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The Voronoi diagram of a set of points in the plane divides the plane so that
each point is assigned a separate polygons, although a few of these polygons
will actually be unbounded. Once the plane is subdivided in this way, it is
often of interest to determine the list of points which are immediate Voronoi
neighbors of a point I. One reason for gathering this information is that the
Voronoi diagram may be used in constructing a discrete model of some physical
process involving transport, such as heat transfer. In such cases, the quantity
being studied will be assigned to each point, and is allowed to flow over time
across boundaries with the immediate neighbors. Thus, a computational model
will require knowing the neighborhood relations.

There are many ways to compute the Voronoi diagram of a set of points.
Within MATLAB, there are two commands, voronoi() and voronoin(). It
turns out that the voronoin() command returns enough information to answer
our Voronoi neighbor question, so we will now explain how this information is
wrapped up in the output, and how it can be unfolded and interpreted.

When MATLAB constructs the Voronoi diagram, it needs a way to indicate
that some of the polygons are unbounded. It does this by adding a point at
infinity, and pretending that the infinite regions all include that point as a
vertex, so from now on, we can pretend that every point is contained in a
closed polygon defined by the Voronoi diagram. Two points are neighbors if
their polygons share an edge. So our question becomes, how do we take the
information that MATLAB returns to describe a Voronoi diagram, and analyze
it so that we can determine which points are neighbors?

Let’s use the following array of 9 points as an example:

0.0 0.0



Figure 1: Mathematica’s plot of the example data.
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For this small problem, we could answer our question by computing the
diagram with Mathematica’s VoronoiDiagram|| command and then calling
DiagramPlot[] to get Figure 1 so that from the illustration, we can easily see
that, for example, point 1 has neighbors 2, 3, 6 and 8.

While we can see this picture, the computer can’t, and now we need to
determine a way in which this same neighbor information can be determined
computationally, without the use of eyeballs, for larger problems, and using
MATLAB. Let us now consider how to proceed.

If T call voronoin() with the example data:
[ v, g ] = voronoin ( xy )
then the vertices v are returned as:

Inf Inf
0.5000 -0.2500
-0.5250 0.5000
0.2875 0.1750
0.3000 0.2000



1.1125 0.5000
0.9875 0.4000
0.5000 0.4000
0.0643 0.7357
0.3000 0.5000
0.5000 1.0625
0.5000 0.7000
0.5763 0.9289

But what is more interesting is the entries of the cell array g, which contain,
for each node, the sequence of vertices that form its boundary. Because g is a
cell array, we need to handle it a little differently than an ordinary MATLAB
array. In particular, we could print the vector of entries that form each row
with the commands:

for i =1 : length ( g )
disp ( g{i} )
end

For our data, the g information is:

1: 4 2 1 3
2: 11 1 3 9
3: 10 5 4 3 9
4: 13 11 9 10 12
5: 12 8 5 10
6: 8 5 4 2 7
7: 13 6 7 8 12
8: 7 2 1 6
9: 13 6 1 11

Now, just like two people in the suburbs are neighbors if they share a fence,
two nodes in the Voronoi diagram are neighbors if they share an edge. The
edges for node 1 are (4,2), (2,1), (1,3) and (3,4). If I rewrite these edges so the
pairs of nodes are sorted, and then sort these edges by first element, I have the
edges (1,2), (1,3), (2,4) and (3,4). Node 1 is a neighbor of node I if and only
if node I also uses one of these edges to bound its polygonal region. So if I list
all the edges down the left hand side, and all the nodes along the top, I can
construct the following diagram, showing which pairs of nodes are connected by
an edge:
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From this diagram, we can immediately see that the nodal neighbor array
is:
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Thus, we see that voronoin() returns in the second output argument g
enough information to determine which nodes are neighbors.

Now an interesting question is to write a MATLAB M file that can automate
this process, that is, accept a set of n points in the plane, and return the (sparse)
nodal neighbor array, so that A(i,j) is 1 if and only if nodes i and j are Voronoi
neighbors.

Talha Arslan, of the Department of Statistics, at Eskisehir Osmangazi Uni-
versity, has suggested the following procedure, which computes the Voronoi
adjacency matrix from the information provided by voronoin():

[ n, dim ] = size ( x );



V contains the Voronoi vertices,

C contains indices of Voronoi vertices that form the (finite sides of the)

Voronoi cells.

Lv,Cc]

Two nodes are neighbors if they share an edge, that is, two Voronoi

vertices.
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voronoin ( x );

n
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size ( intersect ( C{i}, C{j} ) );

if (1< s(2))
vn(i,j) = 1;
vn(j,i) = 1;

end
end
end

Carrying out this procedure for the test data set, we get:
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7: 0 0 0 1 1 1 0 1 1
8: 1 0 0 0 0 1 1 0 1
9: 0 1 0 1 0 0 1 1 0

Thus, we see that the voronoin() command does return all the information
we need to establish the Voronoi adjacency matrix, and we also see how we can
construct this matrix automatically.



