
eint vs. the number of function evaluations by increasing the resolution level L up
to Lmax. For comparison, the error of Monte Carlo simulations are also plotted in
Figure 1. We observe that the SG approximation outperforms Monte Carlo in the
one- and two-dimensional cases, but performs similarly in three dimensions, and in
four dimensions Monte Carlo outperforms the adaptive SG method.

To investigate the reason of such failures, we plot in Figure 2 the resulting adap-
tive sparse grids in two and three dimensions for an error eint < 0.01. Note that
mesh refinement places a dense set of grid points in the vicinity of the discontinuities,
resulting in a loss of the desired grid sparsity. In fact, the N -dimensional hypershere
γ, across which the function is discontinuous, is approximated by an extremely dense
grid. It is the loss of sparsity that makes the SG approximation fail when attempt-
ing discontinuity detection in high-dimensional spaces. Moreover, because the target
function f(y) is discontinuous, the accuracy of the SG approximation cannot be im-
proved by using a high-order hierarchical basis [6]. In fact, the accuracy is worse for
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Fig. 2 The grids produced by the SG method for approximating the integral of f(y) given by (3.7)
with linear hierarchical basis and eint < 0.01: (a) the two-dimensional sparse grid has 969
points; (b) the three-dimensional sparse grid has 936,093 points.

piecewise-quadratic approximations than it is for piecewise-linear approximations; see
Figure 1.

4. Hyperspherical Transformation of a Discontinuity Surface. Later in this
paper, we propose a hyperspherical sparse approximation framework that overcomes
the disadvantages of the adaptive SG method of section 3 for high-dimensional dis-
continuity detection. The basic idea is to directly approximate the discontinuity
hypersurface γ itself, instead of refining the sparse grid in the vicinity of γ. Un-
like the discontinuous function f(y) in (2.1), the hypersurface γ is continuous or
even smoother, so that the drawbacks of the SG method mentioned above can be
avoided when directly approximating γ. However, in general, γ is not a function in
the Cartesian coordinate system in R

N , so that the hyperspherical transformation
is introduced into our approach to convert γ into a function in the hyperspherical
coordinate system. In this section, details about the conversion and the evaluation of
the transformed function are discussed in sections 4.1 and 4.2, respectively. In sec-
tions 5 and 6, hyperspherical coordinate representations of the discontinuity surface
are used to develop a deterministic SG and random sampling approaches, respectively,
for efficiently detecting the discontinuity surface.

4.1. Function Representation in the Hyperspherical Coordinates. A hyper-
spherical coordinate system is a generalization of the three-dimensional spherical co-
ordinate systems. It has one radial coordinate r ranging over [0,∞); one angular
coordinate θN−1 ranging over [0, 2π]; and N − 2 angular coordinates θ1, . . . , θN−2

ranging over [0, π]. Denoting Γs = [0, π]N−2 × [0, 2π], the relation between the hy-
perspherical coordinates (r, θ1, . . . , θN−1) ∈ [0,∞)×Γs and the Cartesian coordinates
y = (y1, . . . , yN) ∈ R

N is given by

(4.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = y0,1 + r cos(θ1),

y2 = y0,2 + r sin(θ1) cos(θ2),

...

yN = y0,N + r sin(θ1) · · · sin(θN−2) sin(θN−1),

where y0 = (y0,1, . . . , y0,N ) denotes the origin of the hyperspherical coordinate system.
Based on this transformation, we would like to transform the discontinuity hypersur-
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face γ defined by the implicit equation G(y) = 0 into the hyperspherical coordinate
system, and represent it by an explicit function of θ = (θ1, . . . , θN−1). To this end,
we make the following assumption about the geometry of the subdomain Γ1 and the
origin y0.

Assumption 4.1. For the underlying domain Γ = Γ1 ∪ γ ∪ Γ2 in (2.1), we assume
that Γ1 is a star-convex domain in R

N and that a point y0 in Γ1 is given such that,
for all y ∈ Γ1, the line segment {y0 + ty | t ∈ [0, 1]} from y0 to y is in Γ1.

Remark 4.2. When Γ1 is a convex domain, it is also star convex, and any point in
Γ1 can be used as the origin y0; the function given in Example 2.1 provides an example
of this case. If y0 is not known a priori, it can be obtained by Monte Carlo sampling
in Γ, as long as f(y) has the characteristic property. In practice, y0 is sometimes
available for the problem of interest. For instance, as discussed in Example 2.2, the
interest of investigating the probability of an event usually results from the occurrence
of such an event in a physical experiment with a specific set of parameter values. In
this case, these values can be used to define the origin y0. On the other hand, if Γ1 is
not convex, the set of points qualified to be used as y0 is only a subset of Γ1. In this
case, especially when the target function has no characteristic property, it is much
more difficult to choose a qualified y0.

Based on the transformation (4.1) with origin y0 satisfying Assumption 4.1, there
exists a unique (N − 1)-dimensional continuous function g(θ) : Γs → [0,∞) such that
∂Γ1 = {(g(θ), θ) | ∀θ ∈ Γs}. The value of g(θ) is the Euclidean distance between
y0 and ∂Γ1 along the direction θ. Under the definitions in section 2, given θ ∈ Γs,
there are two possibilities for the location of (g(θ), θ), i.e., (g(θ), θ) ∈ ∂Γ ∩ ∂Γ1 or
(g(θ), θ) ∈ γ. Thus, g(θ) is the desired function representation of the discontinuity
hypersurface γ. Unlike the equation G(y) = 0, g(θ) is an explicit representation of
γ, so that it becomes feasible to estimate γ directly by approximating g(θ) in Γs.
However, Assumption 4.1 only guarantees the existence of g(θ), and the value of g(θ)
at θ ∈ Γs is unknown a priori. Therefore, a strategy of evaluating g(θ) is provided in
section 4.2.

4.2. Evaluation of γ in the Hyperspherical Coordinates. Before moving for-
ward, for clarity we list and explain in Table 1 the notation used in what follows.
Essentially, the evaluation of g(θ) becomes a discontinuity detection problem for the
one-dimensional function fθ(r) in the interval [Sr(y0), Sr(βθ)]. If (g(θ), θ) ∈ ∂Γ∩∂Γ1,

Table 1 Notation.

Notation Explanation

g(θ) the function representation of ∂Γ1 in Γs = [0, π]N−2 × [0, 2π]

g̃(θ) the approximation of g(θ) using root-finding methods

S(y) the transformation from Cartesian coordinates y to hyperspherical coordinates (r,θ)

S−1(y) the inverse transformation of S(y)

Sr(y) the transformation from y to the radial coordinate r

Sθ(y) the transformation from y to the angular coordinates θ = (θ1, . . . , θN−1)

βθ the Cartesian coordinates (βθ,1, . . . , βθ,N) of the intersection point of ∂Γ∩∂Γ1 and the
ray from y0 along the direction θ

fθ(r) the target function f restricted to the ray along the direction θ, i.e., fθ(r)=f(S−1(r, θ))
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then fθ(r) is a continuous function on the line segment {y0+tβθ | t ∈ [0, 1]}, such that
g(θ) = |βθ − y0|; if (g(θ), θ) ∈ γ = ∂Γ1\∂Γ, then fθ(r) is discontinuous at r = g(θ)
so that g(θ) can be estimated by capturing the discontinuity of fθ(r). We discuss
the evaluation of f(y) in the absence of the characteristic property (under Assump-
tion A1) in section 4.2.1 and with the characteristic property (under Assumption A2

or A3) in section 4.2.2.

4.2.1. f(y) without the Characteristic Property. Under Assumption A1 given
in section 2, we cannot distinguish whether fθ(r) is continuous or discontinuous in
[Sr(y0), Sr(βθ)], so that one needs to first approximate the whole profile of fθ(r),
then identify the existence and location of the discontinuity by analyzing the approx-
imation. For each θ, we use the one-dimensional adaptive interpolation approach to
construct an adaptive approximation of fθ(r) in the interval [Sr(y0), Sr(βθ)]. The
adaptivity will automatically refine in the region where fθ(r) has large variations,
including jump discontinuities. To find a value g̃(θ) such that |g̃(θ) − g(θ)| ≤ τ , an
adaptive interpolant is constructed by setting η = fθ in (3.6), with the maximum
level of the adaptive grid being Lmax = �log2(|y0 − βθ|/τ)�. Note that the hierarchi-
cal surplus decays to zero as the level L increases in the smooth region of fθ(r), but
not near the jump discontinuity. Thus, if the mesh refinement stops automatically
at a level L < Lmax, it means that fθ(r) is continuous in [Sr(y0), Sr(βθ)] so that
g(θ) = |βθ − y0| and (g(θ), θ) ∈ ∂Γ ∪ ∂Γ1. Otherwise, due to Assumption 4.1, fθ(r)
has only one jump discontinuity at (g(θ), θ), and thus g̃(θ) can be determined by

(r1, r2) = arg max
r,r′∈HLmax,α([Sr(y0),Sr(βθ)])

|fθ(r)− fθ(r
′)|

|r − r′| and g̃(θ) =
1

2
(r1 + r2),

where [r1, r2] is the interval which contains the largest variation of fθ(r) based on the
available samples in HLmax,α([Sr(y0), Sr(βθ)]). If τ is sufficiently small, then we have
g(θ) ∈ [r1, r2] with |r1 − r2| < τ .

4.2.2. f(y) with Characteristic Property. Under Assumptions A2 or A3, rely-
ing on the characteristic property, root-finding approaches can be employed to improve
the efficiency of searching. Specifically, to evaluate g(θ) at θ ∈ Γs, we first evaluate
f(y) at y = βθ. If f(βθ) = f1(βθ), then(g(θ), θ) ∈ ∂Γ ∩ ∂Γ1 and |βθ − y0| is the
exact value of g(θ). Otherwise, we have (g(θ), θ) ∈ γ ⊂ ∂Γ1 and g(θ) is the location
of the jump discontinuity of the function fθ(r), which can be represented by

fθ(r) =

{
f1
(
S−1(r, θ)

)
if r ≤ g(θ),

f2
(
S−1(r, θ)

)
if r > g(θ),

where S−1(r, θ) ∈ Γ. The simplest root-finding approach is the bisection method
starting with r−1 = 0 and r0 = |βθ − y0|. In the kth iteration, we have rk =
(rk−1+rk−2)/2, where fθ(rk−1) = f1(S

−1(rk−1, θ)) and fθ(rk−2) = f2(S
−1(rk−2, θ)).

For a prescribed accuracy τ such that |g̃(θ) − g(θ)| ≤ τ , the necessary number of
iterations K is given by

(4.2) K =
⌈
log2

(|y0 − βθ| /τ
)⌉
,

and the final approximation is defined by g̃(θ) = (rK + rK−1)/2. Note that the
bisection method is preferable when f(y) has the characterization property because
it only adds one neighboring point at each iteration, whereas the SG method adds
two neighboring points at a time.
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In the case f(y) satisfies Assumption A3, i.e., G(y) can be evaluated as a black-
box function, other root-finding methods with faster convergence rates can be used to
improve the efficiency of searching. For instance, G(y) = F (u(y))−u in Example 2.2
can be evaluated such that the discontinuity of fθ(r) can also be detected by searching
the root of G(S−1(r, θ)) = F (u(S−1(r, θ))) − u = 0. In this work, relying on the
smoothness of G(y), we use the Regula–Falsi method [29], a variant of the secant
method. As is the case when using the bisection method, we start with r−1 = 0 and
r0 = |βθ − y0|; in the (k + 1)th iteration, rk+1 is defined by

(4.3) rk+1 = rk −G(S−1(rk, θ)) · rk − rk′

G(S−1(rk, θ))−G(S−1(rk′ , θ))
,

where k′ is the maximum index less than k such that G(S−1(rk, θ)) ·G(S−1(rk′ , θ)) <
0. It is known that the Regula–Falsi method converges more slowly than the secant
method, but the iterates generated by (4.3) are all contained within the initial interval
[Sr(y0), Sr(βθ)]. Thus, one does not need to worry about the issue of getting a
negative rk from (4.3). When |rk − rk′ | becomes sufficiently small, one can switch to
the secant method to obtain faster convergence.

5. Hyperspherical Sparse Approximation with Deterministic Sampling. In
section 5.1, we develop our approach for detecting discontinuity surfaces by utilizing
the deterministic sparse grid (SG) sampling method discussed in section 3. In sec-
tion 5.2, the efficiency of the proposed algorithm is further improved by incorporating
the hierarchical acceleration technique proposed in [18]. Rigorous error estimates
and ε-complexity analyses are provided in section 5.3 for the algorithms discussed in
sections 5.1 and 5.2.

5.1. Hyperspherical Sparse Grid Interpolation. We now describe a complete
procedure for hyperspherical SG interpolation, where sparse grids can be viewed as
a deterministic sampling approach. Under Assumption 4.1, we would like to build
an adaptive sparse grid interpolant of g(θ) representing γ in the (N − 1)-dimensional
domain Γs.

Remark 5.1. Unlike in section 3 in which sparse grids are used to build approx-
imations in the N -dimensional Cartesian coordinates, here, sparse grids are used to
build approximations in the (N − 1)-dimensional hyperspherical coordinate system θ.
The success of the latter approach is due to the smoothness of the function represen-
tation of the discontinuity surface in the hyperspherical coordinate system.

At each grid point θl,i, g(θl,i) is estimated by g̃(θl,i) using the approaches dis-
cussed in section 4.2. Thus, we actually construct an interpolant of the approximation
g̃(θ). For fixed Lmin > 0 and α > 0, the adaptive sparse grid interpolant at level L is
defined by setting η(θ) = g̃(θ) in (3.6), i.e.,

(5.1) g̃L,α(θ) =

L∑
l=0

∑
|l|=l

∑
i∈Bα

l

ω̃l,l · ψl,i(θ),

where the surpluses {ω̃l,i | |l| ≤ L, i ∈ Bα
l } are computed based on the set of approx-

imate function values
{
g̃(θl,i) | θl,i ∈ HL,α(Γs)

}
. Recall that if (g(θl,i), θl,i) is on the

boundary ∂Γ∩ ∂Γ1, g̃(θl,i) = g(θl,i) has no numerical error; otherwise, g̃(θl,i) is com-
puted by either the SG method discussed in section 4.2.1 or one of the root-finding
methods discussed in section 4.2.2. The approximated hypersurface γ̃ is given by

γ̃ =
{
(g̃L,α(θ), θ)

∣∣ θ ∈ Γs

}
.
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Algorithm 1 is the main algorithm we use to construct our hyperspherical SG inter-
polation, where the bisection method is used under Assumption A2.

Algorithm 1. The hyperspherical sparse grid interpolation.

Initialize N , Lmin, α, τ , y0

l = −1

while l = −1 or
{
ΔHL,α(Γs) 	= ∅ and l + 1 ≤ Lmax

}
do

Generate ΔHl+1,α(Γs)

for θl,i ∈ ΔHl+1,α(Γs) do

Search βθl,i = (βθl,i,1, . . . , βθl,i,N ) ∈ Γ

if f(βθl,i) = f1(βθl,i) then

g̃(θl,i) = |y0 − βθl,i |
else

Define K =
⌈
log2

(|y0 − βθl,i |/τ
) ⌉

Run bisection g̃(θl,i) = rK where |rK − g(θl,i)| ≤ |βθl,i − y0|/2K
end if

ω̃l,i = g̃(θl,i)− g̃L,α(θl,i)

end for
Update to Hl+1,α(Γs) by adding ΔHl+1,α(Γs)
l = l + 1

end while

By building the approximation g̃L,α(θ), we decompose a high-dimensional discon-
tinuity detection problem to a set of one-dimensional discontinuity detection problems
which are much easier to solve than the original problem. Due to the continuity of
g(θ) resulting from the closeness of ∂Γ1, the sparsity of the resulting sparse grid can
be retained such that all the disadvantages of the traditional adaptive SG approach
shown in Example 3.1 can be completely avoided. As mentioned in section 2, the cost
of function evaluations is usually dominant, so that the total computational cost for
constructing the approximation g̃L,α(θ) can be measured by

(5.2) Ctotal =
L∑

l=0

∑
|l|=l

∑
i∈Bα

l

M τ
l,i,

where M τ
l,i is the number of function evaluations for obtaining g̃(θl,i) with accu-

racy τ . Note that M τ
l,i = 1 in the sense that f(y) has the characteristic property and

(g(θl,i), θl,i) is on the boundary of Γ. It is well known that the convergence of either
the SG method or of root-finding methods heavily depends on the size of the search
interval. So far, the search interval for each θl,i is set to [Sr(y0), Sr(βθ)], which is
the largest possible interval, because we assume that no knowledge about the func-
tion value g(θl,i) is known a priori. In the next section, the efficiency of constructing
g̃L,α(θ) is improved by taking advantage of its hierarchical structure.

5.2. Accelerated Approximation Using Sparse Grid Hierarchies. In (5.2), at
each grid point θl,i, M

τ
l,i is determined by the prescribed accuracy τ and the initial

search interval. So far, the initial search interval for each θl,i is set to [Sr(y0), Sr(βθl,i)]
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because no knowledge about the value g(θl,i) is known a priori. Such an assumption
is true on level L = 0. However, when L ≥ 1, by the definition of a surplus, we have

g̃(θl,i) = g̃L−1,α(θl,i) + ω̃l,i

for each newly added point θl,i ∈ ΔHL,α(Γs) on level L. As such, the SG approx-
imation of level L − 1 can provide a prediction of g̃(θl,i) with the error being the
unknown surplus. Based on the upper bound given in (3.5), such a prediction will
become more and more accurate as L increases. Thus, for L ≥ 1, we utilize the SG
approximation of the previous level to reduce the size of the initial search interval in
order to accelerate the evaluation of g̃(θ).

Assuming the target function f(y) has the characteristic property, we provide the
algorithm for the accelerated bisection method in Algorithm 2, which can be extended
to other approaches with relative ease. The basic idea behind Algorithm 2 is to set one
of the endpoints, e.g., r−1, of the initial search interval to the predicted value given
by the interpolated value g̃L,α(θl,i) at the new added point θl,i. Besides that, several
practical issues in terms of efficiency and robustness are considered as well. First,
one needs to properly define the other endpoint r0 such that |r−1 − r0| will become
smaller as the level L increases and the interval [r−1, r0] can cover the discontinuity
location g(θl,i). Theoretically, r0 can be chosen according to the upper bound of the
error |g(θ) − g̃L,α(θ)|. However, since the a priori error bound is only known up to
a constant, in the computations, we use the hierarchical surplus, which acts as an
a posteriori error estimate, to choose the other endpoint r0. Specifically, for the new
added grid points on level L, we initially set the length |r−1 − r0| to the maximum
magnitude, denoted by ξ, of all surpluses on level L − 1. Note that such surpluses
actually characterize the error of the interpolant on level L− 2, which means ξ is not

Algorithm 2. The accelerated bisection method to compute g̃l,i ≈ g(θl,i) for θl,i ∈
ΔHL,α(Γs), given g̃L,α(θ).

ξ = max
{
|ωl′i′ |

∣∣∣ θl′i′ ∈ HL−1,α(Γs) and |l′| = L− 1
}

Search βθl,i = (βθl,i,1, . . . , βθl,i,N ) ∈ Γ

r−1 = min
{
max {g̃L−1,α(θl,i), 0} , |y0 − βθl,i |

}
if f(S−1(r−1, θl,i)) = f1(S

−1(r−1, θl,i)) then

r0 = min{r−1 + ξ, |y0 − βθl,i |}
while f(S−1(r0, θl,i)) 	= f2(S

−1(r0, θl,i)) do

r0 = min{r0 + ξ, |y0 − βθl,i |}
end while

else

r0 = max{r−1 − ξ, 0}
while f(S−1(r0, θl,i)) 	= f1(S

−1(r0, θl,i)) do

r0 = max{r0 − ξ, 0}
end while

end if

Define K = �log2 (|r0 − r−1|/τ )�
Run bisection g̃l,i = rK where |rK − g(θl,i)| ≤ |r0 − r−1|/2K
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the optimal choice, but in most cases it is big enough to cover the discontinuity and
also decays to zero as L increases. However, in order to avoid the scenario that both
r−1 and r0 are on the same side of the discontinuity, e.g., r−1, r0 < g(θ), we add two
loops in Algorithm 2 to recursively enlarge the length |r−1−r0| by ξ until the interval
[r−1, r0] covers the value g(θ).

5.3. ε-Complexity Analyses. We provide error estimates and ε-complexity anal-
yses of the proposed hyperspherical SG method for approximating the discontinuity
hypersurface γ, i.e., the function g(θ). For simplicity, we assume the target func-
tion f(y) satisfies Assumption A2. The analyses are carried out in the context of
the isotropic SG interpolation, given in (3.3), coupled with a bisection method. The
underlying domain Γ is set to (0, 1)N . For the sake of notational convenience, we set
Ns = N − 1 in the following derivation and use ‖ · ‖ to denote the L∞(Γs) norm.

First, we observe that the total error e = g(θ)− g̃L(θ) can be decomposed as

(5.3) e = g(θ)− g̃L(θ) = g(θ)− gL(θ)︸ ︷︷ ︸
e1

+ gL(θ)− g̃L(θ)︸ ︷︷ ︸
e2

,

where gL(θ) is the isotropic SG approximation of the exact target function g(θ).
Here, we study a specific type of discontinuity hypersurface satisfying the following
assumption.

Assumption 5.2. Under Assumption 4.1, the transformed function g(θ) charac-
terizing γ is in the space

Xq(Γs) :=
{
g : Γs → [0,+∞) | Dα(g) ∈ L∞(Γs), |α|∞ ≤ q

}
,

where α = (α1, . . . , αNs), |α|∞ = max1≤n≤Ns αn, andD
α(g) = ∂|α|1g/∂θα1

1 · · · ∂θαNs

Ns
.

An estimate for e is given in the following lemma.

Proposition 5.3. Under Assumptions 4.1 and 5.2, if the transformed function
g(θ) is in the space X2(Γs), then the error e = e1 + e2 in (5.3) can be bounded by

(5.4) ‖e‖ ≤ Csg2
−2L

Ns−1∑
k=0

(
L+Ns − 1

k

)
+ 2Ns

(
L+Ns

Ns

)
τ,

where τ is the tolerance for the bisection method. The constant Csg is independent of
the level L and the dimension Ns.

Proof. The proof is given in Appendix A.1.

Now, we analyze the cost of constructing g̃L(θ) with the prescribed error ε > 0.
According to the error estimate in Proposition 5.3, a sufficient condition for ‖e‖ =
‖g(θ)− g̃L(θ)‖ ≤ ε is that

(5.5) ‖e1‖ ≤ Csg2
−2L

Ns−1∑
k=0

(
L+Ns − 1

k

)
≤ ε

2

and

(5.6) ‖e2‖ ≤ 2Ns

(
L+Ns

Ns

)
τ ≤ ε

2
.

Let Cmin denote the minimum cost, i.e., the minimum number of function evaluations,
needed to satisfy (5.5) and (5.6). The goal is to determine an upper bound for Cmin.
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Note that, for fixed dimension N and level L, the total cost Ctotal is determined by
solving the inequality (5.6). The larger L is, the smaller τ is, which means that when
using the bisection method, a greater number of function evaluations are needed to
achieve the accuracy τ . Therefore, the estimation of Cmin has two steps. Given N
and ε, we first determine upper bounds for the minimum L needed to achieve (5.5);
then we substitute the obtained value into (5.6) to get an upper bound for Cmin.

To perform the first step, we need to estimate the numbers of degrees of freedom
of Hl and ΔHl for l ≤ L, denoted by |HL| and |ΔHl|, respectively. The estimation
of |HL| has been studied in [6, 24], but the estimate in [24] is not sufficiently sharp
and the estimate in [6] has no results related to |ΔHl|. In the following lemma, we
provide estimates for |ΔHl| which directly leads to an estimate of |HL|.

Lemma 5.4. The dimensions of the subspaces ΔHl and HL for Ns ≥ 2, i.e., the
numbers of grid points in ΔHl(Γs) and HL(Γs), respectively, are bounded by

|ΔHl| ≤ 2l
(
l +Ns − 1

Ns − 1

)
≤ 2l

(
l +Ns − 1

Ns − 1

)Ns−1

eNs−1

for 0 ≤ l ≤ L and, correspondingly,

|HL| ≤ 2L+1

(
L+Ns − 1

Ns − 1

)
≤ 2L+1

(
L+Ns − 1

Ns − 1

)Ns−1

eNs−1.

Proof. The proof is given in Appendix A.2.

Similar to the analyses in [31], we solve the inequality (5.5) to obtain an upper
bound for L such that the error of the isotropic sparse grid interpolant gL(θ) is smaller
than the prescribed accuracy ε

2 .

Lemma 5.5. For ε < 2Csg in (5.5), the accuracy ‖e1‖ ≤ ε
2 can be achieved with

a minimum level L such that

L ≤ �Lk� =
⌈
tkNs

2 ln 2

⌉
with h =

2e

ln 2

(
2Csg

ε

) 1
Ns

,

where {tk}∞k=0 is a monotonically decreasing sequence defined by

tk = ln(tk−1h) with t0 =
e

e− 1
lnh.

Proof. The proof is given in Appendix A.3.

Corollary 5.6. Under Lemma 5.5, for k ∈ N, we have

(5.7)

(
Lk +Ns

Ns

)
≤ ε

2NsCsg
· 22Lk .

This is an immediate result following from substituting (A.4) into (A.3).
Now we derive an upper bound for Cmin in the context of the isotropic hyper-

spherical SG method using a linear basis without acceleration

Theorem 5.7. Under Lemmas 5.4 and 5.5, the minimum total cost Cmin for build-
ing the isotropic SG approximation to g(θ) with accuracy ‖g(θ) − g̃L(θ)‖ ≤ ε based
on Algorithm 1 satisfies the estimate

Cmin ≤ α1

Ns

⎧⎨⎩α2 + α3

log2

(
2Csg

ε

)
Ns

⎫⎬⎭
α4Ns (

2Csg

ε

)α5
{
α6 log2

(
2Csg

ε

)
+ α7Ns + α8

}
,
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where Csg is defined as in (5.5) and the constants α1, . . . , α8 are defined by

(5.8)

α1 = 2, α2 =
2e2

(e− 1)
log2

(
2e

ln 2

)
, α3 =

2e2

(e− 1)
, α4 =

3

2
,

α5 =
1

2
, α6 =

e

e− 1
, α7 =

e

e− 1
log2

(
2e

ln 2

)
+ 1, α8 = 2− log2(Csg).

Proof. The proof is given in Appendix A.4.

Next, we analyze the computational cost of the accelerated Algorithm 1 by ex-
ploiting Algorithm 2. Unlike the unaccelerated Algorithm 1 for which the length τ0
of the initial search interval is set to be of the same scale as the domain Γ, in Algo-
rithm 2, for each new added sparse grid point θl,i with L = |l| ≥ 1, first the desired
function value g(θl,i) is predicted by the level L − 1 interpolant g̃L−1(θl,i), and then
this prediction is used as one endpoint of the initial search interval in the bisection
simulation, i.e., r−1 = g̃L−1(θl,i). For simplicity, the other endpoint is defined by the
upper bound of the error of the prediction, i.e., |g(θl,i)− g̃L−1(θl,i)|. In this case, the
interval [r−1, r0] will include the exact function value g(θl,i). This is slightly different
from the strategy used in Algorithm 2, in which the local error indicator, i.e., the
surplus, is used because the upper bound of |g(θl,i)− g̃L−1(θl,i)| is only known up to
a constant. In the following derivation, the error bound given in (5.4) is still valid,
but, at sparse grid points θl,i for |l| = L, we can obtain a sharper bound for the error
of g̃L−1(θ). The result is provided in the following lemma.

Lemma 5.8. If the transformed function g(θ) is in the space X2(Γs), then at
each sparse grid point θl,i with L = |l| ≥ 1 and i ∈ Bl defined in (3.4), the error
g(θl,i)− g̃L−1(θl,i) satisfies the estimate∣∣g(θl,i)− g̃L−1(θl,i)

∣∣ ≤ Csurp2
−2L + 2Nsτ,

where Csurp is independent of L and τ is the tolerance of the bisection algorithm.

Proof. The proof is given in Appendix A.5.

Finally, the upper bound of Cmin in the context of using the SG method with
acceleration is in the following theorem.

Theorem 5.9. Under Lemmas 5.4, 5.5, and 5.8, the minimum total cost Cmin

incurred in building the isotropic sparse grid approximation to g(θ) with accuracy
‖g(θ)− g̃L(θ)‖ ≤ ε using the accelerated SG method satisfies the estimate

Cmin ≤ α1

⎡⎣α2 + α3

log2

(
2Csg

ε

)
Ns

⎤⎦α4Ns (
2Csg

ε

)α5

[2Ns − log2(Ns) + α9] ,

where Csg is the constant in (5.5), the constants α1, . . . , α5 are defined as in Theo-
rem 5.7, and α9 is defined by

α9 = log2

(
Csurp

Csg

)
+ 2.

Proof. The proof is given in Appendix A.6.

Remark 5.10. Theorems 5.7 and 5.9 tell us that the total cost of the hyperspher-
ical SG method is mainly determined by the number of sparse grid points. Asymp-
totically, the growth rate of |HL| is characterized by the constants α4 and α5, and
the cost due to inaccurate initial searching interval is of order log2(1/ε). According
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to the analyses in [6, 31], the growth rate can be reduced when using high-order hi-
erarchical polynomial bases. In general, with a pth-order hierarchical basis, we have
α4 = (p + 2)/(p+ 1) and α5 = 1/(p+ 1). Note that the use of an acceleration tech-
nique with accurate initial guesses will reduce the total cost by a factor of log2(1/ε)
asymptotically, which will be demonstrated in the following section.

6. Hyperspherical Sparse Approximation with Random Sampling. In this
section we extend the capabilities of our method by incorporating sparse approxi-
mations using random sampling. Specifically, we are interested in the following three
types of approximations:

(a) radial basis function (RBF) interpolation;

(b) discrete least squares (DLS) projection; and

(c) compressed sensing (CS) approximation.

As opposed to the SG interpolation that has to be constructed in hypercubes, the
above approaches typically utilize random sampling and are more flexible when dealing
with domains having irregular geometries. In fact, nonhypercubic domains appear
very often in discontinuity detection, e.g., when the discontinuity surface intersects
with the boundary of the search domain, as shown in Figure 4 in section 7. In this
setting, we only consider the scenarios (S2) and (S3); i.e., the discontinuous function
f(y) is assumed to feature the characteristic property. In each of the three methods
listed above, the aim is to construct an approximation to the discontinuity surface γ
of the form

(6.1) gM (θ) :=

M∑
m=1

wmψm(θ) for θ ∈ Γγ := {θ ∈ Γs | (g(θ), θ) ∈ γ}

based on a set of J random samples {θj, j = 1, . . . , J} ⊂ Γγ and the associated
function values {g̃(θj), j = 1, . . . , J}. The three methods (a)–(c) differ only in the
choice of the basis functions {ψm}Mm=1 and the associated approximation space VM :=
span{ψm,m = 1, . . . ,M}. The construction of gM (θ) eventually relies on the solution
of a linear system, denoted by

(6.2) Ψw = g,

where w := (w1, . . . , wM )� is the coefficient vector of gM (θ), Ψ is a J ×M matrix
with Ψjm := ψm(θj) for j = 1, . . . , J , m = 1, . . . ,M , and g := (g̃(θ1), . . . , g̃(θJ))

�

is the vector of data. Again, the three methods also differ in the size of the system
matrix Ψ, which requires different approaches for solving the corresponding linear
system. In the following three paragraphs, we explain how the methods (a)–(c) are
integrated into our hyperspherical framework for discontinuity detection.

Radial basis function interpolation. RBF methods possess several attractive features
such as a certain insensitivity to dimension and ease of implementation. Thus, they
have recently gained significant attention and have been used in many applications
such as scattered data interpolation [4]. Let R

+ := {r ∈ R, r ≥ 0} denote the non-
negative half line and φ : R �→ R

+ denote a continuous function with φ(0) ≥ 0.
An RBF is a function of the form φ(‖θ − θ′‖2), where ‖θ − θ′‖2 is the Euclidean
distance between θ and θ′. Then the basis function ψm in (6.1) can be defined as
ψm(θ) := φ(‖θ − θm‖2). However, when using global RBF interpolation, the system
matrix Ψ in (6.2) is usually full and severely ill-conditioned, especially if certain
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popular RBFs such as Gaussians or inverse multiquadrics are used. To convert the
ill-conditioned matrix to a well-conditioned matrix, compactly supported RBFs can
be used instead of global RBFs. The most popular family of compactly supported
RBFs is the Wendland function [32]. Specifically, the Wendland function starts with
a truncated power function φ�(r) := (1− r)�+ that is strictly positive definite in R

d for

� ≥ �d
2�+1. The kth order Wendland function, denote by φd,k(r), can be constructed

by the recursive procedure

(6.3) φd,k(r) :=

∫ ∞

r

tφd,k−1(t)dt, for k = 1, 2, 3, . . . ,

where φd,0(r) := φ�(r) for � = �d/2�+ k + 1 and the kth-order function φd,k is in the
function space C2k(R). In the setting of interpolation, we have M = J in (6.1) and
the basis functions ψm(θ) defined by

(6.4) ψm(θ) := φd,k(‖θ − θm‖2),

where d = Ns = N − 1 and {θm,m = 1, . . . ,M} is the set of M samples points in Γγ .

Discrete least squares projection. In this case, we denote by L2
�(Γγ) the Hilbert space

of real-valued square integrable functions with respect to a finite measure � and denote
by 〈·, ·〉� and ‖ · ‖L2

�
the associated inner product and norm, i.e.,

〈u, v〉� :=

∫
Γγ

u(θ)v(θ)d�(θ) and ‖u‖L2
�
:=

√
〈u, u〉� ∀u ∈ L2

�(Γγ).

We aim to approximate the function g(θ) in a finite-dimensional subspace VM ⊂
L2
�(Γγ) with dimension #(VM ) =M . We assume that the functions belonging to VM

are defined everywhere over Γγ . In this case, {ψm}Mm=1 represent an orthonormal basis
of VM with respect to the above inner product. The best approximation in the least
squares sense can be obtained by defining the coefficients in (6.1) as wm := 〈g, ψm〉�.
When the function g(θ) is unknown and {g̃(θj)}Jj=1 are approximations of g(θ) at a

set of points {θj}Jj=1 that are i.i.d. random samples distributed according to �, the
approximation in (6.1) can be constructed in the discrete least squares (DLS) sense,
i.e.,

gM := arg min
v∈VM

J∑
j=1

|g̃(θj)− v(θj)|2.

The coefficient vector w ∈ R
M of gM in (6.1) is the solution to the linear system

(6.5) Ψ�Ψw = Ψ�g,

where Ψ�Ψ is the M ×M Gram matrix with (Ψ�Ψ)ii′ :=
∑J

j=1 ψi(θj)ψi′(θj)/J .
When VM is an orthogonal polynomial space defined on a lower set with cardinality
M , the number of samples J needs to scale likeM2 up to a logarithmic factor, so as to
guarantee the stability of the least squares problem in (6.5) [9, 23]. According to the
definition of g(θ), when Γγ = Γs, i.e., ∂Γ1∩∂Γ 	= ∅, we let � = 1 in Γs and VM be the
total degree polynomial space with cardinalityM expanded by Legendre polynomials.
However, when Γγ 	= Γs, i.e., ∂Γ1 ∩ ∂Γ = ∅, identifying the geometry of Γγ in Γs is
almost as difficult as detecting γ in Γ. Thus, instead of defining a new orthogonal
polynomial basis in Γγ , we still use the Legendre basis; however, such a basis is no
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longer orthogonal under the uniform measure in Γγ . The loss of orthogonality may
lead to instability of the system in (6.5), because the expectation of the Gram matrix
Ψ�Ψ does not converge to the identity matrix as J → ∞. Hence, in this case, we
utilize the QR factorization [29] to directly solve the overdetermined system in (6.2)
and thus avoid the possible numerical instability.

Compressed sensing approximation. As opposed to the DLS method, the CS approxi-
mation starts with an enriched polynomial space VM , i.e., setting M > J , so that the
linear system in (6.1) is underdetermined. The main idea of compressed sensing is to
identify the sparse structure of the polynomial representation of g(θ) in the enriched
space VM using, e.g., �1 minimization. Specifically, the coefficient vector w ∈ R

M is
identified by solving the following optimization problem:

(6.6) ŵ := arg min
w∈RM

‖w‖1 such that ‖Ψw − g‖2 ≤ δ,

where δ > 0 and ‖w‖1 :=
∑M

m=1 |cm|. We refer the reader to [11, 30] and the
references therein for a comprehensive overview of CS methods. One of the main
topics in polynomial approximation via compressed sensing is estimating sharp lower
bounds for the number J to recover the best s-term approximation in VM . Such sparse
recovery is strongly tied to the concept of the restricted isometry property (RIP). In
the case of using standard RIP [8],M has to scale likeM ≥ CΘ2s log2(s) log(J), where
Θ = 3(Ns)/2 for the preconditioned Legendre basis and Θ = 2(Ns)/2 for the Chebyshev
basis. In the context of recovering the best lower s-term approximation, which is the
best among all approximations supported on lower index sets of cardinality s, a lower
RIP was developed in [8] leading to an improved bound of M , i.e.,

M ≥ CK(s) log2(s)(log(s) +Ns),

whereK(s) = s2 for the Legendre basis andK(s) = slog 3/ log 2 in the Chebyshev basis.
However, similar to the DSL case, we will lose the orthogonality of the basis when
γ intersects with the boundary ∂Γ, i.e., ∂Γ1 ∩ ∂Γ 	= ∅. In this case, the theoretical
results discussed above may no longer hold, but all the computational tools for �1
minimization can still be used. The last issue to be resolved is how to generate J
uniformly distributed samples in Γγ . This can be accomplished by exploiting the
characteristic property of f(y).

We summarize construction of gM (θ) in (6.1) in Algorithm 3.

Remark 6.1. As was the case for Algorithm 1, we utilize the characteristic prop-
erty in Algorithm 3 to generate uniform samples {θj}Jj=1 just in the subdomain Γγ ,
in the case that Γγ 	= Γs. However, because each random sample is drawn from the
uniform distribution in the domain Γs, some function evaluations will be wasteful
if the samples fall outside of the domain Γγ . Statistically, the number of wasteful

function evaluations is of O(J
Volume(Γs\Γγ)
Volume(Γγ)

).

7. Numerical Examples. In this section, we use four discontinuity detection
problems to illustrate the performance of the proposed methods. The first example
is used to test the hyperspherical SG interpolation developed in section 5 for approx-
imating discontinuities of functions with the characteristic property. In the second
example, a generic discontinuous function without the characteristic property is con-
sidered and the importance of the choice of the origin y0 is demonstrated. The third
example is an application of the hyperspherical SG method in computing the proba-
bility of an event that depends on the solution of a partial differential equation with
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Algorithm 3. The hyperspherical sparse approximation with random sampling.

Initialize N , M , J , τ , y0

j = 0
while j < J do

Draw a sample θ from the uniform distribution in Γs

Search βθ = (βθ,1, . . . , βθ,N ) ∈ Γ

if f(βθ) = f2(βθ) then

j = j + 1

θj = θ

K =
⌈
log2

(|y0 − βθj |/τ
)⌉

Run bisection to get zj = rK , where |rK − g(θj)| ≤ |βθj − y0|/2K
end if

end while

Formulate the matrix Ψ and solve the system Ψw = g

random inputs. The last example is used to test the hyperspherical approaches based
on the RBF, DLS, and CS methods developed in section 6.

Example 7.1. Consider the two characteristic functions in R
N ,

(7.1) F1(y) =

⎧⎪⎪⎨⎪⎪⎩
1 if

N∑
n=1

y2n ≤ 1,

0 otherwise,

(7.2) F2(y) =

{
1 if |y3 − y1| ≤ 0.5 for y ∈ [0, 1]N ,

0 otherwise,

where the characteristic domains of F1(y) and F2(y) are a unit hypersphere and a slab
in the unit hypercube, respectively. The linear hierarchical basis is used for building
the SG interpolant, and the bisection method is used to estimate the value of the
transformed function g(θ) at the sparse grid points.

First, to illustrate the distribution of the sparse grid points generated by our
method, we set N = 3 and plot in Figures 3 and 4 the discontinuity surface γ, the
surface of g(θ), and the sparse grid points for F1(y) and F2(y), respectively. By
comparing Figures 2(b) and 3, we can see the advantage of the hyperspherical SG
method. The resulting sparse grid contains only 160 points to achieve the desired ac-
curacy, whereas the classic SG method requires 36,093 grid points. Instead of directly
approximating the discontinuous function F1(y), we approximate the transformed
surface shown in Figure 3(b), where its smoothness retains the sparsity of the result-
ing grid. In Figure 4, we see that the surface γ is only a part of the boundary ∂Γ1,
but Γ1 is a closed subdomain in Γ. There are a total of 1,120 sparse grid points on
∂Γ1 with only 349 points on γ and 771 points on ∂Γ1. According to the discussion
in section 4.2, at the sparse grid points placed on ∂Γ1\γ, there is no need to run the
bisection algorithm to evaluate g(θ) at the 771 points on ∂Γ1, so that a significant
amount of computational effort is saved. In Figure 4, we observe that g(θ) is not
differentiable at the edges and vertices of the characteristic domain Γ1, so that the
SG approximation does mesh refinement around these regions. Although the lack of
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Fig. 3 (a) The discontinuity surface γ with sparse grid points; (b) the transformed surface g(θ)
in the hyperspherical coordinate system. The parameters for the SG approximation are
Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.1, 0.2, 0.3); the total number of sparse grid
points is 160.
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Fig. 4 (a) The discontinuity surface γ with sparse grid points; (b) the transformed surface g(θ)
in the hyperspherical coordinate system. The parameters for the SG approximation are
Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.3, 0.4, 0.5); the total number of sparse grid
points is 1120, of which only 349 are off the boundary.

a derivative is not as bad as a jump discontinuity, it may result in a failure of the
our method if the volume of such a singularity grows quickly as the dimension N
increases. This issue will be considered in future work.

Next, we test the convergence of the hyperspherical SG method in detecting
the discontinuity of F1(y) in three cases: isotropic sparse grids and no acceleration,
isotropic sparse grids and acceleration, and adaptive sparse grids and acceleration.
The origin of the hyperspherical coordinate system is set to y0 = (0.2/

√
N, . . . ,

0.2/
√
N) which is 0.2 away from the origin (0, . . . , 0). In Table 2, we list the compu-

tational costs of the three tested cases for N = 2, 3, 4, 5, 7, 9, where the interpolation
error tested is measured by the metric e∞ in (2.4). As expected, for high-dimensional
discontinuity detection, our approach achieves faster convergence rates than the well-
known SG method. Moreover, for the same accuracy, acceleration and adaptivity can
provide a significant savings in computational cost.

Example 7.2. Consider the two-dimensional discontinuous function on [−1.5, 1.5]
× [−1.5, 1.5] given by

(7.3) f(y) =

⎧⎪⎪⎨⎪⎪⎩
y21 + y22 if

√
y21 + y22 ≤ 1 +

1

4
cos

(
4 arctan

(y2
y1

))
,

y21 + y22 +
1

2
otherwise,
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Table 2 Computational costs (total number of function evaluations) and savings of the hyperspher-
ical SG method with acceleration and adaptivity for Example 7.1.

Dim Error
IsoSG IsoSG+acceleration SG+acceleration

Cost Cost Saving Cost Saving

2
1.0e-3 384 274 28.7% 251 34.7%

1.0e-4 1,603 955 40.4% 832 48.1%

1.0e-5 7,230 2,968 58.9% 2,737 62.1%

3
1.0e-3 7,046 4,461 36.7% 3,022 57.1%

1.0e-4 42,541 18,021 57.6% 12,817 69.9%

1.0e-5 224,978 67,721 69.9% 54,439 75.8%

4
5.0e-2 880 682 22.5% 584 33.6%

1.0e-3 66,207 38,165 42.4% 26,329 60.2%

1.0e-4 542,632 241,337 55.5% 161,354 70.3%

5
5.0e-2 5,135 3,645 29.0% 2,082 59.5%

1.0e-2 23,782 16,558 30.4% 14,694 38.2%

1.0e-3 383,884 207,862 45.9% 94,148 75.5%

7
1.0e-1 24,757 11,770 52.5% 6,327 74.4%

5.0e-2 67,671 40,221 40.6% 25,111 62.9%

5.0e-3 773,113 479,984 37.9% 354,040 54.2%

9
1.0e-1 26,593 14,843 44.2% 6,426 75.8%

5.0e-2 157,851 80,507 49.0% 58,849 62.7%

1.0e-2 1,472,441 983,101 33.2% 513,163 65.1%
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Fig. 5 (a) The surface of the target function f(y) in Example 7.2; (b) the true discontinuity curve
and the approximated curves with the origin of the polar coordinate system being (0, 0) and
(−1.1, 0); (c) the decay of the interpolation error measured by the metric in (2.4).

which is plotted in Figure 5(a); the jump discontinuity is along the curve
√
y21 + y22 =

1 + 1
4 cos (4 · arctan (y2/y1)). The domain Γ1 is defined as the interior of this curve.

Note that Γ1 is star convex but not convex, so that only a subset of points in Γ1 can
be used as the origin of the hyperspherical coordinate system. We test our approach
with the origin being (0, 0) and (−1.1, 0), and the bisection method is used to approx-
imate the transformed function g(θ). The captured discontinuity curves are plotted
in Figure 5(b). It is easy to see that the point (0, 0) is qualified to be the origin of the
polar system so that the approximate curve captures the discontinuity very well. In
contrast, (−1.1, 0) does not satisfy Assumption 4.1, and thus the function fθ(r) has
multiple roots along some directions, whereas the bisection algorithm can only find
one root. Thus, the discontinuity curve is not captured correctly in a subdomain of
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Γs, as shown in Figure 5(b). In addition, if we assume the function f(y) has no char-
acteristic property, the one-dimensional SG approach discussed in section 4.2.1 has
to be used to estimate the value of the transformed function g(θ). For comparison,
the decays of the interpolation error measured by the metric e∞ in (2.4) are plotted
in Figure 5(c). When setting the origin y0 = (−1.1, 0), the error does not decay
toward zero because of the violation of Assumption 4.1. When y0 = (0, 0), we can
see that the use of the bisection method based on the characteristic property and the
hierarchical acceleration can significantly reduce the number of function evaluations
to achieve the prescribed accuracy.

Example 7.3. Consider the two-dimensional steady heat equation with stochastic
diffusivity,

(7.4)

{
−∇ · (κ(x, ω)∇u(x, ω)) = h(x) in [0, 1]2 × Ω,

u(x, ω) = 0 on ∂D × Ω,

with h(x) = 2000 + exp(− (x1−0.6)2+(x2−0.8)2

0.052 ) and

(7.5)
κ(x, ω) = y1(ω)

2 + exp
[
y2(ω)

4 sin(πx1) + y3(ω)
2 sin(πx2)

+ cos(πx1) + cos(πx2)
]
,

where y(ω) = (y1(ω), y2(ω), y3(ω)) are independently and identically distributed ran-
dom variables following the uniform distribution U([−1, 1]). The quantity of interest
is the probability of the event that the integral of the solution u(x, ω) over D is larger
than the threshold value 1.2, i.e.,

(7.6) QoI =

∫
Ω

XΓ1(y)ρ(y)dy, where Γ1 =

{
y ∈ R

3

∣∣∣∣ ∫
D

u(x,y)dx > 1.2

}
is the domain of interest described by the characteristic function XΓ1(y). Note that
this example satisfies Assumption A3 given in section 2, and the implicit function is
defined by G(y) = 1.2 − ∫

D
u(x,y)dx = 0, which is smooth due to the regularity of

the solution u. In this case, we can use more advanced root-finding methods discussed
in section 4.2.2, such as the Regula–Falsi method. Here we use the SG interpolation
with both acceleration and adaptivity and only compare the performances of different
root-finding methods. At each point y ∈ Γ, the PDE in (7.4) is solved using the finite
element method on a 50× 50 mesh in the physical domain. Because we are focusing
on improving the accuracy of capturing discontinuities in the stochastic domain, the
error from the spatial discretization is ignored, and the finite element projection is
treated as the exact solution. An approximation to the exact value of QoI in (7.6) is
computed using Monte Carlo sampling. The origin y0 is set to (0.01, 0.2, 0.05). The
surface γ and its transformed representation are plotted in Figures 6(a) and 6(b),
respectively. For Lmin = 3 and α = 0.01, we end up with a total of 344 sparse grid
points in the hyperspherical domain Γs; those points are also plotted in Figures 6(a)
and 6(b). In Figure 6(c), we show the error decay of our approach using the bisection
and Regula–Falsi methods, respectively, where the error is measured by the metric eint
in (2.5). We observe that the Regula–Falsi method can provide additional savings in
computational costs over the bisection method by taking advantage of the availability
and smoothness of G(y). Further evidence can been seen in Table 3.
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Fig. 6 (a) The discontinuity surface γ with 344 sparse grid points; (b) the transformed surface g(θ)
in the hyperspherical coordinate system; (c) the error decays of the Monte Carlo method and
the hyperspherical SG interpolation using the bisection and the Regula–Falsi methods.

Table 3 The computational cost (number of function evaluations) of the hyperspherical SG method
using the bisection method and the Regula–Falsi method in Example 7.3.

Error Bisection Regula–Falsi Savings

1.0e-3 4,116 3,381 17.8%

1.0e-4 17,464 13,047 25.3%

1.0e-5 68,299 48,555 28.9%

Example 7.4. Consider the discontinuous function in Γ = [0, 1]N ,

(7.7) f(y) =

⎧⎪⎪⎨⎪⎪⎩
1 if (y1 + 0.3)2 +

N∑
n=2

y2n ≤ 0.64,

0 otherwise,

where the characteristic domain of f(y) is the intersection of the hypercube [0, 1]N

and the ball centered at (−0.3, 0, . . . , 0) with radius 0.8. The discontinuity surface γ
and the transformed surface g(θ) are plotted in Figures 7(a) and 7(b), respectively.
It is easy to see from Figure 4 that the transformed function g(θ) may not be dif-
ferentiable on the manifold where f(y) and ∂Γ intersect. In the case of using the
SG interpolation in section 5, an adaptivity strategy is needed to refine the sparse
grid near the intersection. However, in practice, we are interested in approximating
γ without worrying about the surface ∂Γ ∩ ∂Γ1. Therefore, we would like to utilize
the sparse approximation approaches with random sampling developed in section 6.
We apply Algorithm 3 to the target function f(y) for dimension N = 3, 4, 5, and 10;
the origin of the hyperspherical system is set to y0 = (0.3/

√
N, . . . , 0.3/

√
N). For the

RBF method, we use the 3rd-order Wendland function given in (6.3) to construct in-
terpolants. The DLS and CS approximations are built using the Legendre polynomial
basis; QR factorization and the SPGL1 package [3] are used to solve the least squares
and �1 minimization problems, respectively. We show, in Figures 8(a), 9(a), and 10(a)
the exact surface g(θ) and the approximate surfaces in three dimensions obtained by
the RBF, DLS, and CS methods, respectively. As expected, the approximate sur-
faces only fit the exact discontinuity surface in the subdomain Γγ , as all the random
samples (red dots) are allocated in Γγ . Figures 8(b), 9(b), and 10(b) show the error



HYPERSPHERICAL SPARSE APPROXIMATION TECHNIQUES 543

0
1

2
3

0

2

4

6
0

0.5

1

1.5

θ1

(b)

θ2

r

0
0.2

0.4
0.6

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

y1

(a)

y2

y
3

Fig. 7 (a) The discontinuity surface γ in the Cartesian system; (b) the transformed surface g(θ) in
the hyperspherical system.

0
0.5

1
1.5

2
2.5

3 0
1

2
3

4
5

6
0

0.5

1

1.5

θ2

(a)

θ1

r

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

# Function evaluations

L∞
 E

rr
or

(b)

 

 

RBF−3D
RBF−4D
RBF−5D
RBF−10D
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random data points on γ (red); (b) the error decay of the RBF interpolation, measured in
the L∞ norm.

versus the number of evaluations of f(y) for the three methods, where the error is
measured by the norm in (2.4) based on 1,000 random samples in Γγ . Again, all three
methods are effective in capturing γ in high-dimensional spaces. As expected, the
RBF interpolation is more sensitive to the dimension than the DLS and CS methods
because of the use of compactly supported local bases. By comparing the CS and
the DLS methods, we can see that the CS method is more efficient than the DLS
method because the CS method can effectively recover a sparse approximation from
an underdetermined system. However, such a comparison does not take into account
the cost of �1 minimization. This makes sense in the setting that the evaluation of
f(y) is so expensive that the cost of evaluating f dominates the total cost.

8. Concluding Remarks. In this paper, we proposed a comprehensive method-
ology for detecting an (N − 1) discontinuity hypersurface of function defined in an
N -dimensional bounded domain. This approach removes the continuity assumption
required by adaptive sparse grid methods, thus enabling high-dimensional approxi-
mations. Both theoretical and numerical results demonstrate the significant improve-
ments yielded by our approach when compared to existing techniques. Moreover, this
technique is not restricted to extensions of sparse grid methods; it is also combined
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Fig. 9 (a) The exact surface of g(θ) (blue), the DLS approximate surface (black), and the first 100
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the L∞ norm.

0
0.5

1
1.5

2
2.5

3 0
1

2
3

4
5

6
0

0.5

1

1.5

θ2

(a)

θ1

r

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

# Function evaluations

L∞
 E

rr
or

(b)

 

 

CS−3D
CS−4D
CS−5D
CS−10D

Fig. 10 (a) The exact surface of g(θ) (blue), the CS approximate surface (black), and the first 100
random data points on γ (red); (b) the error decay of the CS interpolation, measured in
the L∞ norm.

with any other numerical method for high-dimensional approximation such as radial
basis function interpolation, discrete least squares projection, and compressed sens-
ing approximation. However, we are only able to detect a single hypersurface at a
time, determined by the origin of the hyperspherical system. More importantly, this
choice of origin is also critical to the performance of our approach, as it dictates the
shape—and therefore the steepness of the gradient—of the transformed hypersurface.
Finally, our technique relies on the fact the hypersurface satisfies the star convexity
assumption, and thus for general nonconvex hypersurfaces the proposed approach may
fail to converge. Our future efforts will focus on relaxing this assumption to include
general geometries of the domain of interest, so that problems with more complicated
hypersurface geometries can be treated.

Appendix A.

A.1. The Proof of Proposition 5.3. According to the analyses in [6], for g(θ) ∈
X2(Γs), e1 is the error arising from the linear isotropic SG interpolation which is
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bounded by

(A.1) ‖e1‖ ≤ Csg2
−2L

Ns−1∑
k=0

(
L+Ns − 1

k

)
,

where the constant Csg is independent of the level L and the dimension Ns (see
Theorem 3.8 in [6]). According to the definition in (3.3), e2 can be written as

(A.2) e2 = gL(θ)− g̃L(θ) =

L∑
l=0

∑
|l|=l

(
Δl1 ⊗ · · · ⊗ΔlNs

)
(g − g̃)(θ),

where ‖g(θ)−g̃(θ)‖ ≤ τ . Thus, it is seen that estimating e2 is equivalent to estimating
the Lebesgue constant, denoted by ΛNs,L, of the interpolation operator involved. From
the representation in (3.3), ΛNs,L can be estimated using the triangle inequality, i.e.,

ΛNs,L ≤
L∑

l=0

∑
|l|=l

Λl ≤
L∑

l=0

∑
|l|=l

Ns∏
n=1

Λln ,

where Λl = ΠNs
n=1Λln is the Lebesgue constant of Δl1 ⊗ · · · ⊗ ΔlNs

and Λln is the
Lebesgue constant of Δln . By the definition in (3.1), it is easy to show that

Λln = sup

{ ‖Δln(g)‖
‖g‖

∣∣∣∣ g is continuous and g 	= 0

}
≤ λln + λln−1,

where λln and λln−1 are the Lebesgue constants of Uln and Uln−1, respectively. In
the context of linear hierarchical polynomials, we have λln = 1. Thus, the Lebesgue
constant ΛNs,L can be bounded by

ΛNs,L ≤
L∑

l=0

∑
|l|=l

Ns∏
n=1

(λln + λln−1) ≤
L∑

l=0

∑
|l|=l

2Ns

= 2Ns

L∑
l=0

(
l +Ns − 1

Ns − 1

)
= 2Ns

L∑
l=0

(
l +Ns − 1

l

)
= 2Ns

(
L+Ns

Ns

)
.

Thus, the error e2 in (A.2) can be estimated by

‖e2‖ ≤ ΛNs,L‖g(θ)− g̃(θ)‖ ≤ 2Ns

(
L+Ns

Ns

)
τ,

so that, along with (A.1), (5.4) is obtained.

A.2. The Proof of Lemma 5.4. Using (3.3) and exploiting the nesting structure
of the sparse grid, the dimension of HL can be represented by

|HL| =
L∑

l=0

|ΔHl| =
L∑

l=0

∑
|l|=l

Ns∏
n=1

(mln −mln−1),

where mln = 2ln + 1 is the number of grid points involved in the one-dimensional
interpolant Uln(·) andm−1 = 0. For the linear hierarchical basis,mln−mln−1 = 2ln−1
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for ln ≥ 1. We now derive an upper bound for |ΔHl| for l ≥ 1. Note that there are(
Ns−1+l
Ns−1

)
ways to form the sum l with Ns nonnegative integers, so we have

|ΔHl| =
Ns∏
n=1

(mln −mln−1)

(
Ns − 1 + l

Ns − 1

)
≤ 2l

(Ns − 1 + l)!

(Ns − 1)! · l! .

By an inequality from Stirling’s approximation of a factorial, i.e.,

dn ≤ n! ≤ dn

(
1 +

1

4n

)
with dn =

√
2πn

(n
e

)n

, n ∈ N
+,

we obtain that

|ΔHl| ≤ 2l
(
1 +

1

4(Ns − 1 + l)

)
dNs−1+l

dNs−1 · dl

= 2l

(
1 +

1

4(Ns − 1 + l)

)√
Ns − 1 + l√

2πl(Ns − 1)

(
Ns − 1 + l

Ns − 1

)Ns−1(
Ns − 1 + l

l

)l

≤ 2l
(
l +Ns − 1

Ns − 1

)Ns−1(
1 +

Ns − 1

l

)l

≤ 2l
(
l +Ns − 1

Ns − 1

)Ns−1

eNs−1.

It is easy to see that |ΔH0| satisfies the above inequality as well. This concludes the
proof about |ΔHl|. The estimate for |HL| can be obtained immediately based on the
estimate of |ΔHl|.

A.3. The Proof of Lemma 5.5. We observe that the value of the minimal so-
lution of the inequality (5.5) has two possibilities, i.e., L < Ns and L ≥ Ns. In the
former case, all values larger than Ns are also solutions of (5.5). Hence, we assume
the solution of (5.5) is larger than Ns. It is also observed that if L ≥ Ns, we have
(A.3)

Ns−1∑
k=0

(
L+Ns − 1

k

)
≤ Ns

(
L+Ns − 1

Ns − 1

)
≤ Ns

(
L+Ns

Ns

)
≤ Ns

(
2L

Ns

)Ns

eNs .

Thus, instead of solving (5.5) directly, it is sufficient to solve

(A.4) Csg2
−2LNs

(
2L

Ns

)Ns

eNs ≤ ε

2
and L ≥ Ns.

Now, we temporarily treat L as a positive real number for convenience, and the desired
iteration number is �L�. Let L = tNs/ ln 4 in (A.4). Then we have(

2L

Ns

)Ns

eNs

(
2NsCsg

ε

)
≤ 22L

⇐⇒
(

t

ln 2

)Ns

eNs

(
2NsCsg

ε

)
≤ 4

t
ln 4Ns ⇐⇒

(
te

ln 2

)(
2NsCsg

ε

) 1
Ns ≤ 4

t
ln 4

⇐⇒ ln t+ ln

[
e

ln 2

(
2Csg

ε

) 1
Ns

Ns
1

Ns

]
≤ t ⇐= ln t+ ln

[
2e

ln 2

(
2Csg

ε

) 1
Ns

]
≤ t,
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so that (A.4) is satisfied with minimum L given by L = tNs/ ln 4 if t satisfies

t ≥ ln t+ lnh with h =
2e

ln 2

(
2Csg

ε

) 1
Ns

,

where h > 1 by hypothesis. Letting t0 = e
e−1 lnh, it is easy to verify that

t0 − lnh =
1

e− 1
lnh ≥ 1 + ln

(
1

e− 1
lnh

)
= ln

(
e

e− 1
lnh

)
= ln t0

and that the inequality (A.4) is satisfied. Furthermore, for k ≥ 0, tk = ln(tk−1h) ≤
tk−1 is also the solution of (A.4) due to the fact that

(A.5) ln tk + lnh = ln(ln tk−1 + lnh) + lnh ≤ ln tk−1 + lnh = ln(tk−1h) = tk.

Thus, the sequence {tk}∞k=0 monotonically converges to a unique solution t∗ such that
t∗ = ln t∗ + lnh. Based on the sequence {tk}∞k=0, we can easily find a sequence of
upper bounds {Lk}∞k=0 for the minimum L satisfying the inequality (5.5).

A.4. The Proof of Theorem 5.7. According to the definition in (5.2), the cost
Cmin can be bounded by

(A.6) Cmin ≤ |HLk
|K(τ0, ε, Lk, Ns),

where Lk for k ∈ N is determined from Lemma 5.5 and K(τ0, ε, L,Ns) is the necessary
number of iterations for the bisection method to achieve the accuracy ε/2 in (5.6) at
each grid point for fixed Ns, L, ε, and initial search interval length τ0. We can see
that the necessary tolerance τ of the bisection method is determined by (5.6), i.e.,

τ(Ns, L, ε) = 2−Ns−1ε

/(
L+Ns

Ns

)
;

K(τ0, ε, L,Ns) can be represented by

(A.7) K(τ0, ε, L,Ns) = log2

[
2Ns+1τ0

ε

(
L+Ns

Ns

)]
,

where we temporarily treat K as a positive real number for convenience and the
desired iteration number is �K�. According to the discussion in section 4.2.2, τ0 is set

to |y0 −βθ| without any prior knowledge; thus τ0 ≤ (Ns +1)
1
2 , which is the length of

the diagonal of [0, 1]N . Substituting L0 into (A.7), we have

K(τ0, ε, L0, Ns)

≤ log2

(
2Ns+1τ0

ε

)
+ log2

(
ε

2NsCsg
22L0

)
= log2

(
2Ns+1τ0
CsgNs

)
+ 2L0

≤ log2

(
2Ns+1(Ns + 1)

1
2

CsgNs

)
+

eNs

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1
Ns

]

≤ Ns +
eNs

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1
Ns

]
+ 2− log2(Csg)

=
e

e− 1
log2

(
2Csg

ε

)
+Ns

{
e

e− 1
log2

(
2e

ln 2

)
+ 1

}
+ 2− log2(Csg)

= α6 log2

(
2Csg

ε

)
+ α7Ns + α8.

(A.8)
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On the other hand, substituting L1 into the upper bound of HL1 , we have

|HL1 | ≤ 2L1+1

(
L1 +Ns − 1

Ns − 1

)
≤ 2L1+1

(
L1 +Ns

Ns

)
≤ 2L1+1

(
ε

2NsCsg

)
22L1 ≤

(
ε

NsCsg

)
2

3t1Ns
2 ln 2

=

(
ε

NsCsg

)
2

3 ln(t0h)Ns
2 ln 2 =

(
ε

NsCsg

)
t
3
2Ns

0

[
2e

ln 2

(
2Csg

ε

) 1
Ns

] 3
2Ns

=

(
ε

NsCsg

)(
e

e− 1
lnh

) 3
2Ns

(
2e

ln 2

) 3
2Ns

(
2Csg

ε

) 3
2

(A.9)

=
2

Ns

(
2Csg

ε

) 1
2

{
2e2

e− 1
log2

[
2e

ln 2

(
2Csg

ε

) 1
Ns

]} 3
2Ns

=
2

Ns

⎧⎨⎩ 2e2

e− 1
log2

(
2e

ln 2

)
+

2e2

e− 1

log2

(
2Csg

ε

)
Ns

⎫⎬⎭
3
2Ns (

2Csg

ε

) 1
2

= α1

⎧⎨⎩α2 + α3

log2

(
2Csg

ε

)
Ns

⎫⎬⎭
α4Ns (

2Csg

ε

)α5

.

Hence, by substituting (A.8) and (A.9) into (A.6), the proof is finished.

A.5. The Proof of Lemma 5.8. As in (5.4), we split the error into two parts,
i.e.,

g(θl,i)− g̃L−1(θl,i) = g(θl,i)− gL−1(θl,i)︸ ︷︷ ︸
e1

+ gL−1(θl,i)− g̃L−1(θl,i)︸ ︷︷ ︸
e2

,

where e1 is the definition of the hierarchical surplus ωl,i whose upper bound is given
in [6], i.e., |e1| ≤ Csurp · 2−2L with Csurp independent of L, and e2 measures the error
between the exact prediction of the surplus and the perturbed one. To estimate e2,
we need to extend the formula for calculating surpluses given in [6] by including the
sparse grid points on the boundary. Based on [6, Lemma 3.2], we can see that for each
grid point θl,i with |l| ≥ 1, its exact surplus ωl,i can be computed from the function
values of g(θ) as follows:

ωl,i = Al,i(g) =

(
Ns∏
n=1

Aln,in

)
(g),

where Al,i(·) is an Ns-dimensional stencil that provides the coefficients for a linear
combination of the nodal values of the function g to compute ωl,i. Specifically, Al,i

is the product of Ns one-dimensional stencils Aln,in for ln > 1, n = 1, . . . , Ns, defined
by

Aln,in(g) =

[
−1

2
1 − 1

2

]
ln,in

(g)

=− 1

2
g(θl,i − hlnen) + g(θl,i)− 1

2
g(θl,i + hlnen),

(A.10)
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where en is a vector of zeros except for the nth entry, which is one, and hln is a scalar
equal to a half of the length of the support of the basis function ψl,i(θ) in the nth
direction. Note that we have A0,0(g) = [0, 1, 0]0,0(g) for ln = 0, in = 0, A1,0(g) =
[0, 1,−1]1,0(g) for ln = 1, in = 0, and A1,2(g) = [−1, 1, 0]1,2(g) for ln = 1, in = 2. It
is easy to see that the sum of the absolute values of the coefficients of Al,i(·) is equal
to 2Ns . Note that all the involved grid points in (A.10) belong to gL−1(θ) except for
θl,i. Thus, due to the fact that |g(θ)− g̃(θ)| ≤ τ , the error e2 can be estimated by

|e2| = |Al,i(g − g̃)− (g(θl,i)− g̃(θl,i))| ≤ 2Nsτ,

which completes the proof.

A.6. The Proof of Theorem 5.9. For L = L1, according to the definition in
(5.2), Cmin can be bounded by

(A.11)

Cmin ≤
L1∑
l=0

|ΔHl|K(τ l0, ε, L1, Ns)

≤
L1∑
l=0

2l
(
l+Ns − 1

Ns − 1

)
log2

[
2Ns+1τ l0

ε

(
L1 +Ns

Ns

)]
,

where we temporarily treat K as a positive real number for convenience and the
desired iteration number is �K�. Based on Lemma 5.8, we define the initial search
interval τ l0 on level l by τ l0 = Csurp2

−2l + 2Nsτ , where τ is the tolerance of the bisec-
tion method. For sufficiently small ε, the logarithmic function in (A.11) is positive.
Substituting such τ l0 into (A.11), we obtain

Cmin ≤
L1∑
l=0

2l
(
l +Ns − 1

Ns − 1

)
log2

[
2Ns+1

ε

(
L1 +Ns

Ns

)(
Csurp2

−2l + 2Nsτ
)]

=

L1∑
l=0

2l
(
l +Ns − 1

Ns − 1

)
log2

⎡⎣2Ns+1

ε

(
L1 +Ns

Ns

)⎛⎝Csurp2
−2l +

ε

2
(

L1+Ns

Ns

)
⎞⎠⎤⎦

=

L1∑
l=0

2l
(
l +Ns − 1

Ns − 1

){
log2

[
2Ns+1Csurp2

−2l

ε

(
L1 +Ns

Ns

)]
+Ns

}

≤
L1∑
l=0

2l
(
l +Ns − 1

Ns − 1

){
log2

[
2Ns+1Csurp2

2(L1−l)

ε

ε

2NsCsg

]
+Ns

}

=

L1∑
l=0

2l
(
l +Ns − 1

Ns − 1

)[
2(L1 − l) + log2

(
Csurp

Csg

)
+ 2Ns − log2(Ns)

]

≤
(
L1 +Ns

Ns

) L1∑
l=0

(L1 − l)2l+ 2L1+1

(
L1 +Ns

Ns

)[
log2

(
Csurp

Csg

)
+ 2Ns − log2(Ns)

]
≤ 2L1+1

(
L1 +Ns

Ns

)[
log2

(
Csurp

Csg

)
+ 2Ns + 2− log2(Ns)

]

≤ α1

⎡⎣α2 + α3

log2

(
2Csg

ε

)
Ns

⎤⎦α4Ns (
2Csg

ε

)α5

[2Ns − log2(Ns) + α9] ,

which completes the proof.
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