#! /usr/bin/env python3 # def paraheat_gaussian_parameters ( data_filename ): #*****************************************************************************80 # ## paraheat_gaussian_parameters() uses keras to solve a multivariate regression case. # # Discussion: # # A data file contains data_num records of an experiment. # # Each record has the form: # (seed,xc,yc,sc,vc,vs01...vs50) # where seed was used to generate the parameter vc, which controls the # strength of a Gaussian diffusivity, and vs01 through vs50 are values # of the resulting finite element solution to a heat equation. # For this example, all four quantites xc, yc, sc and vc were varied. # # The task is to use the values of vs (sample solution values at sensor # locations) to estimate xc, yc, sc and vc. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 14 May 2019 # # Author: # # John Burkardt. # import keras import matplotlib.pyplot as plt import numpy as np import platform import tensorflow print ( '' ) print ( 'paraheat_gaussian_parameters():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' tensorflow version: ' + tensorflow.__version__ ) print ( ' keras version: ' + keras.__version__ ) print ( '' ) print ( ' Neural network to solve a multivariate regression problem.' ) print ( ' Estimate the parameters xc, yc, sc, vc used in a Gaussian diffusivity' ) print ( ' given vs, 50 samples of the resulting heat distribution' ) print ( ' Data of many records is available.' ) print ( ' The data is read from an external file.' ) print ( '' ) # # Load the data. # print ( ' Read data from %s' % ( data_filename ) ) data = np.loadtxt ( data_filename ) print ( ' Data contains %d records with %d features.' % ( data.shape[0], data.shape[1] ) ) # # Each data item has 55 entries: # Data column 1 is the random number seed; ignore it. # Data columns 2, 3, 4, 5 are xc, yc, sc, vc; we will try to predict this # Data columns 6-55 are sampled solution values. Use these to predict. # data_num = data.shape[0] train_num = int ( 0.95 * data_num ) # # There are data_num rows of data. # Use train_num for training, test_num for testing. # train_data = data[0:train_num,5:55] train_targets = data[0:train_num,1:5] train_num = train_data.shape[0] feature_num = train_data.shape[1] target_num = train_targets.shape[1] print ( ' Training data uses %d records with %d features and %d targets.' % ( train_num, feature_num, target_num ) ) test_data = data[train_num:data_num,5:55] test_targets = data[train_num:data_num,1:5] test_num = test_data.shape[0] print ( ' Test data uses %d records with %d features and %d targets.' % ( test_num, feature_num, target_num ) ) # # Exhibit the contents of one item of the training data: # print ( ' train_data[0,0:10]:' ) print ( train_data[0,0:10] ) print ( ' train_targets[0,0:4]:' ) print ( train_targets[0,0:4] ) print ( ' test_data[0,0:10]:' ) print ( test_data[0,0:10] ) print ( ' test_targets[0,0:4]:' ) print ( test_targets[0,0:4] ) # # Build the model. # Options include how many nodes and how many layers to use. # from keras import models from keras import layers node_num = 200 print ( ' Using %d nodes per layer' % ( node_num ) ) model = models.Sequential() model.add ( layers.Dense ( node_num, activation = 'relu', input_shape = ( feature_num, ) ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( node_num, activation = 'relu' ) ) model.add ( layers.Dense ( 4 ) ) # # Compile the model. # model.compile ( \ optimizer = 'adam', \ loss = 'mean_squared_error', \ metrics = [ 'mean_squared_error' ] ) model.summary() # # Train the model. # Use 20% of training data for validation. # print ( '' ) print ( 'Training:' ) print ( '' ) model.fit ( train_data, train_targets, validation_split = 0.20, epochs = 40 ) # # Test # print ( '' ) print ( 'Testing:' ) print ( '' ) print ( ' Case True Estimate' ) test_predictions = model.predict ( test_data ) for i in range ( test_num ): print ( '' ) print ( ' %3d:' % ( i ) ) for j in range ( target_num ): print ( ' %8.4f %8.4f' % ( test_targets[i,j], test_predictions[i,j] ) ) import matplotlib.pyplot as plt # # Plot true versus estimated values. # j = 0 xmin = np.min ( test_targets[:,j] ) xmax = np.max ( test_targets[:,j] ) plt.scatter ( test_targets[:,j], test_predictions[:,j] ) plt.plot ( [xmin,xmax], [xmin,xmax], color = 'r', linewidth = 3 ) plt.grid ( True ) plt.xlabel ( '<--- True value --->', fontsize = 16 ) plt.ylabel ( '<--- Estimated value --->', fontsize = 16 ) plt.title ( 'paraheat_gaussian: Estimation of parameter xc', fontsize = 16 ) filename = 'paraheat_gaussian_parameters_xc.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) j = 1 xmin = np.min ( test_targets[:,j] ) xmax = np.max ( test_targets[:,j] ) plt.scatter ( test_targets[:,j], test_predictions[:,j] ) plt.plot ( [xmin,xmax], [xmin,xmax], color = 'r', linewidth = 3 ) plt.grid ( True ) plt.xlabel ( '<--- True value --->', fontsize = 16 ) plt.ylabel ( '<--- Estimated value --->', fontsize = 16 ) plt.title ( 'paraheat_gaussian: Estimation of parameter yc', fontsize = 16 ) filename = 'paraheat_gaussian_parameters_yc.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) j = 2 xmin = np.min ( test_targets[:,j] ) xmax = np.max ( test_targets[:,j] ) plt.scatter ( test_targets[:,j], test_predictions[:,j] ) plt.plot ( [xmin,xmax], [xmin,xmax], color = 'r', linewidth = 3 ) plt.grid ( True ) plt.xlabel ( '<--- True value --->', fontsize = 16 ) plt.ylabel ( '<--- Estimated value --->', fontsize = 16 ) plt.title ( 'paraheat_gaussian: Estimation of parameter sc', fontsize = 16 ) filename = 'paraheat_gaussian_parameters_sc.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) j = 3 xmin = np.min ( test_targets[:,j] ) xmax = np.max ( test_targets[:,j] ) plt.scatter ( test_targets[:,j], test_predictions[:,j] ) plt.plot ( [xmin,xmax], [xmin,xmax], color = 'r', linewidth = 3 ) plt.grid ( True ) plt.xlabel ( '<--- True value --->', fontsize = 16 ) plt.ylabel ( '<--- Estimated value --->', fontsize = 16 ) plt.title ( 'paraheat_gaussian: Estimation of parameter vc', fontsize = 16 ) filename = 'paraheat_gaussian_parameters_vc.png' plt.savefig ( filename ) print ( ' Graphics saved as "%s"' % ( filename ) ) plt.show ( ) # # Terminate. # print ( '' ) print ( 'paraheat_gaussian_parameters():' ) print ( ' Normal end of execution.' ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return None if ( __name__ == '__main__' ): timestamp ( ) paraheat_gaussian_parameters ( 'xcycscvc2000.txt' ) timestamp ( )