program main !*****************************************************************************80 ! !! stripack_voronoi() uses stripack() to compute a Voronoi diagram on a sphere. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 27 January 2013 ! ! Author: ! ! John Burkardt ! ! Usage: ! ! stripack_voronoi xyz_file ! implicit none integer arg_num integer, parameter :: dim_num = 3 integer dim_num1 integer, allocatable :: first(:) integer iarg integer iargc integer, allocatable :: lend(:) integer, allocatable :: list(:) integer, allocatable :: listc(:) integer, allocatable :: lptr(:) integer node_num integer nt integer, allocatable :: order(:) integer order_sum character ( len = 255 ) :: voronoi_filename = 'voronoi.txt' real ( kind = 8 ), allocatable :: xc(:) real ( kind = 8 ), allocatable :: xyz(:,:) real ( kind = 8 ), allocatable :: xyzv(:,:) character ( len = 255 ) :: xyz_filename = ' ' real ( kind = 8 ), allocatable :: yc(:) real ( kind = 8 ), allocatable :: zc(:) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'stripack_voronoi():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read a file of (X,Y,Z) coordinates of points on' write ( *, '(a)' ) ' the unit sphere.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Call STRIPACK(), and determine a Voronoi diagram.' ! ! Get the number of command line arguments. ! arg_num = iargc ( ) ! ! If at least one command line argument, it is the node coordinate file. ! if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, xyz_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'stripack_voronoi():' write ( *, '(a)' ) ' Please enter the name of the node coordinate file.' read ( *, '(a)' ) xyz_filename end if ! ! Read the XYZ data. ! call r8mat_header_read ( xyz_filename, dim_num1, node_num ) if ( dim_num1 /= dim_num ) then write ( *, * ) ' ' write ( *, '(a)' ) 'STRIPACK_VORONOI - Fatal error!' write ( *, '(a)' ) ' Input data is not 3D.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the header of "' & // trim ( xyz_filename ) //'".' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Spatial dimension = ', dim_num write ( *, '(a,i8)' ) ' Number of nodes = ', node_num allocate ( xyz(1:dim_num,1:node_num) ) call r8mat_data_read ( xyz_filename, dim_num, node_num, xyz ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Read the node coordinate data in "' & // trim ( xyz_filename ) //'".' call r8mat_transpose_print_some ( dim_num, node_num, xyz, & 1, 1, dim_num, 5, ' Initial part of the node coordinate array:' ) ! ! Now we compute the Voronoi information on the sphere. ! allocate ( lend(1:node_num) ) allocate ( listc(1:6*(node_num-2)) ) allocate ( lptr(1:6*(node_num-2)) ) allocate ( xc(1:2*(node_num-2)) ) allocate ( yc(1:2*(node_num-2)) ) allocate ( zc(1:2*(node_num-2)) ) call voronoi_get ( node_num, xyz(1,:), xyz(2,:), xyz(3,:), nt, xc, yc, zc, & lend, listc, lptr ) ! ! Gather the Voronoi vertices and print them. ! allocate ( xyzv(1:3,1:nt) ) xyzv(1,1:nt) = xc(1:nt) xyzv(2,1:nt) = yc(1:nt) xyzv(3,1:nt) = zc(1:nt) voronoi_filename = 'voronoi.xyz' call r8mat_write ( voronoi_filename, 3, nt, xyzv ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Wrote the Voronoi vertices to "' & // trim ( voronoi_filename ) // '".' ! ! Get the order of each Voronoi polygon. ! allocate ( order(1:node_num) ) call voronoi_order ( node_num, lend, lptr, order ) call i4vec_print ( node_num, order, ' Voronoi polygon orders:' ) ! ! Get the Voronoi polygons as a list. ! order_sum = sum ( order(1:node_num) ) allocate ( first(1:node_num+1) ) allocate ( list(1:order_sum) ) call voronoi_polygons ( node_num, order_sum, lend, listc, lptr, first, list ) ! call i4list_print ( node_num, first, order_sum, list, ' Voronoi polygons:' ) voronoi_filename = 'voronoi.xyzf' call i4list_write ( voronoi_filename, node_num, first, order_sum, list ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Wrote the Voronoi vertex lists to "' & // trim ( voronoi_filename ) //'".' ! ! Free memory. ! deallocate ( first ) deallocate ( lend ) deallocate ( list ) deallocate ( listc ) deallocate ( lptr ) deallocate ( order ) deallocate ( xc ) deallocate ( xyz ) deallocate ( xyzv ) deallocate ( yc ) deallocate ( zc ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'stripack_voronoi():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( ch ) !*****************************************************************************80 ! !! CH_CAP capitalizes a single character. ! ! Discussion: ! ! Instead of CHAR and ICHAR, we now use the ACHAR and IACHAR functions, ! which guarantee the ASCII collating sequence. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 19 July 1998 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input/output, character CH, the character to capitalize. ! implicit none character ch integer itemp itemp = iachar ( ch ) if ( 97 <= itemp .and. itemp <= 122 ) then ch = achar ( itemp - 32 ) end if return end function ch_eqi ( c1, c2 ) !*****************************************************************************80 ! !! CH_EQI is a case insensitive comparison of two characters for equality. ! ! Example: ! ! CH_EQI ( 'A', 'a' ) is TRUE. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 July 2000 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character C1, C2, the characters to compare. ! ! Output, logical CH_EQI, the result of the comparison. ! implicit none character c1 character c1_cap character c2 character c2_cap logical ch_eqi c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( ch, digit ) !*****************************************************************************80 ! !! CH_TO_DIGIT returns the value of a base 10 digit. ! ! Discussion: ! ! Instead of ICHAR, we now use the IACHAR function, which ! guarantees the ASCII collating sequence. ! ! Example: ! ! CH DIGIT ! --- ----- ! '0' 0 ! '1' 1 ! ... ... ! '9' 9 ! ' ' 0 ! 'X' -1 ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 August 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character CH, the decimal digit, '0' through '9' or blank ! are legal. ! ! Output, integer DIGIT, the corresponding value. ! If CH was 'illegal', then DIGIT is -1. ! implicit none character ch integer digit if ( lle ( '0', ch ) .and. lle ( ch, '9' ) ) then digit = iachar ( ch ) - 48 else if ( ch == ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_file_name, column_num ) !*****************************************************************************80 ! !! FILE_COLUMN_COUNT counts the number of columns in the first line of a file. ! ! Discussion: ! ! The file is assumed to be a simple text file. ! ! Most lines of the file is presumed to consist of COLUMN_NUM words, ! separated by spaces. There may also be some blank lines, and some ! comment lines, ! which have a "#" in column 1. ! ! The routine tries to find the first non-comment non-blank line and ! counts the number of words in that line. ! ! If all lines are blanks or comments, it goes back and tries to analyze ! a comment line. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 21 June 2001 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the file. ! ! Output, integer COLUMN_NUM, the number of columns in the file. ! implicit none integer column_num logical got_one character ( len = * ) input_file_name integer input_status integer input_unit character ( len = 255 ) line ! ! Open the file. ! call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & form = 'formatted', access = 'sequential', iostat = input_status ) if ( input_status /= 0 ) then column_num = -1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' & // trim ( input_file_name ) // '" on unit ', input_unit return end if ! ! Read one line, but skip blank lines and comment lines. ! got_one = .false. do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if if ( line(1:1) == '#' ) then cycle end if got_one = .true. exit end do if ( .not. got_one ) then rewind ( input_unit ) do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then exit end if if ( len_trim ( line ) == 0 ) then cycle end if got_one = .true. exit end do end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning!' write ( *, '(a)' ) ' The file does not seem to contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_file_name, row_num ) !*****************************************************************************80 ! !! FILE_ROW_COUNT counts the number of row records in a file. ! ! Discussion: ! ! It does not count lines that are blank, or that begin with a ! comment symbol '#'. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 March 2003 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILE_NAME, the name of the input file. ! ! Output, integer ROW_NUM, the number of rows found. ! implicit none integer bad_num integer comment_num integer ierror character ( len = * ) input_file_name integer input_status integer input_unit character ( len = 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_file_name, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then row_num = -1; ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_ROW_COUNT - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_file_name ) // '" on unit ', input_unit stop end if comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 do read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then ierror = record_num exit end if record_num = record_num + 1 if ( line(1:1) == '#' ) then comment_num = comment_num + 1 cycle end if if ( len_trim ( line ) == 0 ) then comment_num = comment_num + 1 cycle end if row_num = row_num + 1 end do close ( unit = input_unit ) return end subroutine get_unit ( iunit ) !*****************************************************************************80 ! !! GET_UNIT returns a free FORTRAN unit number. ! ! Discussion: ! ! A "free" FORTRAN unit number is an integer between 1 and 99 which ! is not currently associated with an I/O device. A free FORTRAN unit ! number is needed in order to open a file with the OPEN command. ! ! If IUNIT = 0, then no free FORTRAN unit could be found, although ! all 99 units were checked (except for units 5, 6 and 9, which ! are commonly reserved for console I/O). ! ! Otherwise, IUNIT is an integer between 1 and 99, representing a ! free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 ! are special, and will never return those values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 September 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer IUNIT, the free unit number. ! implicit none integer i integer ios integer iunit logical lopen iunit = 0 do i = 1, 99 if ( i /= 5 .and. i /= 6 .and. i /= 9 ) then inquire ( unit = i, opened = lopen, iostat = ios ) if ( ios == 0 ) then if ( .not. lopen ) then iunit = i return end if end if end if end do return end subroutine i4list_print ( n, first, list_num, list, title ) !*****************************************************************************80 ! !! I4LIST_PRINT prints an I4LIST. ! ! Discussion: ! ! An I4LIST is a list of integers grouped into N segments. ! An index vector locates the first entry of each segment. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of segments. ! ! Input, integer FIRST(N+1), indexes the first entry ! of each segment. ! ! Input, integer LIST_NUM, the number of entries. ! ! Input, integer LIST(LIST_NUM), the data. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer list_num integer n integer first(n+1) integer i integer jhi integer jlo integer list(list_num) character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n do jlo = first(i), first(i+1) - 1, 5 jhi = min ( jlo + 4, first(i+1) - 1 ) if ( jlo == first(i) ) then write ( *, '(i5,a,5(2x,i8))' ) i, ':', list(jlo:jhi) else write ( *, '(6x, 5(2x,i8))' ) list(jlo:jhi) end if end do end do return end subroutine i4list_write ( output_filename, n, first, list_num, list ) !*****************************************************************************80 ! !! I4LIST_PRINT prints an I4LIST. ! ! Discussion: ! ! An I4LIST is a list of integers grouped into N segments. ! An index vector locates the first entry of each segment. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the name of the file. ! ! Input, integer N, the number of segments. ! ! Input, integer FIRST(N+1), indexes the first entry ! of each segment. ! ! Input, integer LIST_NUM, the number of entries. ! ! Input, integer LIST(LIST_NUM), the data. ! implicit none integer list_num integer n character ( len = * ) output_filename integer first(n+1) character ( len = 80 ) format_string integer i integer jhi integer jlo integer list(list_num) integer order_max integer output_unit order_max = 0 do i = 1, n order_max = max ( order_max, first(i+1) - first(i) ) end do write ( format_string, '(a1,i8,a3)' ) '(', order_max, 'i5)' call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, status = 'replace' ) do i = 1, n jlo = first(i) jhi = first(i+1) - 1 write ( output_unit, format_string ) list(jlo:jhi) end do close ( unit = output_unit ) return end subroutine i4mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. ! ! Discussion: ! ! An I4MAT is a rectangular array of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 December 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer m integer n integer a(m,n) character ( len = * ) title call i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! I4MAT_TRANSPOSE_PRINT_SOME prints some of the transpose of an I4MAT. ! ! Discussion: ! ! An I4MAT is a rectangular array of integer values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 09 February 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, integer A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer, parameter :: incx = 10 integer m integer n integer a(m,n) character ( len = 8 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8)' ) i end do write ( *, '('' Row '',10a8)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(i8)' ) a(i,j) end do write ( *, '(i5,1x,10a8)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine i4mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! I4MAT_WRITE writes an I4MAT file. ! ! Discussion: ! ! An I4MAT is an array of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 August 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, integer TABLE(M,N), the table data. ! implicit none integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string integer table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a4)' ) '(', m, 'i10)' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine i4vec_print ( n, a, title ) !*****************************************************************************80 ! !! I4VEC_PRINT prints an I4VEC. ! ! Discussion: ! ! An I4VEC is a vector of I4's. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 02 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of components of the vector. ! ! Input, integer A(N), the vector to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer n integer a(n) integer i character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,a,2x,i12)' ) i, ':', a(i) end do return end subroutine r8mat_data_read ( input_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_DATA_READ reads data from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Discussion: ! ! The file may contain more than N points, but this routine will ! return after reading N of them. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 18 October 2008 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Output, real ( kind = 8 ) TABLE(M,N), the table data. ! implicit none integer m integer n integer ierror character ( len = * ) input_filename integer input_status integer input_unit integer j character ( len = 255 ) line real ( kind = 8 ) table(m,n) real ( kind = 8 ) x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, status = 'old', & iostat = input_status ) if ( input_status /= 0 ) then ierror = 1 write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the input file "' // & trim ( input_filename ) // '" on unit ', input_unit stop end if j = 0 do while ( j < n ) read ( input_unit, '(a)', iostat = input_status ) line if ( input_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_DATA_READ - Fatal error!' write ( *, '(a)' ) ' Error while reading lines of data.' write ( *, '(a,i8)' ) ' Number of values expected per line M = ', m write ( *, '(a,i8)' ) ' Number of data lines read, J = ', j write ( *, '(a,i8)' ) ' Number of data lines needed, N = ', n stop end if if ( line(1:1) == '#' .or. len_trim ( line ) == 0 ) then cycle end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror /= 0 ) then cycle end if j = j + 1 table(1:m,j) = x(1:m) end do close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) !*****************************************************************************80 ! !! R8MAT_HEADER_READ reads the header from an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) INPUT_FILENAME, the name of the input file. ! ! Output, integer M, spatial dimension. ! ! Output, integer N, the number of points. ! implicit none character ( len = * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if call file_row_count ( input_filename, n ) if ( n <= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was some kind of I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a)' ) ' the file "' // trim ( input_filename ) // '".' stop end if return end subroutine r8mat_transpose_print ( m, n, a, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is an MxN array of R8's, stored by (I,J) -> [I+J*M]. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, character ( len = * ) TITLE, a title. ! implicit none integer m integer n real ( kind = 8 ) a(m,n) character ( len = * ) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) !*****************************************************************************80 ! !! R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. ! ! Discussion: ! ! An R8MAT is a two dimensional matrix of double precision real values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 June 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns. ! ! Input, real ( kind = 8 ) A(M,N), an M by N matrix to be printed. ! ! Input, integer ILO, JLO, the first row and column to print. ! ! Input, integer IHI, JHI, the last row and column to print. ! ! Input, character ( len = * ) TITLE, an optional title. ! implicit none integer, parameter :: incx = 5 integer m integer n real ( kind = 8 ) a(m,n) character ( len = 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character ( len = * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)' ) i end do write ( *, '('' Row '',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' write ( *, '(a)' ) ' ' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(i5,1x,5a14)' ) j, ( ctemp(i), i = 1, inc ) end do end do return end subroutine r8mat_write ( output_filename, m, n, table ) !*****************************************************************************80 ! !! R8MAT_WRITE writes an R8MAT file. ! ! Discussion: ! ! An R8MAT is an array of R8 values. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 31 May 2009 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) OUTPUT_FILENAME, the output file name. ! ! Input, integer M, the spatial dimension. ! ! Input, integer N, the number of points. ! ! Input, real ( kind = 8 ) TABLE(M,N), the data. ! implicit none integer m integer n integer j character ( len = * ) output_filename integer output_status integer output_unit character ( len = 30 ) string real ( kind = 8 ) table(m,n) ! ! Open the file. ! call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace', iostat = output_status ) if ( output_status /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_WRITE - Fatal error!' write ( *, '(a,i8)' ) ' Could not open the output file "' // & trim ( output_filename ) // '" on unit ', output_unit output_unit = -1 stop end if ! ! Create a format string. ! ! For less precision in the output file, try: ! ! '(', m, 'g', 14, '.', 6, ')' ! if ( 0 < m .and. 0 < n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) '(', m, 'g', 24, '.', 16, ')' ! ! Write the data. ! do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if ! ! Close the file. ! close ( unit = output_unit ) return end subroutine s_to_r8 ( s, dval, ierror, length ) !*****************************************************************************80 ! !! S_TO_R8 reads an R8 from a string. ! ! Discussion: ! ! The routine will read as many characters as possible until it reaches ! the end of the string, or encounters a character which cannot be ! part of the number. ! ! Legal input is: ! ! 1 blanks, ! 2 '+' or '-' sign, ! 2.5 blanks ! 3 integer part, ! 4 decimal point, ! 5 fraction part, ! 6 'E' or 'e' or 'D' or 'd', exponent marker, ! 7 exponent sign, ! 8 exponent integer part, ! 9 exponent decimal point, ! 10 exponent fraction part, ! 11 blanks, ! 12 final comma or semicolon, ! ! with most quantities optional. ! ! Example: ! ! S DVAL ! ! '1' 1.0 ! ' 1 ' 1.0 ! '1A' 1.0 ! '12,34,56' 12.0 ! ' 34 7' 34.0 ! '-1E2ABCD' -100.0 ! '-1X2ABCD' -1.0 ! ' 2E-1' 0.2 ! '23.45' 23.45 ! '-4.2E+2' -420.0 ! '17d2' 1700.0 ! '-14e-2' -0.14 ! 'e2' 100.0 ! '-12.73e-9.23' -12.73 * 10.0^(-9.23) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string containing the ! data to be read. Reading will begin at position 1 and ! terminate at the end of the string, or when no more ! characters can be read to form a legal real. Blanks, ! commas, or other nonnumeric data will, in particular, ! cause the conversion to halt. ! ! Output, real ( kind = 8 ) DVAL, the value read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! 1, 2, 6 or 7, the input number was garbled. The ! value of IERROR is the last type of input successfully ! read. For instance, 1 means initial blanks, 2 means ! a plus or minus sign, and so on. ! ! Output, integer LENGTH, the number of characters read ! to form the number, including any terminating ! characters such as a trailing comma or blanks. ! implicit none logical ch_eqi character c real ( kind = 8 ) dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig real ( kind = 8 ) rbot real ( kind = 8 ) rexp real ( kind = 8 ) rtop character ( len = * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 do length = length + 1 if ( nchar < length+1 ) then exit end if c = s(length+1:length+1) ! ! Blank character. ! if ( c == ' ' ) then if ( ihave == 2 ) then else if ( ihave == 6 .or. ihave == 7 ) then iterm = 1 else if ( 1 < ihave ) then ihave = 11 end if ! ! Comma. ! else if ( c == ',' .or. c == ';' ) then if ( ihave /= 1 ) then iterm = 1 ihave = 12 length = length + 1 end if ! ! Minus sign. ! else if ( c == '-' ) then if ( ihave == 1 ) then ihave = 2 isgn = -1 else if ( ihave == 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if ! ! Plus sign. ! else if ( c == '+' ) then if ( ihave == 1 ) then ihave = 2 else if ( ihave == 6 ) then ihave = 7 else iterm = 1 end if ! ! Decimal point. ! else if ( c == '.' ) then if ( ihave < 4 ) then ihave = 4 else if ( 6 <= ihave .and. ihave <= 8 ) then ihave = 9 else iterm = 1 end if ! ! Scientific notation exponent marker. ! else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave < 6 ) then ihave = 6 else iterm = 1 end if ! ! Digit. ! else if ( ihave < 11 .and. lle ( '0', c ) .and. lle ( c, '9' ) ) then if ( ihave <= 2 ) then ihave = 3 else if ( ihave == 4 ) then ihave = 5 else if ( ihave == 6 .or. ihave == 7 ) then ihave = 8 else if ( ihave == 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave == 3 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) else if ( ihave == 5 ) then rtop = 10.0D+00 * rtop + real ( ndig, kind = 8 ) rbot = 10.0D+00 * rbot else if ( ihave == 8 ) then jtop = 10 * jtop + ndig else if ( ihave == 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if ! ! Anything else is regarded as a terminator. ! else iterm = 1 end if ! ! If we haven't seen a terminator, and we haven't examined the ! entire string, go get the next character. ! if ( iterm == 1 ) then exit end if end do ! ! If we haven't seen a terminator, and we have examined the ! entire string, then we're done, and LENGTH is equal to NCHAR. ! if ( iterm /= 1 .and. length+1 == nchar ) then length = nchar end if ! ! Number seems to have terminated. Have we got a legal number? ! Not if we terminated in states 1, 2, 6 or 7! ! if ( ihave == 1 .or. ihave == 2 .or. ihave == 6 .or. ihave == 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a)' ) ' ' // trim ( s ) return end if ! ! Number seems OK. Form it. ! if ( jtop == 0 ) then rexp = 1.0D+00 else if ( jbot == 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( real ( jsgn * jtop, kind = 8 ) & / real ( jbot, kind = 8 ) ) end if end if dval = real ( isgn, kind = 8 ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) !*****************************************************************************80 ! !! S_TO_R8VEC reads an R8VEC from a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 07 September 2004 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be read. ! ! Input, integer N, the number of values expected. ! ! Output, real ( kind = 8 ) RVEC(N), the values read from the string. ! ! Output, integer IERROR, error flag. ! 0, no errors occurred. ! -K, could not read data for entries -K through N. ! implicit none integer n integer i integer ierror integer ilo integer lchar real ( kind = 8 ) rvec(n) character ( len = * ) s i = 0 ierror = 0 ilo = 1 do while ( i < n ) i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror /= 0 ) then ierror = -i exit end if ilo = ilo + lchar end do return end subroutine s_word_count ( s, nword ) !*****************************************************************************80 ! !! S_WORD_COUNT counts the number of "words" in a string. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 14 April 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, character ( len = * ) S, the string to be examined. ! ! Output, integer NWORD, the number of "words" in the string. ! Words are presumed to be separated by one or more blanks. ! implicit none logical blank integer i integer lens integer nword character ( len = * ) s nword = 0 lens = len ( s ) if ( lens <= 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) == ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine voronoi_get ( n, x, y, z, nt, xc, yc, zc, lend, listc, lptr ) !*****************************************************************************80 ! !! VORONOI_GET calls STRIPACK routines to get Voronoi information. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of points. ! ! Input, real ( kind = 8 ) X(N), Y(N), Z(N), the coordinates of points ! on the sphere. ! ! Output, integer NT, the number of Delaunay triangles ! and Voronoi vertices. ! ! Output, real ( kind = 8 ) XC(6*(N-2)), YC(6*(N-2)), ZC(6*(N-2)), the ! coordinates of the vertices. ! ! Output, integer LEND(N), points to the "first" vertex in the ! Voronoi polygon around a particular node. ! ! Output, integer LISTC(6*(N-2)), the Voronoi vertex indices. ! ! Output, integer LPTR(6*(N-2)), given a vertex, returns the ! next vertex in the Voronoi polygon. (The vertex numbering is done ! in such a way that the physical vertex has three distinct indices, ! depending on which polygon we are considering. Thus, it is always ! possible to answer the question "which is the next vertex from this ! one?" because the vertex index also tells us what polygon we are in.) ! implicit none integer n integer, parameter :: nrow = 9 real ( kind = 8 ) ds(n) integer ierror integer iwk(2*n) integer lbtri(6,n) integer lend(n) integer list(6*(n-2)) integer listc(6*(n-2)) integer lnew integer lptr(6*(n-2)) integer ltri(nrow,2*(n-2)) integer nb integer nt real ( kind = 8 ) rc(2*(n-2)) real ( kind = 8 ) x(n) real ( kind = 8 ) xc(2*(n-2)) real ( kind = 8 ) y(n) real ( kind = 8 ) yc(2*(n-2)) real ( kind = 8 ) z(n) real ( kind = 8 ) zc(2*(n-2)) ! ! Create the triangulation. ! call trmesh ( n, x, y, z, list, lptr, lend, lnew, iwk, iwk(n+1), ds, ierror ) if ( ierror == -2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_GET - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' The first 3 nodes are collinear.' stop end if if ( 0 < ierror ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_GET - Fatal error!' write ( *, '(a)' ) ' Error in TRMESH.' write ( *, '(a)' ) ' Duplicate nodes encountered.' stop end if ! ! Create a triangle list. ! call trlist ( n, list, lptr, lend, nrow, nt, ltri, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_GET - Fatal error!' write ( *, '(a)' ) ' Error in TRLIST.' stop end if call i4mat_transpose_print ( nrow, nt, ltri, ' Vertices/Triangles/Arcs:' ) ! ! Construct the Voronoi diagram. ! ! Note that the triangulation data structure is altered if NB > 0. ! call crlist ( n, n, x, y, z, list, lend, lptr, lnew, & lbtri, listc, nb, xc, yc, zc, rc, ierror ) if ( ierror /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_GET - Fatal error!' write ( *, '(a)' ) ' Error in CRLIST.' write ( *, '(a,i8)' ) ' IERROR = ', ierror stop end if return end subroutine voronoi_order ( n, lend, lptr, order ) !*****************************************************************************80 ! !! VORONOI_ORDER computes the order of each polygon in a Voronoi diagram. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of nodes, and Voronoi polygons. ! ! Input, integer LEND(N), points to the "first" vertex in the ! Voronoi polygon around a particular node. ! ! Input, integer LPTR(6*(N-2)), given a vertex, returns the next ! vertex in the Voronoi polygon. (The vertex numbering is done ! in such a way that the physical vertex has three distince indices, ! depending on which polygon we are considering. Thus, it is always ! possible to answer the question "which is the next vertex from this ! one?" because the vertex index also tells us what polygon we are in.) ! ! Output, integer ORDER(N), the order of each polygon. ! implicit none integer n integer lend(n) integer lptr(6*(n-2)) integer node integer node_last integer node_new integer node_stop integer order(n) do node = 1, n order(node) = 0; node_stop = lend(node) node_new = node_stop do node_last = node_new node_new = lptr(node_last) order(node) = order(node) + 1 if ( node_new == node_stop ) then exit end if end do end do return end subroutine voronoi_polygons ( n, list_num, lend, listc, lptr, first, list ) !*****************************************************************************80 ! !! VORONOI_POLYGONS creates a list of Voronoi polygons. ! ! Discussion: ! ! STRIPACK defines a data structure recording the location of ! the vertices of the Voronoi diagram, and their connectivity. ! The purpose of this routine is to construct a simplified data structure ! that lists the indices of the Voronoi vertices that form each ! Voronoi polygon. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 01 May 2010 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of nodes, and Voronoi polygons. ! ! Input, integer LIST_NUM, the number of entries to be stored ! in LIST. ! ! Input, integer LEND(N), points to the "first" vertex in the ! Voronoi polygon around a particular node. ! ! Input, integer LISTC(6*(N-2)), the Voronoi vertex indices. ! ! Input, integer LPTR(6*(N-2)), given a vertex, returns the ! next vertex in the Voronoi polygon. (The vertex numbering is done ! in such a way that the physical vertex has three distince indices, ! depending on which polygon we are considering. Thus, it is always ! possible to answer the question "which is the next vertex from this ! one?" because the vertex index also tells us what polygon we are in.) ! ! Output, integer FIRST(N+1), for each polygon, points to the location ! in LIST of the index. ! ! Output, integer LIST(LIST_NUM), the list of vertices that form each ! polygon. ! implicit none integer list_num integer n integer first(n+1) integer lend(n) integer list(list_num) integer listc(6*(n-2)) integer lptr(6*(n-2)) integer node integer node_new integer node_stop integer used used = 0 do node = 1, n first(node) = used + 1 node_stop = lend(node) node_new = node_stop used = used + 1 list(used) = listc(node_new) do node_new = lptr(node_new) if ( node_new == node_stop ) then exit end if used = used + 1 list(used) = listc(node_new) end do end do first(n+1) = used + 1 return end subroutine voronoi_traverse ( n, x, y, z, xc, yc, zc, lend, listc, lptr ) !*****************************************************************************80 ! !! VORONOI_TRAVERSE traverses the polygons in a Voronoi diagram. ! ! Discussion: ! ! STRIPACK defines a data structure recording the location of ! the vertices of the Voronoi diagram, and their connectivity. ! The purpose of this routine is to "visit" each polygon, and, ! in fact, each subtriangle of each polygon. Such a procedure ! would be done when estimating an integral by quadrature, for instance. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 25 June 2002 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of nodes, and Voronoi polygons. ! ! Input, real ( kind = 8 ) X(N), Y(N), Z(N), the coordinates of the nodes. ! ! Input, real ( kind = 8 ) XC(6*(N-2)), YC(6*(N-2)), ZC(6*(N-2)), the ! coordinates of the vertices. ! ! Input, integer LEND(N), points to the "first" vertex in the ! Voronoi polygon around a particular node. ! ! Input, integer LISTC(6*(N-2)), the Voronoi vertex indices. ! ! Input, integer LPTR(6*(N-2)), given a vertex, returns the ! next vertex in the Voronoi polygon. (The vertex numbering is done ! in such a way that the physical vertex has three distince indices, ! depending on which polygon we are considering. Thus, it is always ! possible to answer the question "which is the next vertex from this ! one?" because the vertex index also tells us what polygon we are in.) ! implicit none integer n real ( kind = 8 ) area_polygon real ( kind = 8 ) area_triangle real ( kind = 8 ) areas integer index_polygon integer index_triangle integer lend(n) integer listc(6*(n-2)) integer lptr(6*(n-2)) integer node integer node_last integer node_new integer node_stop integer order real ( kind = 8 ) r real ( kind = 8 ) v1(3) real ( kind = 8 ) v2(3) real ( kind = 8 ) v3(3) integer vertex_last integer vertex_new real ( kind = 8 ) x(n) real ( kind = 8 ) xc(6*(n-2)) real ( kind = 8 ) y(n) real ( kind = 8 ) yc(6*(n-2)) real ( kind = 8 ) z(n) real ( kind = 8 ) zc(6*(n-2)) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'VORONOI_TRAVERSE' write ( *, '(a)' ) ' Visit each Voronoi polygon.' write ( *, '(a)' ) ' Compute the (spherical) area of each subtriangle' write ( *, '(a)' ) ' Add up to get the area of each polygon.' ! ! To access every polygon, start by accessing a particular node. ! ! The Voronoi polygon around a node NODE has a pointer LEND(NODE) to the ! first (or last) vertex of the Voronoi polygon around NODE. ! ! To access all the vertices of the polygon in order, start at the ! special vertex, and then repeatedly use the LPTR array to get the ! next vertex on the polygon. Stop when you return to LEND(NODE). ! ! To subdivide the polygon into triangles, use NODE, VERTEX_LAST, ! and VERTEX. ! ! To get the coordinates of these points: ! ! NODE ==> X(NODE), Y(NODE), Z(NODE). ! ! VERTEX_LAST ==> XC(VERTEX_LAST), YC(VERTEX_LAST), ZC(VERTEX_LAST) ! VERTEX ==> XC(VERTEX ), YC(VERTEX ), ZC(VERTEX ) ! index_polygon = 0 do node = 1, n area_polygon = 0.0D+00 index_triangle = 0 order = 0 write ( *, '(a)' ) ' ' write ( *, '(a,i4)' ) ' Polygon ', node node_stop = lend(node) node_new = node_stop vertex_new = listc(node_new) ! ! Each iteration of this DO walks along one side of the polygon, ! considering the subtriangle NODE --> VERTEX_LAST --> VERTEX. ! do index_triangle = index_triangle + 1 order = order + 1 node_last = node_new node_new = lptr(node_last) vertex_last = vertex_new vertex_new = listc(node_new) ! ! Here is a good place to process information about the polygon side ! ! VERTEX_LAST --> VERTEX ! ! or about the subtriangle ! ! NODE --> VERTEX_LAST --> VERTEX. ! r = 1.0D+00 v1(1:3) = (/ x(node), y(node), z(node) /) v2(1:3) = (/ xc(vertex_last), yc(vertex_last), zc(vertex_last) /) v3(1:3) = (/ xc(vertex_new), yc(vertex_new), zc(vertex_new) /) area_triangle = areas ( v1, v2, v3 ) area_polygon = area_polygon + area_triangle write ( *, '(a,2x,i8,2x,a,2x,g14.6)' ) & ' Subtriangle ', index_triangle, ' area = ', area_triangle ! ! Now if we have reached the vertex where we started, we are done with ! this polygon. ! if ( node_new == node_stop ) then exit end if end do write ( *, '(a,2x,19x,g14.6)' ) ' Polygon area =', area_polygon end do return end