program main !*****************************************************************************80 ! !! correlation_test() tests correlation(). ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 November 2012 ! ! Author: ! ! John Burkardt ! implicit none call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'correlation_test():' write ( *, '(a)' ) ' Fortran90 version.' write ( *, '(a)' ) ' Test correlation().' call correlation_test01 ( ) call correlation_test02 ( ) call correlation_test03 ( ) call correlation_test04 ( ) call correlation_test05 ( ) call correlation_test06 ( ) ! ! Terminate. ! write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST():' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop 0 end subroutine correlation_test01 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST01 plots the correlation functions. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 November 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), allocatable :: c(:) real ( kind = rk ) e integer n real ( kind = rk ) nu real ( kind = rk ), allocatable :: rho(:) real ( kind = rk ) rho0 write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST01' write ( *, '(a)' ) ' Make plots of correlation functions.' write ( *, '(a)' ) ' ' n = 101 allocate ( rho(1:n) ) allocate ( c(1:n) ) ! ! besselj ! rho0 = 1.0D+00 call r8vec_linspace ( n, -8.0D+00, 8.0D+00, rho ) call correlation_besselj ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'besselj', 'Bessel J correlation' ) ! ! besselk ! rho0 = 1.0D+00 call r8vec_linspace ( n, -4.0D+00, 4.0D+00, rho ) call correlation_besselk ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'besselk', 'Bessel K correlation' ) ! ! circular ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_circular ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'circular', 'Circular correlation' ) ! ! constant ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_constant ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'constant', 'Constant correlation' ) ! ! cubic ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_cubic ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'cubic', 'Cubic correlation' ) ! ! damped_cosine ! rho0 = 1.0D+00 call r8vec_linspace ( n, -6.0D+00, 6.0D+00, rho ) call correlation_damped_cosine ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'damped_cosine', 'Damped cosine correlation' ) ! ! damped_sine ! rho0 = 1.0D+00 call r8vec_linspace ( n, -12.0D+00, 12.0D+00, rho ) call correlation_damped_sine ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'damped_sine', 'Damped sine correlation' ) ! ! exponential ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_exponential ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'exponential', 'Exponential correlation' ) ! ! gaussian ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_gaussian ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'gaussian', 'Gaussian correlation' ) ! ! hole ! rho0 = 1.0D+00 call r8vec_linspace ( n, -6.0D+00, 6.0D+00, rho ) call correlation_hole ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'hole', 'Hole correlation' ) ! ! linear ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_linear ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'linear', 'Linear correlation' ) ! ! matern, nu = 2.5 ! rho0 = 1.0D+00 nu = 2.5D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) ! call correlation_matern ( n, rho, rho0, nu, c ) call correlation_matern ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'matern', 'Matern correlation (NU = 2.5)' ) ! ! pentaspherical ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_pentaspherical ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'pentaspherical', 'Pentaspherical correlation' ) ! ! power, e = 2.0 ! rho0 = 1.0D+00 e = 2.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) ! call correlation_power ( n, rho, rho0, e, c ) call correlation_power ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'power', 'Power correlation' ) ! ! rational_quadratic ! rho0 = 1.0D+00 call r8vec_linspace ( n, -4.0D+00, 4.0D+00, rho ) call correlation_rational_quadratic ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'rational_quadratic', 'Rational quadratic correlation' ) ! ! spherical ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_spherical ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'spherical', 'Spherical correlation' ) ! ! white_noise ! rho0 = 1.0D+00 call r8vec_linspace ( n, -2.0D+00, 2.0D+00, rho ) call correlation_white_noise ( n, rho, rho0, c ) call correlation_plot ( n, rho, c, 'white_noise', 'White noise correlation' ) deallocate ( c ) deallocate ( rho ) return end subroutine correlation_test02 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST02 plots sample paths with SAMPLE_PATHS_CHOLESKY/EIGEN. ! ! Discussion: ! ! Most paths will be blue, but make the LAST one red so that there will ! always be one distinguished path that is easy to follow. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 November 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) external correlation_besselj external correlation_besselk external correlation_circular external correlation_constant external correlation_cubic external correlation_damped_cosine external correlation_damped_sine external correlation_exponential external correlation_gaussian external correlation_hole external correlation_linear external correlation_matern external correlation_pentaspherical external correlation_power external correlation_rational_quadratic external correlation_spherical external correlation_white_noise integer n integer n2 real ( kind = rk ), allocatable :: rho(:) real ( kind = rk ), parameter :: rho0 = 1.0D+00 real ( kind = rk ), parameter :: rhomax = 10.0D+00 real ( kind = rk ), parameter :: rhomin = 0.0D+00 real ( kind = rk ), allocatable :: x(:,:) write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST02' write ( *, '(a)' ) ' SAMPLE_PATHS_CHOLESKY generates sample paths from the' write ( *, '(a)' ) ' correlation matrix, factored using the Cholesky factor.' write ( *, '(a)' ) ' It requires that the correlation matrix is nonnegative definite.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' SAMPLE_PATHS_EIGEN generates sample paths from the' write ( *, '(a)' ) ' correlation matrix, factored using the eigen factorization.' write ( *, '(a)' ) ' If the correlation matrix is not nonnegative definite,' write ( *, '(a)' ) ' we simply suppress negative eigenvalues.' write ( *, '(a)' ) '' n = 101 n2 = 3 allocate ( rho(1:n) ) call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( x(n,n2) ) ! ! besselj ! Use EIGEN, because CHOLESKY fails. ! call sample_paths_eigen ( n, n2, rhomax, rho0, correlation_besselj, x ) call paths_plot ( n, n2, rho, x, 'besselj', 'Bessel J correlation' ) ! ! besselk ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_besselk, x ) call paths_plot ( n, n2, rho, x, 'besselk', 'Bessel K correlation' ) ! ! circular ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_circular, x ) call paths_plot ( n, n2, rho, x, 'circular', 'Circular correlation' ) ! ! constant ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_constant, x ) call paths_plot ( n, n2, rho, x, 'constant', 'Constant correlation' ) ! ! cubic ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_cubic, x ) call paths_plot ( n, n2, rho, x, 'cubic', 'Cubic correlation' ) ! ! damped_cosine ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_damped_cosine, x ) call paths_plot ( n, n2, rho, x, 'damped_cosine', 'Damped cosine correlation' ) ! ! damped_sine ! Use EIGEN, because CHOLESKY fails. ! call sample_paths_eigen ( n, n2, rhomax, rho0, correlation_damped_sine, x ) call paths_plot ( n, n2, rho, x, 'damped_sine', 'Damped sine correlation' ) ! ! exponential ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_exponential, x ) call paths_plot ( n, n2, rho, x, 'exponential', 'Exponential correlation' ) ! ! gaussian ! Use EIGEN, because CHOLESKY fails. ! call sample_paths_eigen ( n, n2, rhomax, rho0, correlation_gaussian, x ) call paths_plot ( n, n2, rho, x, 'gaussian', 'Gaussian correlation' ) ! ! hole ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_hole, x ) call paths_plot ( n, n2, rho, x, 'hole', 'Hole correlation' ) ! ! linear ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_linear, x ) call paths_plot ( n, n2, rho, x, 'linear', 'Linear correlation' ) ! ! matern ( nu = 2.5 ) ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_matern, x ) call paths_plot ( n, n2, rho, x, 'matern', 'Matern correlation (nu=2.5)' ) ! ! pentaspherical ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_pentaspherical, x ) call paths_plot ( n, n2, rho, x, 'pentaspherical', 'Pentaspherical correlation' ) ! ! power ( e = 2.0 ) ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_power, x ) call paths_plot ( n, n2, rho, x, 'power', 'Power correlation (e=2.0)' ) ! ! rational_quadratic ! Use EIGEN, because CHOLESKY fails. ! call sample_paths_eigen ( n, n2, rhomax, rho0, correlation_rational_quadratic, x ) call paths_plot ( n, n2, rho, x, 'rational_quadratic', 'Rational quadratic correlation' ) ! ! spherical ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_spherical, x ) call paths_plot ( n, n2, rho, x, 'spherical', 'Spherical correlation' ) ! ! white_noise ! call sample_paths_cholesky ( n, n2, rhomax, rho0, correlation_white_noise, x ) call paths_plot ( n, n2, rho, x, 'white_noise', 'White noise correlation' ) return end subroutine correlation_test03 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST03 plots a correlation function for several values of RH00. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 05 November 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), allocatable :: c(:,:) integer j integer n integer n2 real ( kind = rk ), allocatable :: rho(:) real ( kind = rk ), allocatable :: rho0(:) real ( kind = rk ) rhomax real ( kind = rk ) rhomin write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST03' write ( *, '(a)' ) ' Make plots of correlation functions for' write ( *, '(a)' ) ' a range of correlation lengths.' write ( *, '(a)' ) '' ! ! besselj ! n = 101 n2 = 5 allocate ( rho0(1:n2) ) rho0 = (/ 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -8.0D+00 rhomax = +8.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_besselj ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'besselj', 'Bessel J correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! besselk ! n = 101 n2 = 5 allocate ( rho0(1:n2) ) rho0 = (/ 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -4.0D+00 rhomax = +4.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_besselk ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'besselk', 'Bessel K correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! circular ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -4.0D+00 rhomax = +4.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_circular ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'circular', 'Circular correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! constant ! 1 plot is enough ! n = 101 n2 = 1 allocate ( rho0(1:n2) ) rho0 = (/ 1.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_constant ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'constant', 'Constant correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! cubic ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -8.0D+00 rhomax = +8.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_cubic ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'cubic', 'Cubic correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! damped_cosine ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -6.0D+00 rhomax = +6.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_damped_cosine ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'damped_cosine', 'Damped cosine correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! damped_sine ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -8.0D+00 rhomax = +8.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_damped_sine ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'damped_sine', 'Damped sine correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! exponential ! n = 101 n2 = 7 allocate ( rho0(1:n2) ) rho0 = (/ 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_exponential ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'exponential', 'Exponential correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! gaussian ! n = 101 n2 = 7 allocate ( rho0(1:n2) ) rho0 = (/ 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_gaussian ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'gaussian', 'Gaussian correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! hole ! n = 101 n2 = 7 allocate ( rho0(1:n2) ) rho0 = (/ 0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_hole ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'hole', 'Hole correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! linear ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_linear ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'linear', 'Linear correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! matern, nu = 2.5 ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_matern ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'matern', 'Matern correlation (NU = 2.5)' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! pentaspherical ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_pentaspherical ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'pentaspherical', 'Pentaspherical correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! power, e = 2.0 ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_power ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'power', 'Power correlation (E = 2.0)' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! rational_quadratic ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -4.0D+00 rhomax = +4.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_rational_quadratic ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'rational_quadratic', 'Rational quadratic correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! spherical ! n = 101 n2 = 6 allocate ( rho0(1:n2) ) rho0 = (/ 0.5, 1.0, 1.5, 2.0, 4.0, 8.0 /) allocate ( rho(1:n) ) rhomin = -8.0D+00 rhomax = +8.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_spherical ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'spherical', 'Spherical correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) ! ! white_noise ! 1 plot is enough ! n = 101 n2 = 1 allocate ( rho0(1:n2) ) rho0 = (/ 1.0 /) allocate ( rho(1:n) ) rhomin = -2.0D+00 rhomax = +2.0D+00 call r8vec_linspace ( n, rhomin, rhomax, rho ) allocate ( c(n,n2) ) do j = 1, n2 call correlation_white_noise ( n, rho, rho0(j), c(1:n,j) ) end do call correlation_plots ( n, n2, rho, rho0, c, 'white_noise', 'White noise correlation' ) deallocate ( c ) deallocate ( rho ) deallocate ( rho0 ) return end subroutine correlation_test04 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST04 converts between covariance and correlation matrices. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 03 November 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) real ( kind = rk ), allocatable :: c(:,:) real ( kind = rk ), allocatable :: k(:,:) real ( kind = rk ), allocatable :: k2(:,:) integer n real ( kind = rk ), allocatable :: sigma(:) write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST04' write ( *, '(a)' ) ' Convert between a correlation and a covariance matrix.' n = 5 allocate ( k(1:n,1:n) ) call minij ( n, n, k ) call r8mat_print ( n, n, k, ' Covariance matrix K:' ) allocate ( c(1:n,1:n) ) allocate ( sigma(1:n) ) call covariance_to_correlation ( n, k, c, sigma ) call r8mat_print ( n, n, c, ' Correlation matrix C:' ) call r8vec_print ( n, sigma, ' Variances:' ) allocate ( k2(1:n,1:n) ) call correlation_to_covariance ( n, c, sigma, k2 ) call r8mat_print ( n, n, k2, ' Recovered covariance matrix K2:' ) deallocate ( c ) deallocate ( k ) deallocate ( k2 ) deallocate ( sigma ) return end subroutine correlation_test05 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST05 calls CORRELATION_BROWNIAN_DISPLAY. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 06 November 2012 ! ! Author: ! ! John Burkardt ! implicit none write ( *, '(a)' ) '' write ( *, '(a)' ) 'CORRELATION_TEST05' write ( *, '(a)' ) ' CORRELATION_BROWNIAN_DISPLAY displays 4 slices of' write ( *, '(a)' ) ' the Brownian correlation function.' call correlation_brownian_display ( ) return end subroutine correlation_test06 ( ) !*****************************************************************************80 ! !! CORRELATION_TEST06 plots sample paths with SAMPLE_PATHS2_CHOLESKY/EIGEN/FFT. ! ! Licensing: ! ! This code is distributed under the MIT license. ! ! Modified: ! ! 12 November 2012 ! ! Author: ! ! John Burkardt ! implicit none integer, parameter :: rk = kind ( 1.0D+00 ) external correlation_brownian integer n integer n2 real ( kind = rk ), allocatable :: rho(:) real ( kind = rk ) rho0 real ( kind = rk ) rhomax real ( kind = rk ) rhomin real ( kind = rk ), allocatable :: x(:,:) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'CORRELATION_TEST06' write ( *, '(a)' ) ' For non-stationary correlation functions:' write ( *, '(a)' ) '' write ( *, '(a)' ) ' SAMPLE_PATHS2_CHOLESKY generates sample paths from the' write ( *, '(a)' ) ' correlation matrix, factored using the Cholesky factor.' write ( *, '(a)' ) ' It requires that the correlation matrix is nonnegative definite.' write ( *, '(a)' ) '' write ( *, '(a)' ) ' SAMPLE_PATHS2_EIGEN generates sample paths from the' write ( *, '(a)' ) ' correlation matrix, factored using the eigen factorization.'; write ( *, '(a)' ) ' If the correlation matrix is not nonnegative definite,' write ( *, '(a)' ) ' we simply suppress negative eigenvalues.' write ( *, '(a)' ) '' write ( *, '(a)' ) ' SAMPLE_PATHS2_FFT generates sample paths from the' write ( *, '(a)' ) ' correlation matrix, factored using the FFT factorization'; write ( *, '(a)' ) ' of the correlation matrix after embedding in a circulant.' write ( *, '(a)' ) '' ! ! brownian ! n = 101 n2 = 3 rhomin = 0.0D+00 rhomax = 10.0D+00 rho0 = 1.0D+00 allocate ( x(1:n,1:n2) ) call sample_paths2_cholesky ( n, n2, rhomin, rhomax, rho0, correlation_brownian, x ) allocate ( rho(1:n) ) call r8vec_linspace ( n, rhomin, rhomax, rho ) call paths_plot ( n, n2, rho, x, 'brownian', 'Brownian correlation' ) deallocate ( rho ) deallocate ( x ) return end