program main !*****************************************************************************80 ! !! linpack_z_test() tests linpack_z(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 December 2024 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'linpack_z_test():' write ( *, '(a)' ) ' Fortran90 version' write ( *, '(a)' ) ' Test linpack_z().' call test01 ( ) call test02 ( ) call test03 ( ) call test04 ( ) call test05 ( ) call test06 ( ) call test07 ( ) call test08 ( ) call test09 ( ) call test10 ( ) call test11 ( ) call test12 ( ) call test13 ( ) call test14 ( ) call test15 ( ) call test16 ( ) call test17 ( ) call test18 ( ) call test19 ( ) call test20 ( ) call test21 ( ) call test22 ( ) call test23 ( ) call test24 ( ) call test25 ( ) call test26 ( ) call zqrdc_test ( ) call test28 ( ) call test29 ( ) call test30 ( ) call test31 ( ) call test32 ( ) call test33 ( ) call test34 ( ) call test345 ( ) call test35 ( ) call test36 ( ) call test37 ( ) ! ! Terminate. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'linpack_z_test()' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop 0 end subroutine test01 ( ) !*****************************************************************************80 ! !! test01() tests zchdc(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(lda,n) integer i integer info integer ipvt(n) integer j integer job complex ( kind = ck8 ) work(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite matrix,' write ( *, '(a)' ) ' ZCHDC computes the Cholesky decomposition.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of equations is N = ', n ! ! Set the values of the matrix A. ! a(1,1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2,1) = cmplx ( 2.1341D+00, 0.2147D+00, kind = ck8 ) a(3,1) = cmplx ( 2.4187D+00, -0.2932D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(2,2) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(3,2) = cmplx ( 2.0905D+00, -1.1505D+00, kind = ck8 ) a(1,3) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(2,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(3,3) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do ! ! Decompose the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Decompose the matrix.' job = 0 ipvt(1:n) = 0 call zchdc ( a, lda, n, work, ipvt, job, info ) if ( info /= n ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZCHDC returned INFO = ', info write ( *, '(a)' ) ' The matrix is not Hermitian positive definite.' return end if ! ! Zero out the lower diagonal. ! do i = 2, n do j = 1, i-1 a(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) end do end do ! ! Print the factorization. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The Cholesky factor U:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do ! ! Compute the Cholesky product. ! a(1:n,1:n) = matmul ( conjg ( transpose ( a(1:n,1:n) ) ), a(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product U^H * U: ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do return end subroutine test02 ( ) !*****************************************************************************80 ! !! TEST02 tests ZCHEX. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 October 2010 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n integer, parameter :: ldz = n integer, parameter :: nz = 1 complex ( kind = ck8 ) a(lda,n) real ( kind = rk8 ) c(n) integer i integer info integer ipvt(n) integer j integer job integer k integer l complex ( kind = ck8 ) s(n) complex ( kind = ck8 ) work(n) complex ( kind = ck8 ) z(ldz,nz) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST02' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite matrix,' write ( *, '(a)' ) ' ZCHEX can shift rows and columns in a Cholesky factorization.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of equations is N = ', n ! ! Set the values of the matrix A. ! a(1,1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2,1) = cmplx ( 2.1341D+00, 0.2147D+00, kind = ck8 ) a(3,1) = cmplx ( 2.4187D+00, -0.2932D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(2,2) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(3,2) = cmplx ( 2.0905D+00, -1.1505D+00, kind = ck8 ) a(1,3) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(2,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(3,3) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do do i = 1, n z(i,1) = cmplx ( i, 0.0D+00, kind = ck8 ) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The vector Z:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,2g14.6)' ) z(i,1) end do ! ! Decompose the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Decompose the matrix.' job = 0 ipvt(1:n) = 0 call zchdc ( a, lda, n, work, ipvt, job, info ) if ( info /= n ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZCHDC returned INFO = ', info write ( *, '(a)' ) ' This means the matrix is not positive definite.' return end if ! ! Zero out the lower diagonal. ! do i = 2, n do j = 1, i-1 a(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) end do end do ! ! Print the factorization. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The Cholesky factor U:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do ! ! Right circular shift columns L through K. ! k = 1 l = 3 write ( *, '(a)' ) ' ' write ( *, '(a,i8,a,i8)' ) ' Right circular shift rows and columns K = ', k, & ' through L = ', l write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Logical matrix is now:' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' 33 31 32' write ( *, '(a)' ) ' 13 11 12' write ( *, '(a)' ) ' 23 21 22' job = 1 call zchex ( a, lda, n, k, l, z, ldz, nz, c, s, job ) ! ! Left circular shift columns K+1 through L. ! write ( *, '(a)' ) ' ' write ( *, '(a,i8,a,i8)' ) ' Left circular shift rows and columns K+1 = ', k+1, & ' through L = ', l write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Logical matrix is now:' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' 33 32 31' write ( *, '(a)' ) ' 23 22 21' write ( *, '(a)' ) ' 13 12 11' job = 2 call zchex ( a, lda, n, k+1, l, z, ldz, nz, c, s, job ) ! ! Print the factorization. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The shifted Cholesky factor UU:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The shifted vector ZZ:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,2g14.6)' ) z(i,1) end do ! ! Compute the Cholesky product. ! a(1:n,1:n) = matmul ( conjg ( transpose ( a(1:n,1:n) ) ), a(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The shifted product AA = UU'' * UU: ' write ( *, '(a)' ) ' The rows and columns of the original matrix A reappear,' write ( *, '(a)' ) ' but in reverse order.' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) a(i,1:n) end do return end subroutine test03 ( ) !*****************************************************************************80 ! !! TEST03 tests ZCHUD and ZTRSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 20 May 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: p = 20 integer, parameter :: ldr = p integer, parameter :: ldz = p integer, parameter :: nz = 1 complex ( kind = ck8 ) b(p) real ( kind = rk8 ) c(p) integer i integer info integer j integer job complex ( kind = ck8 ) r(ldr,p) real ( kind = rk8 ) rho(nz) complex ( kind = ck8 ) row(p) complex ( kind = ck8 ) s(p) integer seed complex ( kind = ck8 ) x(p) complex ( kind = ck8 ) y(nz) complex ( kind = ck8 ) z(ldz,nz) complex ( kind = ck8 ) zdotu write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST03' write ( *, '(a)' ) ' For a double complex Hermitian matrix' write ( *, '(a)' ) ' ZCHUD updates a Cholesky decomposition.' write ( *, '(a)' ) ' ZTRSL solves a triangular linear system.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' In this example, we use ZCHUD to solve a' write ( *, '(a)' ) ' least squares problem R * b = z.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The number of equations is P = ', p ! ! Initialize. ! r(1:p,1:p) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) z(1:p,1:nz) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) do i = 1, p x(i) = cmplx ( i, mod ( i, 2 ), kind = ck8 ) end do ! ! Use ZCHUD to form R, Z and RHO by adding X and Y a row at a time. ! X is a row of the least squares matrix and Y the right hand side. ! seed = 123456789 do i = 1, p call c8vec_uniform_01 ( p, seed, row ) y(1) = zdotu ( p, row, 1, x, 1 ) rho(1) = 0.0D+00 call zchud ( r, ldr, p, row, z, ldz, nz, y, rho, c, s ) end do ! ! Generate the least squares solution, b = inverse ( R ) * Z. ! do j = 1, nz b(1:p) = z(1:p,j) job = 01 call ztrsl ( r, ldr, p, b, job, info ) write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Solution vector # ', j write ( *, '(a)' ) ' (Should be (1,1) (2,0), (3,1) (4,0) ...)' write ( *, '(a)' ) ' ' do i = 1, p if ( i <= 5 .or. p-5 < i ) then write ( *, '(2x,i8,2x,2g14.6)' ) i, b(i) end if if ( i == 5 ) then write ( *, '(a)' ) ' ...... ..............' end if end do end do return end subroutine test04 ( ) !*****************************************************************************80 ! !! TEST04 tests ZGBCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: ml = 1 integer, parameter :: mu = 1 integer, parameter :: n = 3 integer, parameter :: lda = 2*ml+mu+1 complex ( kind = ck8 ) a(lda,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer i1 integer i2 integer ipvt(n) integer j integer k integer m real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST04' write ( *, '(a)' ) ' For a double complex general band storage matrix:' write ( *, '(a)' ) ' ZGBCO factors the matrix and estimates the' write ( *, '(a)' ) ' reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n write ( *, '(a,i8)' ) ' The lower band is ML = ', ml write ( *, '(a,i8)' ) ' The upper band is MU = ', mu ! ! Set the values of the matrix A. ! a_save(1:n,1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) m = ml + mu + 1 seed = 123456789 do j = 1, n i1 = max ( 1, j - mu ) i2 = min ( n, j + ml ) do i = i1, i2 k = i - j + m a(k,j) = c8_uniform_01 ( ) a_save(i,j) = a(k,j) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zgbco ( a, lda, n, ml, mu, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test05 ( ) !*****************************************************************************80 ! !! TEST05 tests ZGBFA and ZGBSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: ml = 1 integer, parameter :: mu = 1 integer, parameter :: n = 3 integer, parameter :: lda = 2*ml+mu+1 complex ( kind = ck8 ) a(lda,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer i1 integer i2 integer info integer ipvt(n) integer j integer job integer k integer m integer seed complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST05' write ( *, '(a)' ) ' For a double complex general band storage matrix:' write ( *, '(a)' ) ' ZGBFA factors the matrix;' write ( *, '(a)' ) ' ZGBSL solves a factored linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n write ( *, '(a,i8)' ) ' The lower band is ML = ', ml write ( *, '(a,i8)' ) ' The upper band is MU = ', mu ! ! Set the values of the matrix A. ! a_save(1:n,1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) m = ml + mu + 1 seed = 123456789 do j = 1, n i1 = max ( 1, j - mu ) i2 = min ( n, j + ml ) do i = i1, i2 k = i - j + m a(k,j) = c8_uniform_01 ( ) a_save(i,j) = a(k,j) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a_save(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zgbfa ( a, lda, n, ml, mu, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' ZGBFA returned INFO = ', info return end if ! ! Solve the system. ! job = 0 call zgbsl ( a, lda, n, ml, mu, ipvt, b, job ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test06 ( ) !*****************************************************************************80 ! !! TEST06 tests ZGBFA and ZGBDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: ml = 1 integer, parameter :: mu = 1 integer, parameter :: n = 3 integer, parameter :: lda = 2*ml+mu+1 complex ( kind = ck8 ) a(lda,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c8_uniform_01 complex ( kind = ck8 ) det(2) integer i integer i1 integer i2 integer info integer ipvt(n) integer j integer k integer m integer seed write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST06' write ( *, '(a)' ) ' For a double complex general band storage matrix:' write ( *, '(a)' ) ' ZGBFA factors the matrix.' write ( *, '(a)' ) ' ZGBDI computes the determinant.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n write ( *, '(a,i8)' ) ' The lower band is ML = ', ml write ( *, '(a,i8)' ) ' The upper band is MU = ', mu ! ! Set the values of the matrix A. ! a_save(1:n,1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) m = ml + mu + 1 seed = 123456789 do j = 1, n i1 = max ( 1, j - mu ) i2 = min ( n, j + ml ) do i = i1, i2 k = i - j + m a(k,j) = c8_uniform_01 ( ) a_save(i,j) = a(k,j) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zgbfa ( a, lda, n, ml, mu, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' ZGBFA returned INFO = ', info return end if ! ! Get the determinant. ! call zgbdi ( a, lda, n, ml, mu, ipvt, det ) write ( *, '(a)' ) ' ' write ( *, '(a,2g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', real ( det(2), kind = rk8 ) return end subroutine test07 ( ) !*****************************************************************************80 ! !! TEST07 tests ZGECO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) integer i integer ipvt(n) integer lda real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST07' write ( *, '(a)' ) ' For a double complex general storage matrix:' write ( *, '(a)' ) ' ZGECO factors the matrix and estimates the' write ( *, '(a)' ) ' reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 call c8mat_uniform_01 ( n, n, seed, a ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zgeco ( a, lda, n, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test08 ( ) !*****************************************************************************80 ! !! TEST08 tests ZGEFA and ZGESL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) b(n) integer i integer info integer ipvt(n) integer job integer lda integer seed complex ( kind = ck8 ) x(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST08' write ( *, '(a)' ) ' For a double complex general storage matrix:' write ( *, '(a)' ) ' ZGEFA factors the matrix.' write ( *, '(a)' ) ' ZGESL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 call c8mat_uniform_01 ( n, n, seed, a ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zgefa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZGEFA returned an error flag INFO = ', info return end if ! ! Solve the system. ! job = 0 call zgesl ( a, lda, n, ipvt, b, job ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test09 ( ) !*****************************************************************************80 ! !! TEST09 tests ZGEFA and ZGEDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) det(2) integer i integer info integer ipvt(n) integer job integer lda integer seed complex ( kind = ck8 ) work(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST09' write ( *, '(a)' ) ' For a double complex general storage matrix:' write ( *, '(a)' ) ' ZGEFA factors the matrix.' write ( *, '(a)' ) ' ZGEDI computes the determinant or inverse.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 call c8mat_uniform_01 ( n, n, seed, a ) a_save(1:n,1:n) = a(1:n,1:n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zgefa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZGEFA returned an error flag INFO = ', info return end if ! ! Get the determinant. ! job = 10 call zgedi ( a, lda, n, ipvt, det, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a,2g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', real ( det(2), kind = rk8 ) ! ! Get the inverse. ! job = 01 call zgedi ( a, lda, n, ipvt, det, work, job ) c(1:n,1:n) = matmul ( a(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test10 ( ) !*****************************************************************************80 ! !! TEST10 tests ZGTSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 10 complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c(n) complex ( kind = ck8 ) d(n) complex ( kind = ck8 ) e(n) integer i integer info integer seed complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST10' write ( *, '(a)' ) ' For a double complex tridiagonal matrix:' write ( *, '(a)' ) ' ZGTSL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix order N = ', n ! ! Set the matrix. ! seed = 123456789 c(1) = cmplx ( 0.0E+00, 0.0E+00, kind = ck8 ) call c8vec_uniform_01 ( n-1, seed, c(2) ) call c8vec_uniform_01 ( n-1, seed, e(1) ) e(n) = cmplx ( 0.0E+00, 0.0E+00, kind = ck8 ) d(1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) d(1:n-1) = d(1:n-1) - 2.0D+00 * e(1:n-1) d(2:n) = d(2:n) - 2.0D+00 * c(2:n) ! ! Set the desired solution ! do i = 1, n x(i) = cmplx ( i, 10 * i, kind = ck8 ) end do ! ! Compute the corresponding right hand side. ! b(1) = d(1) * x(1) + e(1) * x(2) do i = 2, n-1 b(i) = c(i) * x(i-1) + d(i) * x(i) + e(i) * x(i+1) end do b(n) = c(n) * x(n-1) + d(n) * x(n) ! ! Solve the tridiagonal system. ! call zgtsl ( n, c, d, e, b, info ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test11 ( ) !*****************************************************************************80 ! !! TEST11 tests ZHICO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer ipvt(n) integer j integer lda real ( kind = rk8 ) r real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST11' write ( *, '(a)' ) ' For a double complex Hermitian matrix:' write ( *, '(a)' ) ' ZHICO factors the matrix and estimates' write ( *, '(a)' ) ' the reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n call random_number ( harvest = r ) a(i,i) = cmplx ( r, 0.0D+00, kind = ck8 ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = conjg ( a(i,j) ) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zhico ( a, lda, n, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test12 ( ) !*****************************************************************************80 ! !! TEST12 tests ZHIFA and ZHISL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer info integer ipvt(n) integer j integer lda real ( kind = rk8 ) r integer seed complex ( kind = ck8 ) x(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST12' write ( *, '(a)' ) ' For a double complex Hermitian matrix:' write ( *, '(a)' ) ' ZHIFA factors the matrix.' write ( *, '(a)' ) ' ZHISL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n call random_number ( harvest = r ) a(i,i) = cmplx ( r, 0.0D+00, kind = ck8 ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = conjg ( a(i,j) ) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zhifa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZHIFA returned an error flag INFO = ', info return end if ! ! Solve the system. ! call zhisl ( a, lda, n, ipvt, b ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test13 ( ) !*****************************************************************************80 ! !! TEST13 tests ZHIFA and ZHIDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) c8_uniform_01 real ( kind = rk8 ) det(2) integer i integer inert(3) integer info integer ipvt(n) integer j integer job integer lda real ( kind = rk8 ) r integer seed complex ( kind = ck8 ) work(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST13' write ( *, '(a)' ) ' For a double complex hermitian matrix:' write ( *, '(a)' ) ' ZHIFA factors the matrix.' write ( *, '(a)' ) ' ZHIDI computes the determinant, inverse,' write ( *, '(a)' ) ' or inertia.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n call random_number ( harvest = r ) a(i,i) = cmplx ( r, 0.0D+00, kind = ck8 ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = conjg ( a(i,j) ) end do end do a_save(1:n,1:n) = a(1:n,1:n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zhifa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZHIFA returned an error flag INFO = ', info return end if ! ! Get the determinant. ! job = 010 call zhidi ( a, lda, n, ipvt, det, inert, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', det(2) ! ! Get the inertia. ! job = 100 call zhidi ( a, lda, n, ipvt, det, inert, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The inertia:' write ( *, '(a)' ) ' ' do i = 1, 3 write ( *, '(2x,i8)' ) inert(i) end do ! ! Get the inverse. ! job = 001 call zhidi ( a, lda, n, ipvt, det, inert, work, job ) ! ! Only the upper triangle is set, so the user must set up the ! lower triangle: ! do i = 1, n do j = 1, i-1 a(i,j) = conjg ( a(j,i) ) end do end do c(1:n,1:n) = matmul ( a(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test14 ( ) !*****************************************************************************80 ! !! TEST14 tests ZHPCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer ipvt(n) integer j integer k real ( kind = rk8 ) r real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST14' write ( *, '(a)' ) ' For a double complex Hermitian matrix' write ( *, '(a)' ) ' using packed storage,' write ( *, '(a)' ) ' ZHPCO factors the matrix and estimates' write ( *, '(a)' ) ' the reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) a_save(i,j) = a(k) a_save(j,i) = conjg ( a(k) ) end do k = k + 1 call random_number ( harvest = r ) a(k) = cmplx ( r, 0.0D+00, kind = ck8 ) a_save(j,j) = a(k) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zhpco ( a, n, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test15 ( ) !*****************************************************************************80 ! !! TEST15 tests ZHPFA and ZHPSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer info integer ipvt(n) integer j integer k real ( kind = rk8 ) r integer seed complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST15' write ( *, '(a)' ) ' For a double complex Hermitian matrix,' write ( *, '(a)' ) ' using packed storage,' write ( *, '(a)' ) ' ZHPFA factors the matrix.' write ( *, '(a)' ) ' ZHPSL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) a_save(i,j) = a(k) a_save(j,i) = conjg ( a(k) ) end do k = k + 1 call random_number ( harvest = r ) a(k) = cmplx ( r, 0.0D+00, kind = ck8 ) a_save(j,j) = a(k) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a_save(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zhpfa ( a, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZHPFA returned an error flag INFO = ', info return end if ! ! Solve the system. ! call zhpsl ( a, n, ipvt, b ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test16 ( ) !*****************************************************************************80 ! !! TEST16 tests ZHPFA and ZHPDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) b(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) c8_uniform_01 real ( kind = rk8 ) det(2) integer i integer inert(3) integer info integer ipvt(n) integer j integer job integer k real ( kind = rk8 ) r integer seed complex ( kind = ck8 ) work(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST16' write ( *, '(a)' ) ' For a double complex hermitian matrix,' write ( *, '(a)' ) ' using packed storage,' write ( *, '(a)' ) ' ZHPFA factors the matrix.' write ( *, '(a)' ) ' ZHPDI computes the determinant, inverse,' write ( *, '(a)' ) ' or inertia.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) a_save(i,j) = a(k) a_save(j,i) = conjg ( a(k) ) end do k = k + 1 call random_number ( harvest = r ) a(k) = cmplx ( r, 0.0D+00, kind = ck8 ) a_save(j,j) = a(k) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zhpfa ( a, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZHPFA returned an error flag INFO = ', info return end if ! ! Get the determinant. ! job = 010 call zhpdi ( a, n, ipvt, det, inert, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', det(2) ! ! Get the inertia. ! job = 100 call zhpdi ( a, n, ipvt, det, inert, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The inertia:' write ( *, '(a)' ) ' ' do i = 1, 3 write ( *, '(2x,i8)' ) inert(i) end do ! ! Get the inverse. ! job = 001 call zhpdi ( a, n, ipvt, det, inert, work, job ) ! ! Only the upper triangle is set, so the user must set up the ! lower triangle: ! k = 0 do j = 1, n do i = 1, j-1 k = k + 1 b(i,j) = a(k) b(j,i) = conjg ( a(k) ) end do k = k + 1 b(j,j) = a(k) end do c(1:n,1:n) = matmul ( b(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test17 ( ) !*****************************************************************************80 ! !! TEST17 tests ZPBCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: m = 1 integer, parameter :: n = 3 integer, parameter :: lda = m + 1 complex ( kind = ck8 ) a(lda,n) integer info real ( kind = rk8 ) rcond complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST17' write ( *, '(a)' ) ' For a double complex ' write ( *, '(a)' ) ' positive definite hermitian band matrix,' write ( *, '(a)' ) ' ZPBCO estimates the reciprocal condition number.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the value of the superdiagonal and diagonal. ! a(1,1) = cmplx ( 0.0000D+00, 0.0000D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(1,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(2,1) = cmplx ( 4.5281D+00, 0.0000D+00, kind = ck8 ) a(2,2) = cmplx ( 5.0371D+00, 0.0000D+00, kind = ck8 ) a(2,3) = cmplx ( 4.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Estimate the condition. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Estimate the condition.' call zpbco ( a, lda, n, m, rcond, z, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZPBCO returned INFO = ', info write ( *, '(a)' ) ' The factorization was not completed.' return end if write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Reciprocal condition = ', rcond return end subroutine test18 ( ) !*****************************************************************************80 ! !! TEST18 tests ZPBDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: m = 1 integer, parameter :: lda = m+1 complex ( kind = ck8 ) a(lda,n) real ( kind = rk8 ) det(2) integer info write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST18' write ( *, '(a)' ) ' For a double complex ' write ( *, '(a)' ) ' positive definite hermitian band matrix,' write ( *, '(a)' ) ' ZPBDI computes the determinant as' write ( *, '(a)' ) ' det = MANTISSA * 10**EXPONENT' write ( *, '(a)' ) ' ' ! ! Set the value of the superdiagonal and diagonal. ! a(1,1) = cmplx ( 0.0000D+00, 0.0000D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(1,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(2,1) = cmplx ( 4.5281D+00, 0.0000D+00, kind = ck8 ) a(2,2) = cmplx ( 5.0371D+00, 0.0000D+00, kind = ck8 ) a(2,3) = cmplx ( 4.7638D+00, 0.0000D+00, kind = ck8 ) call zpbfa ( a, lda, n, m, info ) if ( info /= 0 ) then write ( *, '(a,i8)' ) ' Error! ZPBFA returns INFO = ', info return end if call zpbdi ( a, lda, n, m, det ) write ( *, '(a,g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', det(2) return end subroutine test19 ( ) !*****************************************************************************80 ! !! TEST19 tests ZPBFA and ZPBSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: m = 1 integer, parameter :: lda = m+1 complex ( kind = ck8 ) a(lda,n) complex ( kind = ck8 ) b(n) integer i integer info write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST19' write ( *, '(a)' ) ' For a double complex' write ( *, '(a)' ) ' positive definite hermitian band matrix,' write ( *, '(a)' ) ' ZPBFA computes the LU factors.' write ( *, '(a)' ) ' ZPBSL solves a factored linear system.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the value of the superdiagonal and diagonal. ! a(1,1) = cmplx ( 0.0000D+00, 0.0000D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(1,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(2,1) = cmplx ( 4.5281D+00, 0.0000D+00, kind = ck8 ) a(2,2) = cmplx ( 5.0371D+00, 0.0000D+00, kind = ck8 ) a(2,3) = cmplx ( 4.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Set the right hand side. ! b(1) = cmplx ( 8.7963D+00, -0.4294D+00, kind = ck8 ) b(2) = cmplx ( 18.4798D+00, 3.6662D+00, kind = ck8 ) b(3) = cmplx ( 18.4724D+00, -2.3010D+00, kind = ck8 ) ! ! Factor the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix.' call zpbfa ( a, lda, n, m, info ) if ( info /= 0 ) then write ( *, '(a,i8)' ) ' Error! ZPBFA returns INFO = ', info return end if ! ! Solve the linear system. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Solve the linear system.' call zpbsl ( a, lda, n, m, b ) ! ! Print the results. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The solution:' write ( *, '(a)' ) ' (Should be roughly (1,2,3)):' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,2g14.6)' ) i, b(i) end do return end subroutine test20 ( ) !*****************************************************************************80 ! !! TEST20 tests ZPOCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(lda,n) integer info real ( kind = rk8 ) rcond complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST20' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite matrix,' write ( *, '(a)' ) ' ZPOCO estimates the reciprocal condition number.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1,1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2,1) = cmplx ( 2.1341D+00, 0.2147D+00, kind = ck8 ) a(3,1) = cmplx ( 2.4187D+00, -0.2932D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(2,2) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(3,2) = cmplx ( 2.0905D+00, -1.1505D+00, kind = ck8 ) a(1,3) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(2,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(3,3) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Estimate the condition. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Estimate the condition.' call zpoco ( a, lda, n, rcond, z, info ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Reciprocal condition = ', rcond return end subroutine test21 ( ) !*****************************************************************************80 ! !! TEST21 tests ZPOFA and ZPODI. ! ! Discussion: ! ! ZPOFA factors a positive definite symmetric matrix, ! and ZPODI can compute the determinant or the inverse. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(lda,n) real ( kind = rk8 ) det(2) integer info integer job write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST21' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite matrix,' write ( *, '(a)' ) ' ZPOFA computes the LU factors,' write ( *, '(a)' ) ' ZPODI computes the inverse or determinant.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1,1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2,1) = cmplx ( 2.1341D+00, 0.2147D+00, kind = ck8 ) a(3,1) = cmplx ( 2.4187D+00, -0.2932D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(2,2) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(3,2) = cmplx ( 2.0905D+00, -1.1505D+00, kind = ck8 ) a(1,3) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(2,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(3,3) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Factor the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix.' call zpofa ( a, lda, n, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Error, ZPOFA returns INFO = ', info return end if ! ! Get the determinant and inverse. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Get the determinant and inverse.' job = 11 call zpodi ( a, lda, n, det, job ) ! ! Print the results. ! write ( *, '(a)' ) ' ' write ( *, '(a,g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10 ** ', det(2) ! ! ZPODI produces only the 'upper half triangle' of the inverse, ! which is actually symmetric. Thus, the lower half could be ! produced by copying from the upper half. However, the first row ! of A, as returned, is exactly the first row of the inverse. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' First row of inverse:' write ( *, '(a)' ) ' ' write ( *, '(2x,6f10.4)' ) a(1,1:n) return end subroutine test22 ( ) !*****************************************************************************80 ! !! TEST22 tests ZPOFA and ZPOSL. ! ! Discussion: ! ! ZPOFA factors a Hermitian positive definite matrix, ! and ZPOSL can solve a factored linear system. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(lda,n) complex ( kind = ck8 ) b(n) integer i integer info complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST22' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite matrix,' write ( *, '(a)' ) ' ZPOFA computes the LU factors.' write ( *, '(a)' ) ' ZPOSL solves a factored linear system.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1,1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2,1) = cmplx ( 2.1341D+00, 0.2147D+00, kind = ck8 ) a(3,1) = cmplx ( 2.4187D+00, -0.2932D+00, kind = ck8 ) a(1,2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(2,2) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(3,2) = cmplx ( 2.0905D+00, -1.1505D+00, kind = ck8 ) a(1,3) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(2,3) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(3,3) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Set the right hand side. ! do i = 1, n x(i) = cmplx ( 2 * i - 1, 2 * i, kind = ck8 ) end do b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) ! ! Factor the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix.' call zpofa ( a, lda, n, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Error, ZPOFA returns INFO = ', info return end if ! ! Solve the linear system. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Solve the linear system.' call zposl ( a, lda, n, b ) ! ! Print the result. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The solution:' write ( *, '(a)' ) ' (Should be (1+2i),(3+4i),(5+6i):' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,2g14.6)' ) i, b(i) end do return end subroutine test23 ( ) !*****************************************************************************80 ! !! TEST23 tests ZPPCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) integer info real ( kind = rk8 ) rcond complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST23' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite packed matrix,' write ( *, '(a)' ) ' ZPPCO estimates the reciprocal condition number.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(3) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(4) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(5) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(6) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Estimate the condition. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Estimate the condition number.' call zppco ( a, n, rcond, z, info ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Reciprocal condition number = ', rcond return end subroutine test24 ( ) !*****************************************************************************80 ! !! TEST24 tests ZPPFA and ZPPDI. ! ! Discussion: ! ! ZPPFA factors a Hermitian positive definite packed matrix, ! and ZPPDI can compute the determinant or the inverse. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) b(n,n) real ( kind = rk8 ) det(2) integer i integer info integer j integer job integer k write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST24' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite packed matrix,' write ( *, '(a)' ) ' ZPPFA factors the matrix.' write ( *, '(a)' ) ' ZPPDI computes the inverse or determinant.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(3) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(4) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(5) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(6) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Factor the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix.' call zppfa ( a, n, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Error, ZPPFA returns INFO = ', info return end if ! ! Invert the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Get the determinant and inverse.' job = 11 call zppdi ( a, n, det, job ) ! ! Print the results. ! write ( *, '(a)' ) ' ' write ( *, '(a,g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10 ** ', det(2) ! ! ZPPDI produces only the 'upper half triangle' of the inverse, ! which is actually symmetric. Thus, the lower half could be ! produced by copying from the upper half. ! k = 0 do j = 1, n do i = 1, j k = k + 1 b(i,j) = a(k) b(j,i) = conjg ( a(k) ) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Inverse:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) b(i,1:n) end do return end subroutine test25 ( ) !*****************************************************************************80 ! !! TEST25 tests ZPPFA and ZPPSL. ! ! Discussion: ! ! ZPOFA factors a Hermitian positive definite packed matrix, ! and ZPOSL can solve a factored linear system. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) b(n) integer i integer info write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST25' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite packed matrix,' write ( *, '(a)' ) ' ZPPFA factors the matrix.' write ( *, '(a)' ) ' ZPPSL solves a factored linear system.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the values of the matrix A. ! a(1) = cmplx ( 2.5281D+00, 0.0000D+00, kind = ck8 ) a(2) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) a(3) = cmplx ( 3.0371D+00, 0.0000D+00, kind = ck8 ) a(4) = cmplx ( 2.4187D+00, 0.2932D+00, kind = ck8 ) a(5) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) a(6) = cmplx ( 2.7638D+00, 0.0000D+00, kind = ck8 ) b(1) = cmplx ( 20.12350D+00, 28.92670D+00, kind = ck8 ) b(2) = cmplx ( 14.36550D+00, 34.92680D+00, kind = ck8 ) b(3) = cmplx ( 27.69760D+00, 26.03750D+00, kind = ck8 ) ! ! Factor the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix.' call zppfa ( a, n, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Error, ZPPFA returns INFO = ', info return end if ! ! Solve the linear system. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Solve the linear system.' call zppsl ( a, n, b ) ! ! Print the result. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The solution:' write ( *, '(a)' ) ' (Should be (1+2i),(3+4i),(5+6i):' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,2g14.6)' ) i, b(i) end do return end subroutine test26 ( ) !*****************************************************************************80 ! !! TEST26 tests ZPTSL. ! ! Discussion: ! ! ZPTSL factors and solves a Hermitian positive definite ! tridiagonal system. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 28 March 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) d(n) complex ( kind = ck8 ) e(n) integer i write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST26' write ( *, '(a)' ) & ' For a double complex Hermitian positive definite tridiagonal matrix,' write ( *, '(a)' ) ' ZPTSL factors and solves a linear system.' write ( *, '(a,i8)' ) ' The matrix size is N = ', n ! ! Set the value of the superdiagonal and diagonal. ! e(1) = cmplx ( 2.1341D+00, -0.2147D+00, kind = ck8 ) e(2) = cmplx ( 2.0905D+00, 1.1505D+00, kind = ck8 ) e(3) = cmplx ( 0.0000D+00, 0.0000D+00, kind = ck8 ) d(1) = cmplx ( 4.5281D+00, 0.0000D+00, kind = ck8 ) d(2) = cmplx ( 5.0371D+00, 0.0000D+00, kind = ck8 ) d(3) = cmplx ( 4.7638D+00, 0.0000D+00, kind = ck8 ) ! ! Set the right hand side. ! b(1) = cmplx ( 8.7963D+00, -0.4294D+00, kind = ck8 ) b(2) = cmplx ( 18.4798D+00, 3.6662D+00, kind = ck8 ) b(3) = cmplx ( 18.4724D+00, -2.3010D+00, kind = ck8 ) ! ! Factor and solve the system. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Factor the matrix and solve the system.' call zptsl ( n, d, e, b ) ! ! Print the result. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The solution:' write ( *, '(a)' ) ' (Should be roughly (1,2,3)):' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,i8,2x,2g14.6)' ) i, b(i) end do return end subroutine zqrdc_test ( ) !*****************************************************************************80 ! !! ZQRDC_TEST tests ZQRDC. ! ! Discussion: ! ! ZQRDC computes the QR factorization. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: p = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(lda,p) complex ( kind = ck8 ) b(lda,p) integer i integer info integer ipvt(p) integer j integer job complex ( kind = ck8 ) q(n,n) complex ( kind = ck8 ) qraux(p) complex ( kind = ck8 ) qty(n) complex ( kind = ck8 ) qy(n) complex ( kind = ck8 ) r(n,p) complex ( kind = ck8 ) rsd(n) integer seed complex ( kind = ck8 ) work(p) complex ( kind = ck8 ) xb(n) complex ( kind = ck8 ) y(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ZQRDC_TEST' write ( *, '(a)' ) ' ZQRDC computes the QR decomposition of a rectangular' write ( *, '(a)' ) ' matrix, but does not return Q and R explicitly.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Show how Q and R can be recovered using ZQRSL.' ! ! Set the values of the matrix A. ! seed = 123456789 call c8mat_uniform_01 ( n, p, seed, a ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(6f8.4)' ) a(i,1:p) end do ! ! Decompose the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Decompose the matrix.' job = 0 ipvt(1:p) = 0 call zqrdc ( a, lda, n, p, qraux, ipvt, work, job ) ! ! Print out what ZQRDC has stored in A... ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The packed matrix A which describes Q and R:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(6f8.4)' ) a(i,1:p) end do ! ! ...and in QRAUX. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The QRAUX vector, containing some additional' write ( *, '(a)' ) ' information defining Q:' write ( *, '(a)' ) ' ' write ( *, '(2x,6f8.4)' ) qraux(1:n) ! ! Print out the resulting R factor. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The R factor:' write ( *, '(a)' ) ' ' do i = 1, n do j = 1, p if ( j < i ) then r(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) else r(i,j) = a(i,j) end if end do write ( *, '(2x,6f8.4)' ) r(i,1:p) end do ! ! Call ZQRSL to extract the information about the Q matrix. ! We do this, essentially, by asking ZQRSL to tell us the ! value of Q*Y, where Y is a column of the identity matrix. ! job = 10000 do j = 1, n ! ! Set the vector Y. ! y(1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) y(j) = cmplx ( 1.0D+00, 0.0D+00, kind = ck8 ) ! ! Ask ZQRSL to tell us what Q*Y is. ! call zqrsl ( a, lda, n, p, qraux, y, qy, qty, b, rsd, xb, job, info ) if ( info /= 0 ) then write ( *, '(a,i8)' ) ' Error! ZQRSL returns INFO = ', info return end if ! ! Copy QY into the appropriate column of Q. ! q(1:n,j) = qy(1:n) end do ! ! Now print out the Q matrix we have extracted. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The Q factor:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f8.4)' ) q(i,1:n) end do ! ! Compute Q*R to verify that it equals A. ! b(1:n,1:p) = matmul ( q(1:n,1:n), r(1:n,1:p) ) ! ! Print the result. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product Q * R:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f8.4)' ) b(i,1:p) end do return end subroutine test28 ( ) !*****************************************************************************80 ! !! TEST28 tests ZSICO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer ipvt(n) integer j integer lda real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST28' write ( *, '(a)' ) ' For a double complex symmetric matrix:' write ( *, '(a)' ) ' ZSICO factors the matrix and estimates' write ( *, '(a)' ) ' the reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n a(i,i) = c8_uniform_01 ( ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = a(i,j) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zsico ( a, lda, n, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test29 ( ) !*****************************************************************************80 ! !! TEST29 tests ZSIFA and ZSISL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer info integer ipvt(n) integer j integer lda integer seed complex ( kind = ck8 ) x(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST29' write ( *, '(a)' ) ' For a double complex symmetric matrix:' write ( *, '(a)' ) ' ZSIFA factors the matrix.' write ( *, '(a)' ) ' ZSISL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n a(i,i) = c8_uniform_01 ( ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = a(i,j) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zsifa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZSIFA returned an error flag INFO = ', info return end if ! ! Solve the system. ! call zsisl ( a, lda, n, ipvt, b ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test30 ( ) !*****************************************************************************80 ! !! TEST30 tests ZSIFA and ZSIDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) c8_uniform_01 complex ( kind = ck8 ) det(2) integer i integer info integer ipvt(n) integer j integer job integer lda integer seed complex ( kind = ck8 ) work(n) lda = n write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST30' write ( *, '(a)' ) ' For a double complex symmetric matrix:' write ( *, '(a)' ) ' ZSIFA factors the matrix.' write ( *, '(a)' ) ' ZSIDI computes the determinant or inverse.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the matrix A. ! seed = 123456789 do i = 1, n a(i,i) = c8_uniform_01 ( ) do j = i+1, n a(i,j) = c8_uniform_01 ( ) a(j,i) = a(i,j) end do end do a_save(1:n,1:n) = a(1:n,1:n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a(i,1:n) end do ! ! Factor the matrix A. ! call zsifa ( a, lda, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZSIFA returned an error flag INFO = ', info return end if ! ! Get the determinant. ! job = 10 call zsidi ( a, lda, n, ipvt, det, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a,2g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', real ( det(2), kind = rk8 ) ! ! Get the inverse. ! job = 01 call zsidi ( a, lda, n, ipvt, det, work, job ) ! ! Only the upper triangle is set, so the user must set up the ! lower triangle: ! do i = 1, n do j = 1, i-1 a(i,j) = a(j,i) end do end do c(1:n,1:n) = matmul ( a(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test31 ( ) !*****************************************************************************80 ! !! TEST31 tests ZSPCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer ipvt(n) integer j integer k real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST31' write ( *, '(a)' ) ' For a double complex symmetric matrix' write ( *, '(a)' ) ' in packed storage,' write ( *, '(a)' ) ' ZSPCO factors the matrix and estimates' write ( *, '(a)' ) ' the reciprocal condition number.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the packed matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) end do k = k + 1 a(k) = c8_uniform_01 ( ) end do ! ! Copy the packed matrix into a "normal" matrix. ! k = 0 do j = 1, n do i = 1, j k = k + 1 a_save(i,j) = a(k) end do end do do j = 1, n do i = j+1, n a_save(i,j) = a_save(j,i) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zspco ( a, n, ipvt, rcond, z ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test32 ( ) !*****************************************************************************80 ! !! TEST32 tests ZSPFA and ZSPSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer info integer ipvt(n) integer j integer k integer seed complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST32' write ( *, '(a)' ) ' For a double complex symmetric matrix' write ( *, '(a)' ) ' in packed storage,' write ( *, '(a)' ) ' ZSPFA factors the matrix.' write ( *, '(a)' ) ' ZSPSL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the packed matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) end do k = k + 1 a(k) = c8_uniform_01 ( ) end do ! ! Copy the packed matrix into a "normal" matrix. ! k = 0 do j = 1, n do i = 1, j k = k + 1 a_save(i,j) = a(k) end do end do do j = 1, n do i = j+1, n a_save(i,j) = a_save(j,i) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Set the values of the right hand side vector B. ! call c8vec_uniform_01 ( n, seed, x ) b(1:n) = matmul ( a_save(1:n,1:n), x(1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The right hand side B is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2f8.4)' ) b(i) end do ! ! Factor the matrix A. ! call zspfa ( a, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZSPFA returned an error flag INFO = ', info return end if ! ! Solve the system. ! call zspsl ( a, n, ipvt, b ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end subroutine test33 ( ) !*****************************************************************************80 ! !! TEST33 tests ZSPFA and ZSPDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 complex ( kind = ck8 ) a((n*(n+1))/2) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) b_save(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) c8_uniform_01 complex ( kind = ck8 ) det(2) integer i integer info integer ipvt(n) integer j integer job integer k integer seed complex ( kind = ck8 ) work(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST33' write ( *, '(a)' ) ' For a double complex symmetric matrix' write ( *, '(a)' ) ' in packed storage,' write ( *, '(a)' ) ' ZSPFA factors the matrix.' write ( *, '(a)' ) ' ZSPDI computes the determinant or inverse.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' The matrix order is N = ', n ! ! Set the values of the packed matrix A. ! k = 0 seed = 123456789 do j = 1, n do i = 1, j-1 k = k + 1 a(k) = c8_uniform_01 ( ) end do k = k + 1 a(k) = c8_uniform_01 ( ) end do ! ! Copy the packed matrix into a "normal" matrix. ! k = 0 do j = 1, n do i = 1, j k = k + 1 a_save(i,j) = a(k) end do end do do j = 1, n do i = j+1, n a_save(i,j) = a_save(j,i) end do end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) a_save(i,1:n) end do ! ! Factor the matrix A. ! call zspfa ( a, n, ipvt, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' ZSPFA returned an error flag INFO = ', info return end if ! ! Get the determinant. ! job = 10 call zspdi ( a, n, ipvt, det, work, job ) write ( *, '(a)' ) ' ' write ( *, '(a,2g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', real ( det(2), kind = rk8 ) ! ! Get the inverse. ! job = 01 call zspdi ( a, n, ipvt, det, work, job ) ! ! Copy the packed matrix into a "normal" matrix. ! k = 0 do j = 1, n do i = 1, j k = k + 1 b_save(i,j) = a(k) end do end do do j = 1, n do i = j+1, n b_save(i,j) = b_save(j,i) end do end do c(1:n,1:n) = matmul ( b_save(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test34 ( ) !*****************************************************************************80 ! !! TEST34 tests ZSVDC. ! ! Discussion: ! ! ZSVDC computes the singular value decomposition: ! ! A = U * S * conjg-transpose ( V ) ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 May 2007 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: m = 4 integer, parameter :: n = 3 complex ( kind = ck8 ) a(m,n) complex ( kind = ck8 ) e(max(m+1,n)) integer i integer info integer lda integer ldu integer ldv integer job complex ( kind = ck8 ) s(max(m+1,n)) integer seed complex ( kind = ck8 ) sigma(m,n) complex ( kind = ck8 ) u(m,m) complex ( kind = ck8 ) v(n,n) complex ( kind = ck8 ) work(m) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST34' write ( *, '(a)' ) ' For an MxN matrix A in double complex general storage,' write ( *, '(a)' ) ' ZSVDC computes the singular value decomposition:' write ( *, '(a)' ) ' A = U * S * V^H' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix rows M = ', m write ( *, '(a,i8)' ) ' Matrix columns N = ', n ! ! Set A. ! seed = 123456789 call c8mat_uniform_01 ( m, n, seed, a ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A:' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,6f10.4)' ) a(i,1:n) end do ! ! Decompose the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Decompose the matrix.' job = 11 lda = m ldu = m ldv = n call zsvdc ( a, lda, m, n, s, e, u, ldu, v, ldv, work, job, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'Warning:' write ( *, '(a,i8)' ) ' ZSVDC returned nonzero INFO = ', info return end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Singular values:' write ( *, '(a)' ) ' ' do i = 1, min ( m, n ) write ( *, '(2x,i4,2x,2g14.6)' ) i, s(i) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Left Singular Vector Matrix U:' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,8f10.4)' ) u(i,1:m) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Right Singular Vector Matrix V:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,6f10.4)' ) v(i,1:n) end do sigma(1:m,1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) do i = 1, min ( m, n ) sigma(i,i) = s(i) end do a(1:m,1:n) = matmul ( u(1:m,1:m), & matmul ( sigma(1:m,1:n), transpose ( conjg ( v(1:n,1:n) ) ) ) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product U * S * V^H (should equal A):' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,6f10.4)' ) a(i,1:n) end do return end subroutine test345 ( ) !*****************************************************************************80 ! !! TEST345 tests ZSVDC. ! ! Discussion: ! ! ZSVDC computes the singular value decomposition: ! ! A = U * S * conjg-transpose ( V ) ! ! on the matrix ! ! 1 1 1 1 ! -i -1 1 i ! -1 -1 1 -1 ! i 1 1 -i ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 January 2010 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: m = 4 integer, parameter :: n = 4 complex ( kind = ck8 ) a(m,n) complex ( kind = ck8 ) e(max(m+1,n)) complex ( kind = ck8 ) :: eye = cmplx ( 0.0D+00, 1.0D+00, kind = ck8 ) integer i integer info integer job integer lda integer ldu integer ldv complex ( kind = ck8 ) :: one = cmplx ( 1.0D+00, 0.0D+00, kind = ck8 ) complex ( kind = ck8 ) s(max(m+1,n)) complex ( kind = ck8 ) sigma(m,n) complex ( kind = ck8 ) u(m,m) complex ( kind = ck8 ) v(n,n) complex ( kind = ck8 ) work(m) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST345' write ( *, '(a)' ) ' For an MxN matrix A in double complex general storage,' write ( *, '(a)' ) ' ZSVDC computes the singular value decomposition:' write ( *, '(a)' ) ' A = U * S * V^H' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix rows M = ', m write ( *, '(a,i8)' ) ' Matrix columns N = ', n ! ! Set A. ! a = reshape ( (/ & one, - eye, - one, eye, & one, - one, - one, one, & one, one, one, one, & one, eye, - one, - eye /), (/ 4, 4 /) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The matrix A:' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,8f10.4)' ) a(i,1:n) end do ! ! Decompose the matrix. ! write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Decompose the matrix.' job = 11 lda = m ldu = m ldv = n call zsvdc ( a, lda, m, n, s, e, u, ldu, v, ldv, work, job, info ) if ( info /= 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'Warning:' write ( *, '(a,i8)' ) ' ZSVDC returned nonzero INFO = ', info return end if write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Singular values:' write ( *, '(a)' ) ' ' do i = 1, min ( m, n ) write ( *, '(2x,i4,2x,2g14.6)' ) i, s(i) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Left Singular Vector Matrix U:' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,8f10.4)' ) u(i,1:m) end do write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Right Singular Vector Matrix V:' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(2x,8f10.4)' ) v(i,1:n) end do sigma(1:m,1:n) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) do i = 1, min ( m, n ) sigma(i,i) = s(i) end do a(1:m,1:n) = matmul ( u(1:m,1:m), & matmul ( sigma(1:m,1:n), transpose ( conjg ( v(1:n,1:n) ) ) ) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product U * S * V^H (should equal A):' write ( *, '(a)' ) ' ' do i = 1, m write ( *, '(2x,8f10.4)' ) a(i,1:n) end do return end subroutine test35 ( ) !*****************************************************************************80 ! !! TEST35 tests ZTRCO. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) c8_uniform_01 integer i integer j integer job real ( kind = rk8 ) rcond integer seed complex ( kind = ck8 ) z(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST35' write ( *, '(a)' ) ' For a double complex triangular matrix,' write ( *, '(a)' ) ' ZTRCO estimates the condition.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix order N = ', n ! ! Set the matrix. ! seed = 123456789 do i = 1, n do j = 1, i a(i,j) = c8_uniform_01 ( ) end do do j = i+1, n a(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) end do end do ! ! Get the condition of the lower triangular matrix. ! job = 0 call ztrco ( a, lda, n, rcond, z, job ) write ( *, '(a)' ) ' ' write ( *, '(a,g14.6)' ) ' Estimated reciprocal condition RCOND = ', rcond return end subroutine test36 ( ) !*****************************************************************************80 ! !! TEST36 tests ZTRDI. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 3 integer, parameter :: lda = n complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) a_save(n,n) complex ( kind = ck8 ) c(n,n) complex ( kind = ck8 ) c8_uniform_01 complex ( kind = ck8 ) det(2) integer i integer info integer j integer job integer seed write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST36' write ( *, '(a)' ) ' For a double complex triangular matrix,' write ( *, '(a)' ) ' ZTRDI computes the determinant or inverse.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix order N = ', n ! ! Set the matrix. ! seed = 123456789 do i = 1, n do j = 1, i a(i,j) = c8_uniform_01 ( ) end do do j = i+1, n a(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) end do end do a_save(1:n,1:n) = a(1:n,1:n) ! ! Get the determinant of the lower triangular matrix. ! job = 100 call ztrdi ( a, lda, n, det, job, info ) write ( *, '(a)' ) ' ' write ( *, '(a,2g14.6,a,g14.6)' ) & ' Determinant = ', det(1), ' * 10** ', real ( det(2), kind = rk8 ) ! ! Get the inverse of the lower triangular matrix. ! job = 010 call ztrdi ( a, lda, n, det, job, info ) c(1:n,1:n) = matmul ( a(1:n,1:n), a_save(1:n,1:n) ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' The product inv(A) * A is ' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(10f8.4)' ) c(i,1:n) end do return end subroutine test37 ( ) !*****************************************************************************80 ! !! TEST37 tests ZTRSL. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 April 2006 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: n = 10 integer, parameter :: lda = n complex ( kind = ck8 ) a(n,n) complex ( kind = ck8 ) b(n) complex ( kind = ck8 ) c8_uniform_01 integer i integer info integer j integer job integer seed complex ( kind = ck8 ) x(n) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST37' write ( *, '(a)' ) ' For a double complex triangular matrix,' write ( *, '(a)' ) ' ZTRSL solves a linear system.' write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) ' Matrix order N = ', n ! ! Set the matrix. ! seed = 123456789 do i = 1, n do j = 1, i a(i,j) = c8_uniform_01 ( ) end do do j = i+1, n a(i,j) = cmplx ( 0.0D+00, 0.0D+00, kind = ck8 ) end do end do ! ! Set the desired solution ! do i = 1, n x(i) = cmplx ( i, 10 * i, kind = ck8 ) end do ! ! Compute the corresponding right hand side. ! b(1:n) = matmul ( a(1:n,1:n), x(1:n) ) ! ! Solve the lower triangular system. ! job = 0 call ztrsl ( a, lda, n, b, job, info ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Computed Exact' write ( *, '(a)' ) ' Solution Solution' write ( *, '(a)' ) ' ' do i = 1, n write ( *, '(4g14.6)' ) b(i), x(i) end do return end function c8_uniform_01 ( ) !*****************************************************************************80 ! !! c8_uniform_01() returns a unit pseudorandom C8. ! ! Discussion: ! ! A C8 is a complex ( kind = ck8 ) value. ! ! The angle should be uniformly distributed between 0 and 2 * PI, ! the square root of the radius uniformly distributed between 0 and 1. ! ! This results in a uniform distribution of values in the unit circle. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 04 September 2021 ! ! Author: ! ! John Burkardt ! ! Output: ! ! complex ( kind = ck8 ) C8_UNIFORM_01, a pseudorandom complex value. ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer, parameter :: ck = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk = kind ( 1.0D+00 ) complex ( kind = ck8 ) c8_uniform_01 real ( kind = rk8 ) r real ( kind = rk8 ), parameter :: r8_pi = 3.141592653589793D+00 real ( kind = rk8 ) theta call random_number ( harvest = r ) call random_number ( harvest = theta ) theta = 2.0D+00 * r8_pi * theta c8_uniform_01 = r * cmplx ( cos ( theta ), sin ( theta ), kind = ck8 ) return end subroutine c8mat_uniform_01 ( m, n, seed, c ) !*****************************************************************************80 ! !! C8MAT_UNIFORM_01 returns a unit pseudorandom C8MAT. ! ! Discussion: ! ! A C8MAT is a matrix of complex values. ! ! For now, the input quantity SEED is an integer variable. ! ! The angles should be uniformly distributed between 0 and 2 * PI, ! the square roots of the radius uniformly distributed between 0 and 1. ! ! This results in a uniform distribution of values in the unit circle. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 March 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer M, N, the number of rows and columns ! in the matrix. ! ! Input/output, integer SEED, the "seed" value, which ! should NOT be 0. On output, SEED has been updated. ! ! Output, complex C(M,N), the pseudorandom complex matrix. ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer m integer n complex ( kind = ck8 ) c(m,n) integer i integer j real ( kind = rk8 ) r integer k real ( kind = rk8 ), parameter :: pi = 3.141592653589793D+00 integer seed real ( kind = rk8 ) theta if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'C8MAT_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if do j = 1, n do i = 1, m k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + huge ( seed ) end if r = sqrt ( real ( seed, kind = rk8 ) * 4.656612875D-10 ) k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + huge ( seed ) end if theta = 2.0D+00 * pi * ( real ( seed, kind = rk8 ) * 4.656612875D-10 ) c(i,j) = r * cmplx ( cos ( theta ), sin ( theta ), kind = ck8 ) end do end do return end subroutine c8vec_uniform_01 ( n, seed, c ) !*****************************************************************************80 ! !! C8VEC_UNIFORM_01 returns a unit pseudorandom C8VEC. ! ! Discussion: ! ! A C8VEC is a vector of complex values. ! ! For now, the input quantity SEED is an integer variable. ! ! The angles should be uniformly distributed between 0 and 2 * PI, ! the square roots of the radius uniformly distributed between 0 and 1. ! ! This results in a uniform distribution of values in the unit circle. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 March 2005 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer N, the number of values to compute. ! ! Input/output, integer SEED, the "seed" value, which should NOT be 0. ! On output, SEED has been updated. ! ! Output, complex C(N), the pseudorandom complex vector. ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) integer n complex ( kind = ck8 ) c(n) integer i real ( kind = rk8 ) r integer k real ( kind = rk8 ), parameter :: pi = 3.141592653589793D+00 integer seed real ( kind = rk8 ) theta if ( seed == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'C8VEC_UNIFORM_01 - Fatal error!' write ( *, '(a)' ) ' Input value of SEED = 0.' stop end if do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + huge ( seed ) end if r = sqrt ( real ( seed, kind = rk8 ) * 4.656612875D-10 ) k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed < 0 ) then seed = seed + huge ( seed ) end if theta = 2.0D+00 * pi * ( real ( seed, kind = rk8 ) * 4.656612875D-10 ) c(i) = r * cmplx ( cos ( theta ), sin ( theta ), kind = ck8 ) end do return end subroutine drotg ( sa, sb, c, s ) !*****************************************************************************80 ! !! DROTG constructs a Givens plane rotation. ! ! Discussion: ! ! Given values A and B, this routine computes ! ! SIGMA = sign ( A ) if abs ( A ) > abs ( B ) ! = sign ( B ) if abs ( A ) <= abs ( B ); ! ! R = SIGMA * ( A * A + B * B ); ! ! C = A / R if R is not 0 ! = 1 if R is 0; ! ! S = B / R if R is not 0, ! 0 if R is 0. ! ! The computed numbers then satisfy the equation ! ! ( C S ) ( A ) = ( R ) ! ( -S C ) ( B ) = ( 0 ) ! ! The routine also computes ! ! Z = S if abs ( A ) > abs ( B ), ! = 1 / C if abs ( A ) <= abs ( B ) and C is not 0, ! = 1 if C is 0. ! ! The single value Z encodes C and S, and hence the rotation: ! ! If Z = 1, set C = 0 and S = 1; ! If abs ( Z ) < 1, set C = sqrt ( 1 - Z * Z ) and S = Z; ! if abs ( Z ) > 1, set C = 1/ Z and S = sqrt ( 1 - C * C ); ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 May 2006 ! ! Author: ! ! Original FORTRAN77 version by Charles Lawson, Richard Hanson, ! David Kincaid, Fred Krogh. ! FORTRAN90 version by John Burkardt. ! ! Reference: ! ! Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, ! LINPACK User's Guide, ! SIAM, 1979, ! ISBN13: 978-0-898711-72-1, ! LC: QA214.L56. ! ! Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh, ! Algorithm 539, ! Basic Linear Algebra Subprograms for Fortran Usage, ! ACM Transactions on Mathematical Software, ! Volume 5, Number 3, September 1979, pages 308-323. ! ! Parameters: ! ! Input/output, real ( kind = rk8 ) SA, SB. On input, SA and SB are the values ! A and B. On output, SA is overwritten with R, and SB is ! overwritten with Z. ! ! Output, real ( kind = rk8 ) C, S, the cosine and sine of the ! Givens rotation. ! implicit none integer, parameter :: ck8 = kind ( ( 1.0D+00, 1.0D+00 ) ) integer, parameter :: rk8 = kind ( 1.0D+00 ) real ( kind = rk8 ) c real ( kind = rk8 ) r real ( kind = rk8 ) roe real ( kind = rk8 ) s real ( kind = rk8 ) sa real ( kind = rk8 ) sb real ( kind = rk8 ) scale real ( kind = rk8 ) z if ( abs ( sb ) < abs ( sa ) ) then roe = sa else roe = sb end if scale = abs ( sa ) + abs ( sb ) if ( scale == 0.0D+00 ) then c = 1.0D+00 s = 0.0D+00 r = 0.0D+00 else r = scale * sqrt ( ( sa / scale )**2 + ( sb / scale )**2 ) r = sign ( 1.0D+00, roe ) * r c = sa / r s = sb / r end if if ( 0.0D+00 < abs ( c ) .and. abs ( c ) <= s ) then z = 1.0D+00 / c else z = s end if sa = r sb = z return end function i4_huge ( ) !*****************************************************************************80 ! !! I4_HUGE returns a "huge" I4. ! ! Discussion: ! ! On an IEEE 32 bit machine, I4_HUGE should be 2**31 - 1, and its ! bit pattern should be ! ! 01111111111111111111111111111111 ! ! In this case, its numerical value is 2147483647. ! ! Using the Dec/Compaq/HP Alpha FORTRAN compiler FORT, I could ! use I4_HUGE() and HUGE interchangeably. ! ! However, when using the G95, the values returned by HUGE were ! not equal to 2147483647, apparently, and were causing severe ! and obscure errors in my random number generator, which needs to ! add I4_HUGE to the seed whenever the seed is negative. So I ! am backing away from invoking HUGE, whereas I4_HUGE is under ! my control. ! ! Explanation: because under G95 the default integer type is 64 bits! ! So HUGE ( 1 ) = a very very huge integer indeed, whereas ! I4_HUGE ( ) = the same old 32 bit big value. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 26 January 2007 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Output, integer I4_HUGE, a "huge" I4. ! implicit none integer i4_huge i4_huge = 2147483647 return end subroutine timestamp ( ) !*****************************************************************************80 ! !! timestamp() prints the current YMDHMS date as a time stamp. ! ! Example: ! ! 31 May 2001 9:45:54.872 AM ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 15 August 2021 ! ! Author: ! ! John Burkardt ! implicit none character ( len = 8 ) ampm integer d integer h integer m integer mm character ( len = 9 ), parameter, dimension(12) :: month = (/ & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' /) integer n integer s integer values(8) integer y call date_and_time ( values = values ) y = values(1) m = values(2) d = values(3) h = values(5) n = values(6) s = values(7) mm = values(8) if ( h < 12 ) then ampm = 'AM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h < 12 ) then ampm = 'PM' else if ( h == 12 ) then if ( n == 0 .and. s == 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, '(i2.2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, trim ( month(m) ), y, h, ':', n, ':', s, '.', mm, trim ( ampm ) return end