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Abstract We describe simple finite element schemes for approximating spatially
extended predator–prey dynamics with the Holling type II functional response and
logistic growth of the prey. The finite element schemes generalize ‘Scheme 1’ in the
paper by Garvie (Bull Math Biol 69(3):931–956, 2007). We present user-friendly,
open-source Matlab code for implementing the finite element methods on arbitrary-
shaped two-dimensional domains with Dirichlet, Neumann, Robin, mixed Robin–
Neumann, mixed Dirichlet–Neumann, and Periodic boundary conditions. Users can
download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/. In addi-
tion to discussing the well posedness of the model equations, the results of numerical
experiments are presented and demonstrate the crucial role that habitat shape, initial
data, and the boundary conditions play in determining the spatiotemporal dynamics
of predator–prey interactions. As most previous works on this problem have focussed
on square domains with standard boundary conditions, our paper makes a significant
contribution to the area.
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1 Introduction

1.1 Background

Complicated geometrical shapes occur throughout the natural world and have an
important role to play in determining the behaviour of complex systems and pat-
tern formation phenomena. For example, tumour growth in humans (Friedman 2012;
Chaplain et al. 2001), the development of coat patterns in mammals (Murray 1981;
Bassiri et al. 2009), cardiac arrhythmia (Holden et al. 1991; Bittihn et al. 2010), and
predator–prey interactions in bounded domains (Gurney et al. 1998; Medvinsky et al.
2002) all depend on the geometry of the physical situation where these phenomena
take place.

In this paper, we study the numerical solutions of parabolic partial differential
equations (PDEs) defined on arbitrary-shaped two-dimensional domains with various
boundary and initial conditions. We focus on finite element approximations of a well-
known reaction–diffusion system for predator–prey interactions. As a minimum, we
expect readers of this paper to have taken prerequisite courses in PDEs and matrix
algebra.

Reaction–diffusion equations are a useful tool for modelling the spatiotemporal
dynamics of populations in ecology (Cantrell and Cosner 2003; Holmes et al. 1994),
and their use in the biological sciences continues to receive intense interest because
of their many applications (Murray 2002, 2003). Modelling with reaction–diffusion
equations is motivated by an increasing awareness of the role that space has on popu-
lation dynamics. Furthermore, advances in mathematical modelling coupled with an
increase in the computational power of microcomputers make it easier to study more
realistic problems.

The finite element method is an effective and powerful numerical method for solving
nonlinear PDEs and is particularly well suited to problems defined on irregular-shaped
domains (Ciarlet 1979). The success of the finite element method is also due to the
well-established theoretical framework for numerical analysis (Strang and Fix 1973;
Thomée 2006; Brenner and Scott 1994).

It is important to consider spatial heterogeneity when investigating the basic eco-
logical features of a habitat, such as invasion, critical patch size, spatial spread, per-
sistence, and the spatiotemporal dynamics of populations (Tilman and Kareiva 1997;
Cantrell and Cosner 2003; Holmes et al. 1994). Furthermore, the rules governing
how species behave near habitat edges (incorporated as the boundary conditions in
PDEs) have important implications for these ecological (population level) character-
istics (Maciel and Lutscher 2013; Fagan et al. 1999). However, most theoretical and
numerical PDE studies of spatially extended predator–prey interactions are either in
one space dimension, or in two space dimensions on square domains with either the
homogeneous Neumann (‘zero flux’), or homogeneous Dirichlet boundary conditions;
see, for example Medvinsky et al. 2002; Garvie 2007; Gurney et al. 1998.

There are some notable exceptions to the sparsity of spatially extended predator–
prey studies with nonstandard boundary conditions and/or irregular-shaped domains.
For instance, Sherratt (2003) investigated the generation of periodic travelling waves
for the lambda–omega reaction–diffusion system in two space dimensions on an irreg-
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ular domain using homogeneous Dirichlet boundary conditions. Similar studies incor-
porate homogeneous Dirichlet boundary conditions on the boundary of irregular land-
scape obstacles, which generate periodic travelling waves for oscillatory reaction–
diffusion equations (Sherratt et al. 2002, 2003; Sherratt and Smith 2008; Smith et al.
2008; Yun et al. 2011). In a rare computational study, Ding and Kawahara (1998) com-
puted the travelling wave solutions of the spatially extended Lotka–Volterra system
for a shallow bay in Japan. The authors compared the results from a three-step explicit
finite element method with a superposition method using normal modes. With regard
to the use of nonstandard boundary conditions in two dimensions, researchers have
also studied: Periodic boundary conditions (Malchow et al. 2004; Hilker et al. 2006),
mixed Periodic-Neumann boundary conditions (Malchow et al. 2000, 2002), and
mixed Neumann–Dirichlet boundary conditions (Smith et al. 2009; Sherratt and Smith
2008). Sherratt (2008) compared periodic wave generation for oscillatory reaction–
diffusion systems with both the Robin and the Dirichlet boundary conditions. Another
important paper by Cantrell et al. (1998) studied a coupled pair of diffusive Lotka–
Volterra competition equations with Robin boundary conditions in two or three space
dimensions. The authors investigated how the boundary conditions affect the outcome
of competitive interactions between the species. We also mention a paper by Kaipio
et al. (1995) that used the finite element method to approximate the solutions of a
predator–prey model over a circular domain with homogeneous Dirichlet boundary
conditions. Theoretical studies include: an existence–uniqueness work by Shanger-
ganesh and Balachandran (2011) for a predator–prey model on a three-dimensional
habitat with mixed Neumann–Dirichlet boundary conditions, and a study in arbitrary
space dimensions of a model that includes the Lotka–Volterra model with nonlinear
(mixed) coupled boundary conditions (Leung 1982).

1.2 Model Equations

We study a reaction–diffusion system for spatially extended predator–prey interactions
with the following nondimensional (classical) form:1

prey
∂u
∂t

=
dispersal︷︸︸︷
∆u +

intrinsic birth and death︷ ︸︸ ︷
u(1 − u) −

predation︷ ︸︸ ︷
uv

u + α
, (1a)

predators
∂v

∂t
= δ∆v︸︷︷︸

dispersal

+ βuv

u + α︸ ︷︷ ︸
benefit from predation

− γ v︸︷︷︸
death

, (1b)

where u(x, t) and v(x, t) are the population densities of prey and predators at time
t and (vector) position x := (x, y)T ∈ R2. We use the usual Laplacian operator
∆ ≡ ∂2

∂x2 + ∂2

∂y2 in two space dimensions, and the parameters α, δ, β, and γ are strictly

positive. We assume system (1) is defined over a bounded domain Ω ⊂ R2 with a

1 See the paper by Garvie and Trenchea (2010) for details of the nondimensionalization procedure.
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smooth, or Lipschitz polygonal boundary Γ . The domain is either simply connected,
or multiply connected (contains holes). Multiply connected regions are useful for
modelling species living in fragmented landscapes, for example, phytoplankton and
zooplankton in lakes containing islands, or species living in a forest containing pockets
of grassland. To complete the partial differential equation (PDE) model (1), we require
appropriate nonnegative initial conditions

u(x, 0) := u0(x), v(x, 0) := v0(x), for all x in Ω, (2)

and boundary conditions. The boundary conditions considered in this paper are fairly
general, namely Neumann, Dirichlet, Robin, and Periodic boundary conditions. We
also consider the case of mixed Dirichlet–Neumann and mixed Robin–Neumann
boundary conditions (see Sect. 2.1 below for full details).

In the above model, the reaction kinetics have the classic Rosenzweig–MacArthur
form, i.e. the local growth of the prey is logistic and the predator displays the ‘Holling
type II functional response’ (Holling 1959). For details concerning the derivation
of Holling’s functional responses in predator–prey systems, see the paper by Dawes
and Souza (2013). The labelling of the different terms in (1) follows Sherratt et al.
2003; Sherratt 2008. This system is arguably the most well-known reasonably realistic
(minimal) PDE model for predator–prey dynamics (May 1974; Sherratt 2001; Garvie
2007; Garvie and Trenchea 2007).

Although the dynamics of the reaction–diffusion system are more complicated than
the reduced (diffusionless) system, a consideration of the local dynamics provides
important guidelines for choosing biologically relevant parameters when numerically
solving the full reaction–diffusion system (Medvinsky et al. 2002). The local dynamics
of system (1) are well understood (Garvie 2007; Medvinsky et al. 2002; Malchow and
Petrovskii 2002); however, for convenience, we summarize the main features below.

Firstly, it follows from a consideration of the nullclines of the system that if the initial
data are chosen in the (biologically relevant) nonnegative orthant, then u ≥ 0, v ≥ 0
for all time. This is also true for the full reaction–diffusion system, which follows from
the invariant region theory of Smoller (1983). From linear stability analysis, it follows
that the reduced system has three possible stationary points, namely (0, 0) (extinction),
(1, 0) (predator extinction), and (u∗, v∗) corresponding to the coexistence of prey and
predators, where

u∗ = αγ

β − γ
, v∗ = (1 − u∗)(u∗ + α). (3)

It follows immediately from (3) that in order for the stationary states to be in the
positive orthant we must have u∗ < 1, β > γ , which implies α < (β − γ )/γ . We
are mainly interested in the case when the reaction kinetics possess a stable limit
cycle surrounding the unstable stationary point (u∗, v∗), i.e. the predators and prey
are oscillatory, which occurs when Garvie and Trenchea (2010):

α <
β − γ

β + γ
, (β > γ ). (4)
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The main focus of this paper is on the spatiotemporal dynamics of the full (spatially
structured) reaction–diffusion system. Although the predator–prey system (1) is a
minimal model in the sense that only a few key interactions are taken into account, the
system displays a wide range of ecologically relevant behaviour, for example, spiral
waves (Medvinsky et al. 2002), target waves (Sherratt et al. 1997), and spatiotemporal
‘chaos’ (Pascual 1993; Medvinsky et al. 2002). However, diffusion-induced instability
is not possible for this particular model (Malchow et al. 2008, p. 212), (Segel and
Jackson 1972; Peacock-Lopez 2011).

1.3 Aims

Our paper generalizes some finite element methods by Garvie (2007) (see also Alberty
et al. 1999) for predator–prey dynamics on square domains with the homogeneous
Neumann boundary conditions. The main aims of our work are as follows:

(i) To completely describe the construction of finite element methods for approx-
imating system (1) defined over arbitrary-shaped domains in two space dimen-
sions with various boundary conditions (see Sect. 2.1). The methods generalize
‘Scheme 1’ for ‘Kinetics (i)’ in the paper by Garvie (2007).

(ii) To provide and briefly describe user-friendly, open-source Matlab codes, avail-
able at http://www.uoguelph.ca/~mgarvie/, for implementing the finite element
methods. The Matlab codes for the generalization of ‘Scheme 2’ in Garvie
(2007) are also provided, but due to space constraints are not described.

(iii) To provide a number of ecologically relevant examples demonstrating the cru-
cial role that habitat shape, boundary conditions, and initial conditions play in
determining the spatiotemporal dynamics of predator–prey dynamics.

(iv) To facilitate the numerical study of the spatiotemporal dynamics of predator–prey
interactions, without requiring an advanced knowledge of PDEs or programming.

Although we focus on a specific predator–prey system, the methodology in our paper
has general applicability to many other reaction–diffusion systems. For further details,
see the mathematical biology texts by Murray (2003), Meinhardt (1982), Malchow et
al. (2008), Edelstein-Keshet (2005), and the models therein.

1.4 Structure of the Paper

In Sect. 2, we describe the different boundary conditions employed, present the vari-
ational formulations of the predator–prey systems, and give an outline of a proof for
the well posedness of the classical predator–prey systems. In Sect. 3, we present the
fully discrete finite element methods for approximating the predator–prey models,
derive the resulting linear systems of equations to be solved at each time step, and
give a description of the Matlab code that implements the finite element methods. In
Sect. 4, we present the results of some numerical experiments using Matlab, while in
Sect. 5, we make some concluding comments from both a numerical and an ecological
perspective.
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2 Mathematical Preliminaries

2.1 Boundary Conditions

The pure Neumann, Dirichlet, and Robin boundary conditions for the predator–prey
system (1) have the following forms, where n is the unit outward normal vector to the
boundary Γ of the domain Ω:

Neumann:
∂u
∂n

= gu(x, t), δ
∂v

∂n
= gv(x, t) on Γ, (5)

Dirichlet: u = fu(x, t), v = fv(x, t) on Γ, (6)

Robin:
∂u
∂n

= k1u, δ
∂v

∂n
= k2v, on Γ . (7)

The functions gu(x, t), gv(x, t), fu(x, t), and fv(x, t) are arbitrary nonnegative func-
tions of space and time2 and k1 and k2 are constants. When gu = gv = 0, we have
the homogeneous Neumann (‘zero flux’) boundary conditions, which correspond to
the ecological situation of species neither entering nor leaving the domain. However,
when fu = fv = 0, we have the homogeneous Dirichlet boundary conditions corre-
sponding to a lethal boundary, or when all individuals at the boundary leave Ω and do
not return (Sherratt et al. 2003; Cantrell and Cosner 2003; Maciel and Lutscher 2013;
Fagan et al. 1999).

The homogeneous Neumann and homogeneous Dirichlet boundary conditions are
frequently used for computational and mathematical convenience. However, the choice
of boundary conditions should be dictated by modelling concerns. For example, if we
wish to model the use of nonlethal fencing as a conservation tool to exclude certain
predators from a habitat (see Malpas et al. 2013), then the homogeneous Neumann
boundary condition is appropriate. On the other hand, if a lethal electrified fence is used
to exclude pests from a habitat (see Ahmed and Fiedler 2002), then the homogeneous
Dirichlet boundary condition is a more natural choice.

The Robin boundary conditions correspond to when species enter (k > 0), or
leave (k < 0) the domain Ω across the boundary Γ . In ecological situations, a Robin
boundary condition of this type may be more realistic than the frequently used homo-
geneous Dirichlet boundary condition (Sherratt 2008; Maciel and Lutscher 2013).
When k = 0, the condition says that there is no flux across Γ ; however, as k increases
in magnitude, a larger number of individuals will cross the boundary. In the limit
as k → −∞, the condition becomes the homogeneous Dirichlet boundary condi-
tion (Cantrell and Cosner 2003). (The case k → +∞ leads to ‘blow-up’.) Thus, we
have a range of Robin boundary conditions with the homogeneous Neumann and the
homogeneous Dirichlet boundary conditions representing the extreme ends of this
range.

We are also interested in Periodic boundary conditions on the square [a, b]× [a, b]
(a, b ∈ R), which have the following form for w ≡ w(x, y, t) (w = u or v):

2 The requirement gu > 0, gv > 0 is necessary to avoid possible (nonphysical) negative solutions as
t → ∞.
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Periodic: w(a, y, t) = w(b, y, t) for all a ≤ y ≤ b, (8a)

wx (a, y, t) = wx (b, y, t) for all a ≤ y ≤ b, (8b)

w(x, a, t) = w(x, b, t) for all a ≤ x ≤ b. (8c)

wy(x, a, t) = wy(x, b, t) for all a ≤ x ≤ b. (8d)

Periodic boundary conditions are useful for modelling situations formulated on large,
or effectively unbounded domains, where we want to minimize boundary effects on
the solutions. For example, periodic boundary conditions are appropriate for models
of the patchy distribution of plankton in the ocean (Malchow et al. 2004; Hilker et
al. 2006), where the boundary is needed simply for computational reasons. Periodic
boundary conditions are also used because of the ease with which they are implemented
in numerical simulations (Descalzi and Brand 2008).

In practice, due to the complex heterogeneity of natural landscapes, the real world
can be modelled as a network of patches with mixed boundary conditions. An exam-
ple of such a habitat might be deer living in patches of forest connected by migration,
with arable land surrounding the patches (a metapopulation). To model this situation,
the Robin boundary condition is a reasonable choice to impose on the boundary of
the patches (see the paper by Cantrell et al. 1998). However, if there are landscape
obstacles that block animal movement (e.g. a fence), then the mixed Robin–Neumann
boundary condition might be more appropriate. Alternatively, if the patches are inter-
sected by a highway lethal to animal movement, then the mixed Robin–Dirichlet
boundary condition might be a better choice. It is not difficult to conceive of other
mixed boundary condition scenarios depending on the particular landscape hetero-
geneity involved. Thus, in addition to the four (pure) boundary conditions defined
above, we also consider two mixed boundary conditions. We assume the boundary Γ

contains two relatively open subsets Γ1 and Γ2 where

Γ := Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅.

Then, the mixed boundary conditions are defined as follows:
Mixed Robin–Neumann:

∂u
∂n

= k1u, δ
∂v

∂n
= k2v on Γ1, (9a)

∂u
∂n

= gu(x, t), δ
∂v

∂n
= gv(x, t) on Γ2. (9b)

Mixed Dirichlet–Neumann:

u = fu(x, t), v = fv(x, t) on Γ1, (10a)
∂u
∂n

= gu(x, t), δ
∂v

∂n
= gv(x, t) on Γ2. (10b)

If Γ1 = ∅ in either mixed case, we have pure Neumann boundary conditions, while if
Γ2 = ∅ in the first or second mixed boundary condition case, then we have the pure
Robin or Dirichlet boundary conditions, respectively.
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2.2 Variational (‘Weak’) Formulations

The starting point for constructing the finite element approximations of the predator–
prey system is the variational (or weak) formulation of the problem. In order to refor-
mulate the problem in variational form, the type of boundary conditions plays an
important role. However, before we state the variational formulations, we need to
briefly mention some abstract function spaces needed in the sequel [for a more com-
plete treatment of these spaces, see Grossmann et al. 2007; Larsson and Thomée 2009;
Adams 1975]. The basic underlying space is the set of square integrable functions
L2(Ω), where Ω is a bounded domain in R2, given by

L2(Ω) :=
{
v : v defined on Ω such that

∫

Ω
|v|2 dx < ∞

}
,

which is a Hilbert space with respect to the inner product

(v,w) :=
∫

Ω
v(x)w(x) dx,

(here dx := dx dy). We also require the L2 inner product over the boundary Γ (or a
piece of the boundary)

(v,w)Γ :=
∫

Γ
v(x)w(x) ds,

where ds is an element of arc length for functions in L2(Γ ). The following Hilbert
space is standard:

H1(Ω) :=
{
v ∈ L2(Ω) : ∂v

∂x
,
∂v

∂y
∈ L2(Ω)

}
. (11)

We are now in a position to state the variational formulations of the predator–prey
system (1) with the initial conditions (2) and the boundary conditions given by (8),
(9), or (10). In each case, this is derived formally by multiplying the PDEs in (1) by an
appropriate test function η (in either H1(Ω) or a subspace thereof), integrating over
the domain Ω and applying the usual Green’s formula

∫

Ω
∇u · ∇v dx =

∫

Γ

∂u
∂n

v ds −
∫

Ω
v∆u d x,

[e.g. (Larsson and Thomée 2009, p. 5)]. To simplify the notation, we define the reaction
kinetics for the predators and prey in (1) by

h1(u, v) := u(1 − u) − uv

u + α
, h2(u, v) := βuv

u + α
− γ v. (12)

Then, the variational formulations covering all possible pure or mixed boundary con-
dition cases can be expressed in just three problems. The problem with mixed Robin–
Neumann boundary conditions has the form:
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Weak Problem I: Given initial data u0(·), v0(·), seek u(·, t), v(·, t) ∈ H1(Ω),
t > 0, satisfying

(ut , η) + (∇u,∇η) = k1(u, η)Γ1 + (gu, η)Γ2 + (h1, η), ∀η ∈ H1(Ω), (13a)

(vt , η) + δ(∇v,∇η) = k2(v, η)Γ1 + (gv, η)Γ2 + (h2, η), ∀η ∈ H1(Ω). (13b)

If we let Γ1 = ∅, then we have the pure Neumann problem, while if we let Γ2 = ∅,
then we have the pure Robin problem. The Neumann and Robin boundary conditions
are imposed implicitly through the incorporation of boundary terms into the weak
formulation.

The weak formulation with mixed Dirichlet–Neumann boundary conditions (Gross-
mann et al. 2007; Barrett and Elliott 1986) has the form:

Weak Problem II: Given initial data u0(·), v0(·), seek u(·, t) ∈ H1
Eu

(Ω) and
v(·, t) ∈ H1

Ev
(Ω), t > 0, satisfying

(ut , η) + (∇u,∇η) = (gu, η)Γ2 + (h1, η), ∀η ∈ H1
0 (Ω;Γ1), (14a)

(vt , η) + δ(∇v,∇η) = (gv, η)Γ2 + (h2, η), ∀η ∈ H1
0 (Ω;Γ1), (14b)

where

H1
Eu

(Ω) : =
{
w ∈ H1(Ω) : w = fu(x, t) on Γ1

}
, (15a)

H1
Ev

(Ω) : =
{
w ∈ H1(Ω) : w = fv(x, t) on Γ1

}
, (15b)

H1
0 (Ω;Γ1) : =

{
w ∈ H1(Ω) : w = 0 on Γ1

}
. (15c)

If we let Γ2 = ∅, then we have the pure Dirichlet problem. The Dirichlet boundary
conditions must be imposed explicitly on the trial (solution) space. Finally, we give a
weak formulation of the Periodic problem (Temam 1997, pp. 66–67):

Weak Problem III: With Ω := [a, b]2 and given initial data u0(·), v0(·), seek
u(·, t), v(·, t) in H1

per(Ω), t > 0, satisfying

(ut , η) + (∇u,∇η) = (h1, η), ∀η ∈ H1
per(Ω), (16a)

(vt , η) + δ(∇v,∇η) = (h2, η), ∀η ∈ H1
per(Ω), (16b)

where

H1
per(Ω) :=

{
w∈ H1(Ω) : w(a, y) = w(b, y), w(x, a) = w(x, b), ∀x, y ∈ [a, b]

}
.

(17)
Note that conditions (8b) and (8d) are naturally incorporated in the weak formulation
[see Temam (1997, pp. 66–67) for a mathematical justification]. However, the bound-
ary conditions for the periodicity of the solutions are imposed explicitly on the trial
(solution) space.
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2.3 Well Posedness of the Predator–Prey Problem

Throughout we assume u0, v0 ∈ H2(Ω) are nonnegative, and gu , gv , fu and fv are
nonnegative smooth-bounded functions on ∂Ω × [0, T ] for each T > 0. It is possible
to obtain uniqueness and well-posedness results with lesser hypotheses, but we wish
to keep the discussion as simple as possible and illustrate the main ideas. Additional
hypotheses must be imposed on u0 and v0 depending on the boundary conditions. In
the case of Problem I, we assume

∂u0

∂n
= k1u0, δ

∂v0

∂n
= k2v0 on Γ1 and

∂u0

∂n
= gu |t=0, δ

∂v0

∂n
= gv |t=0 on Γ2.

In the case of Problem II, we assume

u0 = fu |t=0, v0 = fv |t=0 on Γ1 and
∂u0

∂n
= gu |t=0, δ

∂v0

∂n
= gv |t=0 on Γ2.

In the case of Problem III, we assume u0, v0,
∂u0
∂n , ∂v0

∂n ∈ H1
per(Ω). If T > 0, then the

spaces L2(Ω × (0, T )) and W 1,1(Ω × (0, T )) are defined analogously to L2(Ω) and
H1(Ω) in Sect. 2.2, and

◦
W 1,1(Ω × (0, T )) = {w ∈ W 1,1(Ω × (0, T ) : w(·, T ) = 0},
W 1,1

◦ (Ω × (0, T );Γ1) = {w ∈ W 1,1(Ω × (0, T ) : w(·, t) |Γ1 = 0 a.e. 0 < t < T },
◦

W 1,1
◦ (Ω × (0, T );Γ1) =

◦
W 1,1(Ω × (0, T )) ∩ W 1,1

◦ (Ω × (0, T );Γ1),

W 1,1
per (Ω × (0, T )) = {w ∈ W 1,1(Ω × (0, T )) : w(·, t) ∈ H1

per(Ω) a.e. 0 < t < T },
◦

W 1,1
per(Ω × (0, T )) = W 1,1

per (Ω × (0, T )) ∩
◦

W 1,1(Ω × (0, T )).

We give precise notions of solvability for Problems I, II, and III below.

Definition 2.1 We say u, v ∈ W 1,1(Ω × (0, T )) is a solution of Problem I for 0 <

t < T if and only if for all γ ∈
◦

W 1,1(Ω × (0, T ))

∫ T

0
(−(u, γt ) + (∇u,∇γ )) dt =

∫ T

0
(k1(u, γ )Γ1 + (gu, γ )Γ2 dt + (u0, γ (·, 0)),

∫ T

0
(−(v, γt ) + δ(∇v,∇γ )) dt =

∫ T

0
(k2(v, γ )Γ1 + (gv, γ )Γ2 dt + (v0, γ (·, 0)).

Definition 2.2 We say u, v ∈ W 1,1(Ω×(0, T )) is a solution of Problem II for 0 < t <

T if and only if u = fu and v = gv on Γ1×(0, T ) and for all γ ∈
◦

W 1,1(Ω×(0, T );Γ1)
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∫ T

0
(−(u, γt ) + (∇u,∇γ )) dt =

∫ T

0
((gu, γ )Γ2 + (h1, γ )) dt + (u0, γ (·, 0)),

∫ T

0
(−(v, γt ) + δ(∇v,∇γ )) dt =

∫ T

0
((gv, γ )Γ2 + (h2, γ )) dt + (v0, γ (·, 0)).

Definition 2.3 We say u, v ∈ W 1,1
per (Ω × (0, T )) is a solution of Problem III for

0 < t < T if and only if for all γ ∈
◦

W 1,1
per(Ω × (0, T ))

∫ T

0
(−(u, γt ) + (∇u,∇γ )) dt =

∫ T

0
((h1, γ ) dt + (u0, γ (·, 0)),

∫ T

0
(−(v, γt ) + δ(∇v,∇γ )) dt =

∫ T

0
((h2, γ ) dt + (v0, γ (·, 0)).

It is straightforward to prove that functions, which solve Problems I, II, and III accord-
ing to the definitions above, also satisfy the weak formulations of these problems stated
in Sect. 2.2. We say that the problems defined above have global solutions if and only
if there are functions u, v so that for every T > 0, u, v are solutions for 0 < t < T .

Theorem 2.4 Problems I, II, and III have unique, nonnegative, global solutions. Fur-
thermore, there is a function ϕ ∈ C([0,∞)) such that 0 ≤ u(x, t), v(x, t) ≤ ϕ(t) for
all t ≥ 0.

If the functions fu, fv, gu , and gv are uniformly bounded and k1, k2 < 0, then it is
possible to show that the solutions are uniformly bounded. We outline the main idea
of the proof for Problem III below. The proofs in the other cases are similar.

Proof (outline) Let T, R > 0 and define R+ = [0,∞), and for z ∈ R, z+ =




z, z≥0,

0, z<0

and z− = (−z)+. Let φR ∈ C∞(R+, [0, 1]) such that φR(z) = 1 if 0 ≤ z ≤ R and
φ(z) = 0 if z ≥ 2R. Define

h1,R(u, v) = φR(u+)h1(u+, v+), h2,R(u, v) = φR(u+)h2(u+, v+),

and LR : L2(Ω × (0, T ), R2) → L2(Ω × (0, T ), R2) by LR(ũ, ṽ) = (u, v) where
u, v ∈ W 1,1

per (Ω × (0, T )) are the unique solutions to

∫ T

0
(−(u, γt ) + (∇u,∇γ )) dt =

∫ T

0
((h1,R(ũ+, ṽ+), γ ) dt + (u0, γ (·, 0)), (18a)

∫ T

0
(−(v, γt ) + δ(∇v,∇γ )) dt =

∫ T

0
((h2,R(ũ+, ṽ+), γ ) dt + (v0, γ (·, 0)). (18b)

for all γ ∈
◦

W 1,1
per(Ω×(0, T )). Straightforward adaptations of the arguments in Chapter

3 of the book by Ladyz̆enskaja et al. (1968) guarantee that LR is well defined since
hi,R(ũ, ṽ) ∈ L2(Ω × (0, T )) for all ũ, ṽ ∈ L2(Ω × (0, T )). Furthermore, it is a
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simple matter to show that LR has a fixed point if we can demonstrate that there exists
LT ≥ 0 so that whenever 0 ≤ λ ≤ 1 and u, v ∈ L2(Ω × (0, T )) then

‖u‖2,Ω×(0,T ) + ‖v‖2,Ω×(0,T ) ≤ LT , and (u, v) = λLR(u, v), (19)

[see Schaefer’s Theorem in Evans (1998)]. To this end, it can be shown that

∫ T

0
((ut , γ ) + (∇u,∇γ )) dt =

∫ T

0
λ(h1,R(u+, v+), γ ) dt, (20a)

∫ T

0
((vt , γ ) + δ(∇v,∇γ )) dt =

∫ T

0
λ(h2,R(u+, v+), γ ) dt, (20b)

for all γ ∈ W 1,1
per (Ω × (0, T ). Choosing γ = u_ in the first equation, γ = v_ in the

second equation, and observing that u_h1,R(u+, v+), v_h2,R(u+, v+) ≥ 0, we can
easily show that u_, v_ = 0, implying u = u+ and v = v+. From this, it follows
from the definitions for h1 and h2 that there exists K > 0, independent of u, v and R,
so that hi,R(u, v) ≤ K (u + v) for i = 1, 2. Now substitute γ = u in Eq. (20a) and
γ = v in Eq. (20b). Then, the estimate above and Gronwall’s inequality guarantee
the estimate in (19). As a result, LR has a fixed point, and this fixed point can be
shown to be a solution of Problem III provided we can obtain an L∞ estimate for u
and v independent of R > 0. This can be achieved by iteratively choosing γ = uk

and γ = vk in (20a) and (20b) for successively larger values of k ∈ N and λ = 1 to
obtain L p(Ω × (0, T )) estimates for u and v independent of R and p. As a result,
Problem III has a solution, and there is a uniform L∞ estimate for the solution. (Note:
If we work harder, we can prove that the estimate is also independent of T > 0.)
This uniform estimate can be used, along with Gronwall’s inequality to prove that
Problem III has a unique global solution, and there is a function ϕ ∈ C([0,∞)) such
that 0 ≤ u(·, t), v(·, t) ≤ ϕ(t) for all t ≥ 0. 23

3 Numerical Schemes

We approximate the predator–prey system (1) with initial conditions (2), and either the
Robin–Neumann boundary conditions (9), the Dirichlet–Neumann boundary condi-
tions (10), or the Periodic boundary conditions (8). The method involves applying the
standard Galerkin finite element method for the spatial discretization, coupled with a
(linear) semi-implicit time-stepping scheme for each boundary condition case.

3.1 Set-up of the Finite Element Method

For convenience, prior to stating the fully discrete approximations, we provide some
preliminary results and set-up details. Initially, we discretize space and time and also
replace the infinite dimensional function spaces by finite dimensional subspaces.

Let T h = {τ } be a partitioning of the domain Ω into approximately equilateral
nonoverlapping closed triangles τ , hτ denotes the length of the longest side of τ ,
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Fig. 1 Domain Ω with
triangulation

h = max hτ for all triangles τ in T h and Ωh = ⋃
τ∈T h τ (illustrated in Fig. 1).

Triangles must intersect along a common edge, at a common vertex, or not at all. We
assume that the step size h is small enough so the error in approximating our problem
over the domain Ωh instead of Ω is negligible. Associated with T h is the finite
dimensional subspace of H1(Ω), consisting of piecewise linear continuous functions
given by

Sh := {w ∈ C(Ωh) : w is linear on each τ }.
Let ϕ1,ϕ2, . . . ,ϕJ be the basis functions for Sh satisfying ϕ j (xk) = δk j , where
x1, x2, . . . , xJ are the nodes (triangle vertices) of T h and δk j is the Kronecker delta
function.3 If follows that any v ∈ Sh can be written as a linear combination of the basis
functions weighted by the nodal values, i.e. v(x) = ∑J

i=1 v(xi )ϕi (x). We introduce
the piecewise linear interpolation operator I h : C(Ωh) 4→ Sh such that I hw(xk) =
w(xk) for all k = 1, . . . , J . We shall also need a discrete L2 inner product on C(Ωh)

defined by

(u, v)h :=
∫

Ω
I h(u(x)v(x)) dx ≡

J∑

k=1

M̂kku(xk)v(xk), (21)

where M̂ii := (1,ϕi ) ≡
∫
Ω ϕi dx corresponds to the diagonal ‘lumped mass matrix’

M . Observe using (21) that
(ϕi ,ϕ j )

h ≡ M̂ j jδi j . (22)

The ‘Vertex Quadrature’ rule (Ciarlet 1979) used in the evaluation of the above discrete
L2 inner product (21) is just the two-dimensional equivalent of the familiar Trapezoid
rule for numerically integrating a continuous function in one space dimension. For
later use, we also define the following matrices:

Ki j :=
∫

Ω
∇ϕi · ∇ϕ j dx (‘Stiffness Matrix′K ), (23a)

Li j := (M̂ii )
−1 Ki j , (‘Finite Element Matrix′L). (23b)

3 A typical basis function is illustrated in many textbooks on the finite element method (e.g. Johnson (2009,
p. 29)).
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For further details concerning relevant background finite element theory, see Barrett
and Blowey (1996), Blowey and Elliott (1992), Garvie and Blowey (2005), Garvie
and Trenchea (2007), Thomée (2006), Larsson and Thomée (2009).

3.2 Fully Discrete Finite Element Methods

We uniformly subdivide the time interval [0, T ] with time levels tn = n∆t , n = 1,
2, . . . , N , where the time step is ∆t := T/N . In order to write down the fully discrete
finite element method, we define the following time discretizations of the continuous
reaction kinetics (12):

ĥ1(U n, U n−1, V n) := U n − U n|U n−1| − U n−1V n

|U n−1| + α
≈ h1(u, v), (24a)

ĥ2(U n−1, V n) := βU n−1V n

|U n−1| + α
− γ V n ≈ h2(u, v), (24b)

where the finite element solutions U n and V n approximate the continuous solutions
u and v at time level tn . Observe that the approximate reaction kinetics are linear with
respect to the solutions at time level tn , and if algebraically U n = U n−1 = u and V n =
v, then the approximate reaction kinetics reduce to their continuous counterparts. (The
absolute values used in (24) make no difference to a correctly converged solution as
they are nonnegative.)

The starting points for the finite element methods are the Weak Problems I, II, and
III, given by (13), (14), and (16), respectively. In each case, we replace the continuous
trial and test spaces with their finite dimensional approximations and discretize the
variational formulations. This approach is called the ‘Galerkin method’ (Grossmann
et al. 2007, p. 152).

The finite element method corresponding to the Weak Problem I [see (13)] is given
by (cf. Garvie and Trenchea 2007):

Finite Dimensional Weak Problem I: Given initial approximations U 0 = I hu0,
V 0 = I hv0, for n = 1, 2, . . . , N find U n, V n ∈ Sh such that

(
U n − U n−1

∆t
,χ

)h

+ (∇U n,∇χ) = k1(U n−1,χ)h
Γ1

+ (gn
u ,χ)h

Γ2
+ (̂h1,χ)h,

∀χ ∈ Sh,

(25a)
(

V n − V n−1

∆t
,χ

)h

+ δ(∇V n,∇χ) = k2(V n−1,χ)h
Γ1

+ (gn
v ,χ)h

Γ2
+ (̂h2,χ)h .

∀χ ∈ Sh,

(25b)

where gn
u := gu |t=tn and gn

v := gv|t=tn . As the functions ∇U n ·∇χ and ∇V n ·∇χ are
piecewise constant, there is no need to use the discrete L2 inner product to evaluate
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these terms as the Vertex Quadrature rule (21) is exact for piecewise polynomials of
degree one or less.

Before we present the finite element method corresponding to the Weak Problem II,
we define the following finite dimensional approximations of the trial and test spaces
used in the infinite dimensional problem:

Sh
Eu

:= {χ ∈ Sh : χ = fu(x, t) on Γ1} ⊂ H1
Eu

(Ω),

Sh
Ev

:= {χ ∈ Sh : χ = fv(x, t) on Γ1} ⊂ H1
Ev

(Ω),

Sh
0 := {χ ∈ Sh : χ = 0 on Γ1} ⊂ H1

0 (Ω;Γ1).

The finite element method corresponding to the Weak Problem II [see (14)] is given
by:

Finite Dimensional Weak Problem II: Given initial approximations U 0 = I hu0,
V 0 = I hv0, for n = 1, 2, . . . , N find U n ∈ Sh

Eu
, V n ∈ Sh

Ev
such that

(
U n − U n−1

∆t
,χ

)h

+ (∇U n,∇χ) = (gn
u ,χ)h

Γ2
+ (̂h1,χ)h, ∀χ ∈ Sh

0 , (26a)

(
V n − V n−1

∆t
,χ

)h

+ δ(∇V n,∇χ) = (gn
v ,χ)h

Γ2
+ (̂h2,χ)h, ∀χ ∈ Sh

0 , (26b)

where gn
u := gu |t=tn and gn

v := gv|t=tn .
To present the finite element method corresponding to the Weak Problem III, we

need the following finite dimensional approximation space:

Sh
per :=

{
χ ∈ Sh : χ(a, y) = χ(b, y),χ(x, a) = χ(x, b), ∀x, y ∈ [a, b]

}
.

The finite element method corresponding to the Weak Problem III [see (16)] is then
given by:

Finite Dimensional Weak Problem III: Given initial approximations U 0 = I hu0,
V 0 = I hv0, for n = 1, 2, . . . , N find U n, V n ∈ Sh

per such that

(
U n − U n−1

∆t
,χ

)h

+ (∇U n,∇χ) = (̂h1,χ)h, ∀χ ∈ Sh
per, (27a)

(
V n − V n−1

∆t
,χ

)h

+ δ(∇V n,∇χ) = (̂h2,χ)h, ∀χ ∈ Sh
per. (27b)

3.3 Derivation of the Linear Systems of Equations

The finite element methods are linear with respect to the solutions at the time level tn ;
thus, they can be re-written as systems of linear algebraic equations. First recall that
the finite element solutions U n and V n belong to the finite dimensional subspace Sh ,
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and thus, they can be written in the forms

U n(x) =
J∑

j=1

U n
j ϕ j (x), V n(x) =

J∑

j=1

V n
j ϕ j (x),

where U n
j = U n(x j ) and V n

j = V n(x j ). We also take the test functions χ = ϕi , for
i = 1, 2, . . . , J . For notational convenience, we often suppress the dependence on x.

We start by deriving the linear system of equations associated with the Finite Dimen-
sional Weak Problem I, i.e. (25a)–(25b).

Using the above expansions for U n and V n , the specific choice for χ , (21), (22),
(23a), and the definition of the lumped mass matrix yields

(U n
i − U n−1

i )

∆t
M̂ii +

J∑

j=1

Ki jU n
j = k1U n−1

i (1,ϕi )Γ1 + gu(xi , tn)(1,ϕi )Γ2 + M̂ii ĥ1,

(28a)

(V n
i − V n−1

i )

∆t
M̂ii + δ

J∑

j=1

Ki j V n
j = k2V n−1

i (1,ϕi )Γ1 + gv(xi , tn)(1,ϕi )Γ2 + M̂ii ĥ2.

(28b)

Multiplying both equations by ∆t (M̂ii )
−1, recalling (23b) and rearranging yields the

following system of 2J linear algebraic equations for each time step:
Linear System I: For n = 1, . . . , N solve

An−1
1 Un + ∆t Bn−1

1 Vn = Un−1 + !n−1
1 , (29a)

Cn−1
1 Vn = Vn−1 + "n−1

1 , (29b)

with

{Un}i := U n
i , {Vn}i := V n

i ,

U 0
i = u0(xi ), V 0

i = v0(xi ),

An−1
1 := (1 − ∆t)I + ∆t L + Dn−1

1 ,

Bn−1
1 := ∆t Dn−1

2 ,

Cn−1
1 := (1 + ∆tγ )I + δ∆t L − ∆tβDn−1

2 ,

Dn−1
1 := diag{|U n−1

1 |, |U n−1
2 |, . . . , |U n−1

J |},

Dn−1
2 := diag

{
U n−1

1

|U n−1
1 | + α

,
U n−1

2

|U n−1
2 | + α

, . . . ,
U n−1

J

|U n−1
J | + α

}

,

{!n−1
1 }i := ∆t (M̂ii )

−1
(

k1U n−1
i (1,ϕi )Γ1 + gu(xi , tn) (1,ϕi )Γ2

)
,

{"n−1
1 }i := ∆t (M̂ii )

−1
(

k2V n−1
i (1,ϕi )Γ1 + gv(xi , tn) (1,ϕi )Γ2

)
.
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The derivation of the linear system of equations associated with the Finite Dimen-
sional Weak Problem II, i.e. (26a)–(26b), is similar to the derivation of Linear System
I, but with some important differences. In practice, the Dirichlet conditions are imple-
mented by first formulating the pure Neumann problem, which generates a finite
element equation for every node. The problem formulation is then modified, so every
finite element equation corresponding to a node on Γ1 is replaced by an equation
enforcing the Dirichlet conditions directly into the resulting system of linear algebraic
equations at each time step, which is described below.

Initially, in an analogous manner to the derivation of (28a)–(28b), the Finite Dimen-
sional Weak Problem II leads to the linear system of equations, for n = 1, . . . , N

An−1
1 Un + ∆t Bn−1

1 Vn = r̂hsu, (30a)

Cn−1
1 Vn = r̂hsv, (30b)

with

r̂hsu := Un−1 + !̂
n−1
1 , where {!̂n−1

1 }i := ∆t (M̂ii )
−1gu(xi , tn) (1,ϕi )Γ2 ,

r̂hsv := Vn−1 + "̂
n−1
1 , where {"̂n−1

1 }i := ∆t (M̂ii )
−1gv(xi , tn) (1,ϕi )Γ2 ,

and the other terms are the same as in Linear System I. Now to incorporate the Dirichlet
conditions u = gu and v = gv at node xi on Γ1, we modify the i th equation of the
linear system (30a) via

i

i



0 · · · 0 1 0 · · · 0







U n
i



 + ∆t



0 · · · 0 · · · 0







V n
i



 =



gi,n
u



 ,

where gi,n
u := gu(xi , tn) and the i th equation of the linear system (30b) via,

i

i



0 · · · 0 1 0 · · · 0







V n
i



 =



gv(xi , tn)



 ,

where the entry ‘1’ is incorporated at the i th row and the i th column of the matrices
An−1

1 and Cn−1
1 . The Dirichlet conditions are imposed for all nodes xi on Γ1. The

resulting modified linear system of 2J linear equations for each time step is expressed
as follows:

Linear System II: For n = 1, . . . , N solve

An−1
2 Un + ∆t Bn−1

2 Vn = rhsu, (31a)

Cn−1
2 Vn = rhsv, (31b)
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where An−1
2 , Bn−1

2 , Cn−1
2 , rhsu, and rhsv are the adjusted versions of An−1

1 , Bn−1
1 ,

Cn−1
1 , r̂hsu, and r̂hsv, respectively, incorporating the Dirichlet boundary conditions.
The derivation of the linear system of equations associated with the Finite Dimen-

sional Weak Problem III is similar to the derivation of Linear System II. In practice,
the Periodic boundary conditions are implemented by first formulating the pure Neu-
mann problem, which generates a finite element equation for every node. The problem
formulation is then modified, so for each pair of nodes linked by a Periodic boundary
condition, one finite element equation is replaced by an equation enforcing equality
of values at the two nodes.

Initially, in an analogous manner to the derivation of (30a)–(30b), the Finite Dimen-
sional Weak Problem III leads to the linear system of equations, for n = 1, . . . , N

An−1
1 Un + ∆t Bn−1

1 Vn = Un−1, (32a)

Cn−1
1 Vn = Vn−1, (32b)

where the coefficient matrices are the same as those in (29a)–(29b). Now to incorporate
the Periodic boundary conditions, we label the sides of the square bn1, bn2, bn3, and
bn4 such that Γ := bn1

⋃
bn2

⋃
bn3

⋃
bn4. Thus, the periodic conditions are given

by

u|bn3 = u|bn1, v|bn3 = v|bn1, (33)

u|bn4 = u|bn2, v|bn4 = v|bn2, (34)

(see Fig. 2). For example, to prescribe U n
i and V n

i at the (‘target’) node xi on bn3 to be
equal to U n−1

j and V n−1
j at the (‘source’) node x j on bn1, we modify the i th equations

in (32) via

i

i



0 · · · 0 1 0 · · · 0







U n
i



 + ∆t



0 · · · 0 · · · 0







V n
i



 =



U n−1
j



 ,

Fig. 2 Imposing periodic
boundary conditions on the
square

bn1

bn2

bn3

bn4
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i

i



0 · · · 0 1 0 · · · 0







V n
i



 =



V n−1
j



 ,

where, as in the Dirichlet boundary condition case, the entry ‘1’ is incorporated at the
i th row and the i th column of the matrices An−1

1 and Cn−1
1 . The Periodic boundary

conditions are imposed for all nodes on bn3 and bn4 in a similar manner. The resulting
modified linear system of 2J linear equations for each time step is expressed as
follows:

Linear System III: For n = 1, . . . , N solve

An−1
3 Un + ∆t Bn−1

3 Vn = Ûn−1
, (35a)

Cn−1
3 Vn = V̂n−1

, (35b)

where An−1
3 , Bn−1

3 , Cn−1
3 , Ûn−1, and V̂n−1 are the adjusted versions of An−1

1 ,
Bn−1

1 , Cn−1
1 , Un−1, and Vn−1, respectively, incorporating the Periodic boundary

conditions.

3.4 The Matlab Code

3.4.1 Naming Convention

The collection of Matlab codes at http://www.uoguelph.ca/~mgarvie/ (called
‘FE2D’) solving the Linear Systems I, II, and III presented in Sect. 3.3 have the
following naming convention:

– FE2DX_N: Uses pure Neumann boundary conditions.
– FE2DX_D: Uses pure Dirichlet boundary conditions.
– FE2DX_R: Uses pure Robin boundary conditions.
– FE2DX_P: Uses Periodic boundary conditions on the square.
– FE2DX_ND: Uses mixed Neumann–Dirichlet boundary conditions.
– FE2DX_NR: Uses mixed Neumann–Robin boundary conditions.

These codes are generalizations of Scheme 1 presented by Garvie (2007). The cor-
responding codes for the generalizations of Scheme 2 in Garvie (2007) use the same
naming convention, but without the letter ‘X’ in the names. The codes are also pre-
sented in a ‘fast’ form to optimize speed, for example, the fast version of FE2DX_ND
is called FE2DX_ND_FAST. These codes are easily adapted for problems with mixed
boundary conditions not covered here, for example, mixed Dirichlet–Robin conditions,
or a Neumann condition on part of the boundary and two separate Robin conditions
on the remainder of the boundary. The codes are mostly self-explanatory, and all have
a similar structure, so we describe just FE2DX_ND.
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3.4.2 Description of FE2DX_ ND

The codes are function files, so to run the code one just types the name of the code (in
lower case) at the Matlab prompt. Prior to running the code, the user must construct
the unstructured grid for the problem using a separate meshing program. There are
many 2D meshing programs; however, we recommend MESH2D, freely available at
http://www.mathworks.com/matlabcentral/fileexchange/, as it is a Matlab program,
and we have verified its effectiveness. The unstructured grid generation provides the
triangle enumeration (‘t_triang.dat’) and the nodal coordinates (‘p_coord.dat’), which
are loaded by FE2DX_ND as external files. A simple example given at http://www.
uoguelph.ca/~mgarvie/ explains the required structure of these arrays. In addition,
the code loads the external files ‘bn1_nodes.dat’ and ‘bn2_nodes.dat’, which are the
node lists for Γ1 and Γ2. An example of a simple ‘front-end’ written in Matlab for
identifying the node lists for a hypothetical lake problem with an island is given at the
above-mentioned website.

Program FE2DX_ND is structured as follows:

• Lines 23–46: External data files for the mesh are loaded.
• Lines 50–78: User prompted for the parameter values, initial data functions, Dirich-

let data functions, and Neumann data functions. The functions are entered as strings
(allowable formats discussed below) and then converted to anonymous functions.

• Lines 82–140: The Stiffness Matrix K and the Finite Element Matrix L are assem-
bled. As this is more involved an explanation for this part of the code is given in
“Appendix”.

• Lines 141–143: The constant coefficient parts of the matrices A2 and C2 in Linear
System II are constructed.

• Lines 147–197: The Linear System II is solved repeatedly from t1 to tN = T .
– Lines 149–157: The coefficient matrices A2, B2, and C2 are updated with the

current solutions, as is the right-hand side of Linear System II.
– Lines 158–173: The Neumann boundary conditions are imposed for each edge

of Γ2.
– Lines 174–186: The Dirichlet boundary conditions are imposed for each node

on Γ1.
– Lines 187–189: The Incomplete LU factorizations of the coefficient matrices

A2 and C2 are computed to provide preconditioners for the GMRES iterative
solver.

– Lines 190–196: Linear System II is solved using the GMRES iterative solver.
• Lines 201–214: The finite element solutions for u and v are plotted using a trian-

gular surface plot at time T (a vertical ‘colorbar’ provides a scale).

There is no special way to enter the data functions. Unlike the simpler Matlab
codes presented by Garvie (2007), the element-by-element rules for expressing arith-
metic operations are not required. An example of an acceptable input format for the
boundary functions is the following:
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This last two entries show we may enter a single number for a constant function. A
similar format is used for entering the initial data, although the functions depend on
space, but not time. For example:

We can also define functions in a piecewise fashion. For example, with Ω =
[0, 100]2, to choose an initial predator density of 0.2 within a circle with radius 5 units
and centre (50, 50), and a density of 0 elsewhere on Ω , we input the following:

It is also possible to enter piecewise-defined functions utilizing Matlab’s logical
(scalar) operators && (‘AND’), || (‘OR’), ! (‘NOT’).

4 Numerical Experiments

We present the results of nine numerical experiments, which were motivated by dis-
cussions and experiments in the literature. In each case, we give sufficient details so
the results of the experiments can be reproduced using our Matlab codes, or repeated
using different numerical methods. This is advantageous as it allows theoretical biol-
ogists to verify our results and use the findings as a starting point for further study.

The finite element methods were coded in Matlab (ver R2013b). The resulting
sparse linear systems were solved with the aid of Matlab’s intrinsic GMRES (Gen-
eralized Minimum Residual Method) function, preconditioned with the intrinsic ILU
(Incomplete LU factorization) function. As the discrete problem may admit spuri-
ous solutions (Garvie 2007) and analytical solutions of the continuous problem are
not known, extra efforts were taken to verify convergence. In addition to using mesh
refinement and time step reduction to check convergence, solutions were also inde-
pendently verified by computing the solutions in COMSOL (ver 4.4), which employs
higher-order solvers in both space and time. Furthermore, we computed the solu-
tions using the generalizations of ‘Scheme 1’ (described in Sect. 3.2) and ‘Scheme 2’
(Garvie 2007) and verified that solutions were virtually identical for both schemes.
In all cases, the geometry and unstructured grids were generated in COMSOL and
then exported to Matlab using LiveLink for Matlab prior to solution. This facili-
tated the comparison of numerical results in Matlab and COMSOL.4 Solutions were

4 The unstructured grids can be generated using any other suitable meshing software, for example, MESH2D
available at http://www.mathworks.com/matlabcentral/fileexchange/.
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Table 1 Parameter values used in the numerical Experiments 1–9

1 2 3 4 5 6 7 8 9

α 0.4 0.4 0.2 0.204 0.4 0.4 0.4 0.4 0.2

β 2 2 1 0.83 2 2 2 2 1

γ 0.6 0.6 0.5 0.46 0.6 0.6 0.6 0.6 0.5

δ 1 1 1 1 1 10 1 1 5

hmax 2 2 2 2 2 2 1 1 2

hmin 3.46E−4 3.46E−4 0.0605 0.0321 0.03 0.197 1 0.03 0.15

T 150 150 200 94 39 90 1000 300 100

noe 100,184 70,914 56,215 45,082 24,830 95,824 420,668 24,809 50,818

n 50,493 36,162 28,440 23,934 12,574 48,595 211,135 12,564 25,767

We denote hmax and hmin to be the maximum and minimum element sizes for the meshes, noe the number
of elements in each mesh, and n denotes the number of nodes in the mesh. The stationary values u∗ and v∗
are calculated from (3). The meaning of the other parameters is given in the text

run on a Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 processor and 32 GB of
memory. Simulations took between 20 minutes and a day to run, depending on the
experiment. The parameter values for each experiment are shown in Table 1. A time
step of ∆t = 1/384 was used for all numerical simulations as this was found to be
sufficient to obtain convergence, except for the solutions in Experiment 7 (see below).
The domain geometry, initial data, and boundary conditions are described below.

Experiment 1 For our first experiment, we used the finite element code FE2DX_N_
FAST to approximate the predator–prey system (1) over the square domain Ω :=
[0, 400]2, with homogeneous Neumann boundary conditions. The initial data were
prescribed as (see Medvinsky et al. 2002; Garvie 2007; Garvie and Trenchea 2007)

u0(x, y) : = u∗ − 2 × 10−7(x − 0.1y − 225)(x − 0.1y − 675), (36a)

v0(x, y) : = v∗ − 3 × 10−5(x − 450) − 1.2 × 10−4(y − 150), (36b)

which rapidly led to the formation of rotating spiral waves (see Fig. 3a).

Experiment 2 In the second experiment, we repeated Experiment 1, again using
FE2DX_N_FAST, but replaced the square domain with the geometry of a
Koch Snowflake (Falconer 1990) (node list available from http://www.uoguelph.ca/
~mgarvie/). The results were qualitatively similar to those obtained in Experiment 1
(see Fig. 3b).

Experiment 3 In the third experiment, we usedFE2DX_ND_FAST to approximate the
predator–prey system over an irregular domain containing an obstacle. Homogeneous
Dirichlet boundary conditions (for both predators and prey) were imposed on the outer
boundary of the domain and homogeneous Neumann boundary conditions on the edge
of the obstacle (node lists available from http://www.uoguelph.ca/~mgarvie/). Starting
from stationary initial data (u∗, v∗), this scenario led to the generation of periodic
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Fig. 3 (Color figure line) 2D numerical solutions of the predator–prey system (1): a snapshot of prey
density for Experiment 1 at T = 150; b snapshot of prey density for Experiment 2 at T = 150; c snapshot
of prey density for Experiment 3 at T = 200; d snapshot of prey density for Experiment 4 at T = 94;
e snapshot of prey density for Experiment 5 at T = 39; f snapshot of prey density for Experiment 6 at
T = 90. For the initial conditions, boundary conditions, and parameters used see the text and Table 1
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travelling waves (‘target waves’), which are similar to the results displayed in Figure
10 of Sherratt (2003). The wave front moves from the outer edge of the domain towards
the centre of the domain; however, the periodic travelling waves move in the opposite
direction (see Fig. 3c).

Experiment 4 In the fourth experiment, we used FE2DX_ND_FAST to approximate
the predator–prey system over a square domain [0, 107]2 enclosing an irregular obsta-
cle, based on the scanned image of a reservoir (Kielder Water, UK) in a forest (the
node list for the geometry of the obstacle is available from http://www.uoguelph.ca/
~mgarvie/). To model a hostile boundary for the obstacle5, we imposed homogeneous
Dirichlet boundary conditions on the edge of the obstacle and homogeneous Neumann
boundary conditions on the sides of the square. Starting from stationary initial data
(u∗, v∗), target waves are generated by the obstacle, which are qualitatively similar to
the results in Sherratt and Smith (2008), Yun et al. (2011) (see Fig. 3d).

Experiment 5 In the fifth experiment, we used FE2DX_N_FAST to approximate the
predator–prey system over the circle, with radius 100 units, centre (100, 100), using
homogeneous Neumann boundary conditions. The initial conditions correspond to
colonization at the centre of an empty domain by predators and prey, given by

w0(x, y) =
{

w∗ if (x − 100)2 + (y − 100)2 < 25,

0 if (x − 100)2 + (y − 100)2 ≥ 25,

with w equal to u or v. With these initial conditions, the solutions rapidly evolve into
expanding ring-like waves, followed by a succession of rings with smaller amplitudes
(see Fig. 3e). The results of this experiment are qualitatively similar to the results of an
analogous numerical experiment for a reaction–diffusion–advection system with eco-
logical interactions of the Lotka–Volterra type (Dubois 1975). See also the discussion
by Holmes et al. (1994, p. 22) regarding this situation.

Experiment 6 In the sixth experiment, we used FE2DX_N_FAST to approximate the
predator–prey system in a fictitious ‘lake’ domain with an ‘island’ (the lists of nodes
for the ‘lake’ and ‘island’ are available from http://www.uoguelph.ca/~mgarvie/).
Homogeneous Neumann boundary conditions are imposed on both the ‘lake’ edge
and the edge of the ‘island’. The initial conditions are a small localized introduction
of predators at the top of the domain, which is in the (stationary) prey only state, given
by

v0(x, y) =
{

v∗ if (x − 305)2 + (y − 763)2 < 100,

0 if (x − 305)2 + (y − 763)2 ≥ 100,

u0(x, y) = u∗ everywhere.

The solution evolved into regular periodic waves behind an invasive front, which
rapidly moved from the initial point of introduction throughout the domain (see Fig. 3f).

5 See the paper by Sherratt and Smith (2008) for a biological motivation.

123

Author's personal copy

http://www.uoguelph.ca/~mgarvie/
http://www.uoguelph.ca/~mgarvie/
http://www.uoguelph.ca/~mgarvie/


Simple Finite Element Methods for Predator–Prey Dynamics Using Matlab

Fig. 4 (Color figure line) 2D numerical solutions of the predator–prey system (1): a snapshot of predator
density for Experiment 7 at T = 1,000; b snapshot of prey density for Experiment 8 at T = 300; c
snapshot of predator density for Experiment 9 at T = 100. For the initial conditions, boundary conditions,
and parameters used, see the text and Table 1

The results and the experiment are similar to those performed by Sherratt et al. (1997)
for a related spatially extended predator–prey system in two space dimensions. See
also the discussion by Holmes et al. (1994, p. 22) regarding predator–prey interactions
initiated in this manner.

Experiment 7 In the seventh experiment, we used FE2DX_P_FAST to approximate
the predator–prey system in a square domain [100, 300]2 with Periodic boundary
conditions. The initial conditions are the same as the ones used in Experiment 1, but
the problem is solved until a much larger final time T (see Table 1). The generation of
spiral waves eventually breaks-up into what is termed in the literature ‘spatiotemporal
chaos’ (Medvinsky et al. 2002) (see Fig. 4a). With a time step of 1/384, we were
unable to get an exact agreement with the results from FE2D_P_FAST, due to the
chaotic nature of the solutions. The results of this experiment are qualitatively similar
to those obtained if we replace the Periodic boundary conditions with homogeneous
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Neumann boundary conditions [see Figure 5 in (Garvie 2007)]. Similar experiments
were performed for a deterministic and stochastic phytoplankton–zooplankton system
(a reaction–diffusion system with the Rosenzweig–MacArthur form) using Periodic
boundary conditions (Malchow et al. 2004; Hilker et al. 2006).

Experiment 8 In the eighth experiment, we used FE2DX_NR_FAST to approximate
the predator–prey system over the circle, with radius 50 units and centre (50, 50). We
imposed mixed Robin–Neumann boundary conditions on the circumference of the
circle. Specifically, in polar coordinates, with

Γ1 :={(r, θ) : r =50, −5◦ ≤ θ ≤ 5◦}, Γ2 :={(r, θ) : r =50, 5◦ ≤ θ ≤ 355◦},

we imposed Neumann boundary conditions on Γ2 and Robin boundary conditions on
Γ1 using k1 = k2 = −0.5. As k1 and k2 are negative, the Robin boundary conditions
correspond to predators and prey leaving the domain via Γ1. Starting from the station-
ary initial data (u∗, v∗), this scenario led to the generation of periodic travelling waves
moving away from Γ1 and crossing the entire domain (see Fig. 4b). We were unable
to find any comparable experiments in the literature for this experiment.

Experiment 9 In the ninth experiment, we used FE2DX_N_FAST to approximate the
predator–prey system over a domain for metapopulation dynamics, using homoge-
neous Neumann boundary conditions and piecewise-defined initial data. The domain
consists of two circles connected by a rectangular corridor. The first circle Ω1 has
radius 100 units and centre (100, 150). The second circle Ω2 has radius 100 units and
centre (400, 150). The corridor is given by the rectangle Ω3 := [100 + 30

√
11, 400 −

30
√

11] × [140, 160]. The combined domain is given by Ω := Ω1 ∪ Ω2 ∪ Ω3. To
simulate the local extinction of predators in Ω2, we initially choose steady-state solu-
tions for the predators and prey in Ω1, steady-state prey data in Ω2, and zero initial
population density in the corridor Ω3, i.e.

u0(x, y) =
{

u∗ if (x, y) ∈ Ω\Ω3

0 if (x, y) ∈ Ω3
, v0(x, y) =

{
v∗ if (x, y) ∈ Ω1

0 if (x, y) ∈ Ω\Ω1
.

The initial data evolved into periodic travelling waves for the predators, which passed
through the corridor and re-populated the domain Ω2 (see Fig. 4c). This experiment
was motivated by a similar experiment conducted by Garvie et al. (2014) with a more
sophisticated metapopulation model.

5 Discussion and Conclusions

5.1 Numerical Comments

One of the advantages of the Matlab code is that once the external data for the mesh is
supplied (boundary nodes, node, and triangle enumeration), then the approximation of
the predator–prey system on a complicated domain with various boundary conditions
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is as easy as the solution of the simpler problem on a square domain with standard
boundary conditions. Of course, some initial efforts have to be made to set up the
geometry, grid the domain, and post-process the mesh to identify node lists (possibly
on different parts of the boundary).

Although we used the finite element method with piecewise linear continuous
basis functions, quadratic or higher-order basis functions might yield a more accurate
approximation. However, the method with linear basis functions is relatively simple
and is supported by a rigorous numerical analysis by Garvie and Trenchea (2007). Fur-
thermore, the finite element method yielded accurate solutions in all of the numerical
experiments, except in Experiment 7, where we unable to obtain an adequate match
between the two finite element methods due to the chaotic solutions.

The finite element method for the simpler problem studied over a square domain
with homogeneous Neumann boundary conditions is only first-order accurate (in time)
(Garvie and Trenchea 2007). Thus, the effective approximation of asymptotic solu-
tions, or solutions displaying spatiotemporal chaos, may require more accurate numer-
ical methods, for example, the Crank–Nicolson scheme (Crank and Nicolson 1947).
A method showing promise for these types of problems is a finite element methods
based on the composition of Implicit-Symplectic Euler steps (IMSP schemes) devel-
oped by Diele et al. (2014). The authors were able to reproduce some solutions by
Garvie (2007) using considerably smaller time steps.

As theoretical biologists continue to model more complex problems, there will be
a greater need for effective and user-friendly numerical methods.

5.2 Ecological Comments

The numerical experiments led to some general observations. The choice of domain
shape, boundary conditions, and initial conditions has a crucial role to play in deter-
mining the spatiotemporal dynamics of solutions. The specific choice should reflect
the particular ecological situation we wish to model. For example, the results of Exper-
iments 1 and 2 show (at least for the transient solutions) that the shape of the boundary
has little effect on the solutions when using homogeneous Neumann boundary condi-
tions. Homogeneous Neumann boundary conditions may be adequate for modelling
plankton dynamics in the ocean with an effectively unbounded domain. However, if
the plankton lives in a lake with a lethal shoreline, then the appropriate boundary con-
ditions are the homogeneous Dirichlet boundary conditions, and in this case, we expect
the boundary to have a profound effect on the population dynamics (see Experiment 3).

The typical solutions for the predator–prey system (1) are periodic travelling waves
in two space dimensions, which are either spiral waves, target waves, or waves of inva-
sion. If these solution forms are unstable as solutions of the reaction–diffusion systems,
then these solutions eventually break-up into spatiotemporal chaos (see Experiment 8).
The paper by Sherratt and Smith (2008) reviews periodic travelling waves in cyclic
populations and discusses the major mathematical research challenges in this area. A
fundamental question raised that is particularly relevant to our paper is as follows:
What are the ecologically relevant mechanisms governing periodic travelling waves
in natural populations? As we have demonstrated, this question is easily investigated
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by simulating different scenarios on a computer with the numerical methods presented
in this paper. The results of our numerical experiments suggest that periodic travelling
waves, or wave-like phenomena, can be caused by spatial heterogeneity in the model
(see the discussion by Sherratt and Smith (2008)). Examples include: boundary con-
ditions (Experiments 3 and 8); obstacles (Experiment 4); invasion (Experiments 5 and
6); and metapopulation dynamics (Experiment 9).

There are numerous problems requiring further investigation. For example, in
Experiment 4, we could investigate the question: How do the solutions change if
we replace the Dirichlet boundary conditions with the more realistic Robin boundary
conditions? Another question we could easily investigate with the set-up of Experi-
ments 5 or 6 is: What happens when different waves of invasion meet? In the context of
metapopulation dynamics (see Experiment 9), a fundamental question is: Do the long-
term dynamics become asynchronous or synchronous?6 This is important because it is
believed asynchronous dynamics lead to the increased persistence of metapopulations
(Jansen 2001).

The results and discussions in this paper highlight the need for researchers to inves-
tigate (both theoretically and numerically) more realistic ecological problems and the
tools for doing so numerically are readily available.
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Appendix: Assembly of the Matrix K and L

Consider a generic triangle τ with nodes labelled Pi , Pj , and Pk , with coordinates
(xi , yi ), (x j , y j ) and (xk, yk), respectively. Then, the linear basis function associated
with node Pk can be expressed as7

ϕk(x, y) := h ji (x, y)

h ji (xk, yk)
, where h ji (x, y) := (x −xi )(y j − yi )−(x j −xi )(y− yi ),

(h ji (xk, yk) 8= 0), and the basis functions for the other nodes are defined analogously.
Now as the gradient of the basis functions are constant on each triangle τ , all contribu-
tions to the Stiffness matrix K have the form

∫
τ ∇ϕs ·∇ϕp dx = ∇ϕs ·∇ϕp|τ |, where

the area of the triangle τ is given by |τ | = |x j yk −xk y j −xi yk +xk yi +xi y j −x j yi |/2.
Elementary calculations yield

∇ϕk · ∇ϕi = (y j − yi )(yk − y j ) + (xi − x j )(x j − xk)

h ji (xk, yk)hkj (xi , yi )
,

6 If the metapopulation dynamics are synchronous, then the dynamics in different patches are the same.
7 The full working for the assembly of these matrices was set as part of a project for a graduate course in
Numerical Analysis (‘Math*6400’) at the University of Guelph, ON, Canada.
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with similar expressions obtained for ∇ϕk · ∇ϕ j , ∇ϕi · ∇ϕ j , |∇ϕk |2, |∇ϕi |2 and
|∇ϕ j |2. The contributions to the matrix L := M̂−1 K are readily calculated after
noting

∫
τ ϕi dx = 1

3 |τ |, where we used the fact that the volume of a tetrahedron is a
third of the base area times the height.
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