program main !*****************************************************************************80 ! !! zero_laguerre_test() tests zero_laguerre(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'zero_laguerre_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test zero_laguerre().' call test01 ( ) call test02 ( ) call test03 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'zero_laguerre_test():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine test01 ( ) !*****************************************************************************80 ! !! test01() runs the tests on a polynomial function. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) abserr integer degree real ( kind = rk ), external :: func01 integer ierror integer k integer kmax real ( kind = rk ) x real ( kind = rk ) x0 ! ! Give a starting point. ! x0 = 1.0D+00 ! ! The polynomial degree. ! degree = 3 ! ! Set the error tolerance. ! abserr = 0.00001D+00 ! ! KMAX is the maximum number of iterations. ! kmax = 30 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'test01():' write ( *, '(a)' ) ' p(x)=(x+3)*(x+3)*(x-2)' call zero_laguerre ( x0, degree, abserr, kmax, func01, x, ierror, k ) write ( *, '(a)' ) ' ' if ( ierror /= 0 ) then write ( *, '(a,i2)' ) ' Iteration failed with ierror = ', ierror else write ( *, '(a,i2)' ) ' Iteration steps taken: ', k write ( *, '(a,g14.6)' ) ' Estimated root X = ', x write ( *, '(a,g14.6)' ) ' F(X) = ', func01 ( x, 0 ) end if return end function func01 ( x, ider ) !*****************************************************************************80 ! !! func01() computes the function value for the first test. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real X, the point at which the evaluation is to take place. ! ! integer IDER, specifies what is to be evaluated: ! 0, evaluate the function. ! 1, evaluate the first derivative. ! 2, evaluate the second derivative. ! ! Output: ! ! real FUNC01, the value of the function or derivative. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) func01 integer ider real ( kind = rk ) x if ( ider == 0 ) then func01 = ( x + 3.0D+00 )**2 * ( x - 2.0D+00 ) else if ( ider == 1 ) then func01 = ( x + 3.0D+00 ) * ( 3.0D+00 * x - 1.0D+00 ) else if ( ider == 2 ) then func01 = 6.0D+00 * x + 8.0D+00 else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'func01(): Fatal error!' write ( *, '(a,i8)' ) ' Derivative of order IDER = ', ider write ( *, '(a)' ) ' was requested.' stop end if return end subroutine test02 ( ) !*****************************************************************************80 ! !! test02() runs the tests on the Newton polynomial. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) abserr integer degree real ( kind = rk ), external :: func02 integer ierror integer k integer kmax real ( kind = rk ) x real ( kind = rk ) x0 ! ! Give a starting point. ! x0 = 1.0D+00 ! ! The polynomial degree. ! degree = 3 ! ! Set the error tolerance. ! abserr = 0.00001D+00 ! ! KMAX is the maximum number of iterations. ! kmax = 30 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'test02():' write ( *, '(a)' ) ' p(x) = x^3 - 2x - 5' call zero_laguerre ( x0, degree, abserr, kmax, func02, x, ierror, k ) write ( *, '(a)' ) ' ' if ( ierror /= 0 ) then write ( *, '(a,i2)' ) ' Iteration failed with ierror = ', ierror else write ( *, '(a,i2)' ) ' Iteration steps taken: ', k write ( *, '(a,g14.6)' ) ' Estimated root X = ', x write ( *, '(a,g14.6)' ) ' F(X) = ', func02 ( x, 0 ) end if return end function func02 ( x, ider ) !*****************************************************************************80 ! !! func02() computes the function value for the Newton polynomial. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 March 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real X, the point at which the evaluation is to take place. ! ! integer IDER, specifies what is to be evaluated: ! 0, evaluate the function. ! 1, evaluate the first derivative. ! 2, evaluate the second derivative. ! ! Output: ! ! real FUNC02, the value of the function or derivative. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) func02 integer ider real ( kind = rk ) x if ( ider == 0 ) then func02 = x**3 - 2.0D+00 * x - 5.0D+00 else if ( ider == 1 ) then func02 = 3.0D+00 * x**2 - 2.0D+00 else if ( ider == 2 ) then func02 = 6.0D+00 * x else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'func02(): Fatal error!' write ( *, '(a,i8)' ) ' Derivative of order IDER = ', ider write ( *, '(a)' ) ' was requested.' stop end if return end subroutine test03 ( ) !*****************************************************************************80 ! !! test03() runs the tests on the 123456 polynomial. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) abserr integer degree real ( kind = rk ), external :: func03 integer ierror integer k integer kmax real ( kind = rk ) x real ( kind = rk ) x0 ! ! Give a starting point. ! x0 = 1.0D+00 ! ! The polynomial degree. ! degree = 5 ! ! Set the error tolerance. ! abserr = 0.00001D+00 ! ! KMAX is the maximum number of iterations. ! kmax = 30 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'test03():' write ( *, '(a)' ) ' p(x) = x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 6' call zero_laguerre ( x0, degree, abserr, kmax, func03, x, ierror, k ) write ( *, '(a)' ) ' ' if ( ierror /= 0 ) then write ( *, '(a,i2)' ) ' Iteration failed with ierror = ', ierror else write ( *, '(a,i2)' ) ' Iteration steps taken: ', k write ( *, '(a,g14.6)' ) ' Estimated root X = ', x write ( *, '(a,g14.6)' ) ' F(X) = ', func03 ( x, 0 ) end if return end function func03 ( x, ider ) !*****************************************************************************80 ! !! func03() computes the function value for the 123456 polynomial. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 29 March 2024 ! ! Author: ! ! John Burkardt ! ! Input: ! ! real X, the point at which the evaluation is to take place. ! ! integer IDER, specifies what is to be evaluated: ! 0, evaluate the function. ! 1, evaluate the first derivative. ! 2, evaluate the second derivative. ! ! Output: ! ! real FUNC03, the value of the function or derivative. ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ) func03 integer ider real ( kind = rk ) x if ( ider == 0 ) then func03 = x**5 + 2.0 * x**4 + 3.0 * x**3 + 4.0 * x**2 + 5.0 * x + 6.0 else if ( ider == 1 ) then func03 = 5.0 * x**4 + 8.0 * x**3 + 9.0 * x**2 + 8.0 * x + 5.0 else if ( ider == 2 ) then func03 = 20.0 * x**3 + 24.0 * x**2 + 18.0 * x + 8.0 else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'func03(): Fatal error!' write ( *, '(a,i8)' ) ' Derivative of order IDER = ', ider write ( *, '(a)' ) ' was requested.' stop end if return end subroutine timestamp ( ) !*****************************************************************************80 ! !! TIMESTAMP prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 May 2013 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end