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Meshing: Rectangular Meshing
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Meshing: Nested and Unstructured Grids
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Meshing: Points and Delaunay Triangles
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Meshing: Points and Voronoi Polygons




Meshing: Centroidal Voronoi lteration

Voronoi, step 2
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Models: Physics and Geometry of the Earth
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Models: Physical Processes to Model

Community Earth Systern Madel Tutarial
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Community Atmosphere Model

Representing the key atmospheric processes in CAMS
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Models: A Successful Prediction
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Models: Millions of Nodes

We are working with a climate modeling group at Los Alamos National
Laboratory, whose MPAS software simulates the interactions of the
atmosphere, ocean, and land over the entire globe.

They currently use meshes whose elements are about 15 kilometers on a
side, or roughly 200 square kilometers in size. The surface area of the
earth is about 510 million square kilometers; we need about 2 million
elements, defined by nodes for which we can confidently say that they are
about 15 kilometers apart.

PAS

Model for Prediction Across Scales

http://mpas-dev.github.io/
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Models: Transport becomes Local Trading
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First Draft: Bisection of lcosahedral Grid

The 12 vertices of the icosahedron are perfectly separated on the
sphere. If we triangulate these vertices, we get 20 faces. If we bisect each
edge, we can replace each face with four smaller ones, which are no
longer congruent, and no longer “perfectly” placed. As we repeatedly
refine this grid by bisection, the mesh degrades, but is still very
acceptable as a starting point.

lcosahedral sphere giid cosahedral sphee gid Icosahedral sphere gid




First Draft: STRIPACK-based Algorithm

Choose n initial points g using the bisection grid;

while ( true )
v := Voronoi diagram ( g );
Compute c(i) = centroid of Voronoi polygon for g(i);
test = norm (g - c );
g <== c;
if ( test <= tolerance ) break;

t = Delaunay triangulation ( g )

construct final mesh from g, v, t




First Draft: STRIPACK processes a 42 node grid




First Draft: Timing for One lteration

For a 15 kilometer element width on the Earth, using uniform elements,
we need about 2,000,000 elements. Starting nodes are created by
“bisecting” an icosahedral set of nodes. Times increasing like N?.

BISECT Nodes | Name Time (seconds)
0 12 5.E-5
1 42 1.E-4
2 162 4.E-4
3 642 6.E-3
4 2,562 0.066
5 10,242 0.660
6 40,962 | coarse 10.161
7 163,842 | medium 170.798
8 655,362 3,207.510
9 2,621,442 | fine 51,954.900

10 | 10,485,762
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TRIANGLE: Sequential Delaunay in Plane
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TRIANGLE: Same Problem Sizes as STRIPACK

BISECT Nodes | Name STRIPACK | TRIANGLE
Seconds Seconds

0 12 5.E-5 0.025
1 42 1.E-4 0.023
2 162 4 E-4 0.023
3 642 6.E-3 0.026
4 2,562 0.066 0.033
5 10,242 0.660 0.057
6 40,962 | coarse 10.161 0.178
7 163,842 | medium 170.798 0.707
8 655,362 3,207.510 2.649
9| 2,621,442 | fine 51,954.900 11.108
10 | 10,485,762 ? 76.304
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TRIANGLE: Opportunities for Parallelism?
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TRIANGLE: Opportunities for Parallelism?




TRIANGLE: Opportunities for Parallelism?
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SPHERE: Empty Circumcircle Condition

In ciccle ABE In cicele ATE

Drelaubay Triangulation  Won-Dielaunay Toangolation Mob-Delannay Triangulation
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SPHERE: Mapping between Plane and Sphere

24/34



SPHERE: Mapping Preserves Circles




SPHERE: Proposed CVT Algorithm

Choose n initial points g using the bisection grid;
Processor p* gets nodes g* + nodes g** of neighbors;

while ( tolerance < test )
Stereograph g* + gx* to plane;
Compute local planar Delaunay triangulation ( gk+g** );
Construct all spherical triangles that include any g* node;
Accumulate c* = centroids of Voronoi polygons for g;
Compute local test = local norm ( g* - c* );
Replace g* <== cx;
Update node information with 6 neighbors;
Gather local tests into global test;

Merge local Delaunay triangulations;
Compute Voronoi diagram;
Construct mesh (nodes, polygons, connections).




SPHERE: Speedups for local triangulation and merge

Computations for a “medium"” grid of 163,842 nodes.

Algorithm Procs | Regions | Speedup | Comment

STRIPACK 1 1 1 | Used for local and merge.
MPI-SCVT L 1 2 57 | Smallest code uses
MPI-SCVT L+M 1 2 21 | 2 processes.

MPI-SCVT L 42 42 4092 | Called thousands of times.
MPI-SCVT L+M 42 42 37 | Called once, at end.

27/34



EXAMPLES: Un

iform Mesh Near Florida Coast
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EXAMPLES: Uniform Mesh Near California Coast
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EXAMPLES: South America Land/Ocean Interface




MPI lIssues

@ The sphere surface naturally subdivides into 12, 42, 162, subregions;

e We can use any number of subregions (but at least 2!), but
icosahedral bisection has advantages;

@ For 2 million nodes, the 42 subregions leaves enough work for each
MPI process;

@ The regularity of the subregion connectivity means just 6 MPI Sends
and Receives per process on each step;

@ Only at the end of the iteration is a global MPI gather needed in
order to assemble the mesh;

@ If a nonuniform density is applied, the assignment of nodes to
processors must be adjusted;
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The work described here represents in part the PhD dissertation of
Doug Jacobsen, while he was a student in the FSU Department of
Scientific Computing.

Max Gunzburger and Janet Peterson were his advisors, leading a
research group that included me.

The motivation for a smooth polygonal mesh of the earth came from
Todd Ringler of Los Alamos National Laboratory.

Doug used to arrive at school even earlier than | did, and always had a
question or mathematical issue or programming problem to discuss with
me. Doug was in my introductory workshop on MPI; | showed him
stereographic mapping, spherical geometry, the STRIPACK and
TRIANGLE packages and how to use Delaunay information for Voronoi
calculations.

The ideas for doing the Delaunay triangulation in parallel, for exploiting
the icosahedral grid, and the computer implementation came entirely
from him.
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Conclusions

Stereographic mapping allows us to transfer hard work on the sphere
to simple work in the plane

Mapping TRIANGLE results onto the sphere is faster than working
directly on the sphere with STRIPACK;

The planar Delaunay triangulation can be parallelized, including the
merge step;

@ Therefore, the sphere triangulation can be parallelized;
@ This procedure provides an efficient parallel solution to a costly

calculation;

Nonuniform density? Constraints? Subregion meshing? (All can be
handled)
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