09 May 2025 8:57:17.625 PM bvls_test(): Fortran90 version Test bvls(). TEST01 M = 2, N = 2, UNBND = 0.10000E+07 Bounds: 1.00000 3.00000 2.00000 4.00000 Matrix A: 0.676457 0.972293 0.885771 0.596556 RHS B: 0.243725 0.323012E-01 BVLS_REPORT: Number of components not at constraints = 0 Solution vector, X: 1.00000 3.00000 Lower bounds: 1.00000 3.00000 Upper bounds: 2.00000 4.00000 Variable index INDEX: 1 2 Residual R = B - A*X: -3.34961 -2.64314 Residual norm = 4.2669 Residual norm from BVLS = 4.2669 Dual vector: W = (A')*R: -4.60708 -4.83358 Dual vector from BVLS: W -4.60708 -4.83358 TEST02 M = 2, N = 4, UNBND = 0.10000E+07 Bounds: 0.00000 0.00000 0.00000 0.00000 10.0000 10.0000 10.0000 10.0000 Matrix A: 0.150745E-01 0.506462 0.955259E-01 0.502209 0.552684E-01 0.595607 0.126678 0.895313 RHS B: 0.171114 0.252632 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 1.36917 0.297109 0.00000 0.00000 Lower bounds: 0.00000 0.00000 0.00000 0.00000 Upper bounds: 10.0000 10.0000 10.0000 10.0000 Variable index INDEX: 1 2 3 4 Residual R = B - A*X: 0.832667E-16 0.00000 Residual norm = 0.83267E-16 Residual norm from BVLS = 0.0000 Dual vector: W = (A')*R: 0.125520E-17 0.421714E-16 0.795413E-17 0.418173E-16 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 TEST03 M = 4, N = 2, UNBND = 0.10000E+07 Bounds: 0.00000 -100.000 100.000 100.000 Matrix A: 0.123696 0.839801 0.136949 0.722675 0.606831 0.528019 0.773630 0.741262 RHS B: 0.137832 0.623968E-01 0.414532 0.789894 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 0.897945 -0.951499E-02 Lower bounds: 0.00000 -100.000 Upper bounds: 100.000 100.000 Variable index INDEX: 1 2 Residual R = B - A*X: 0.347501E-01 -0.536995E-01 -0.125345 0.102270 Residual norm = 0.17396 Residual norm from BVLS = 0.17396 Dual vector: W = (A')*R: -0.971445E-16 -0.180411E-15 Dual vector from BVLS: W 0.00000 0.00000 TEST04 M = 5, N = 10, UNBND = 0.10000E+07 Bounds: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 0.00000 -0.399400 1.00000 -0.200000 22.0000 -4.00000 45.0000 100.000 -0.179769+309 -1.00000 -3.00000 46.0000 101.000 0.179769+309 1.00000 Matrix A: 0.965036 0.495999 0.854358 0.801449 0.128421 0.441901 0.111035 0.319475 0.504934 0.120467 0.179841 0.297406 0.526383 0.778649E-01 0.986874 0.810344 0.362916 0.380293 0.142432 0.841815 0.824536 0.477853 0.980571 0.665435 0.189884 0.125340 0.457012 0.880328 0.701294 0.470979 0.783321 0.464935 0.217287 0.326843 0.474314 0.966515 0.290474 0.618925 0.343300 0.948330 0.794162 0.875473 0.124498 0.296978 0.880627 0.999495 0.861155 0.273081 0.202136E-01 0.431935 RHS B: 0.170064E-01 0.515897 0.970285 0.210546 0.699738 BVLS_REPORT: Number of components not at constraints = 1 Solution vector, X: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 -4.00000 45.0000 100.000 -174.924 -1.00000 Lower bounds: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 -4.00000 45.0000 100.000 -0.179769+309 -1.00000 Upper bounds: 0.00000 -0.399400 1.00000 -0.200000 22.0000 -3.00000 46.0000 101.000 0.179769+309 1.00000 Variable index INDEX: 9 6 10 3 5 4 7 8 2 1 Residual R = B - A*X: 13.6600 16.6307 -29.1838 -12.7399 -60.0111 Residual norm = 71.264 Residual norm from BVLS = 71.264 Dual vector: W = (A')*R: -44.5219 -33.3575 -62.0682 -24.6753 -47.1627 -83.5655 -57.3344 -20.3976 0.769677E-13 -50.4940 Dual vector from BVLS: W 0.00000 0.00000 -62.0682 -24.6753 -47.1627 -83.5655 -57.3344 -20.3976 0.00000 -50.4940 TEST05 M = 10, N = 5, UNBND = 0.10000E+07 Bounds: 0.00000 -1.00000 0.00000 0.300000 0.480000E-01 1.00000 0.00000 1.00000 0.400000 0.490000E-01 Matrix A: 0.571348 0.308422 0.828273 0.363760 0.210618E-01 0.782492 0.758057E-01 0.467439 0.361255 0.444023 0.813962 0.918137 0.418062 0.156513 0.507339 0.876781 0.740851 0.115222 0.154013 0.618224E-02 0.741573 0.118190 0.795496E-01 0.607025 0.773929E-01 0.243816 0.530315 0.759378 0.886591E-01 0.262469E-01 0.770676 0.669631 0.807564 0.174630 0.480443 0.922090 0.795751 0.455354 0.132204 0.492331 0.894047E-01 0.416586 0.761029 0.708020 0.443199 0.820935 0.822562 0.700253 0.397013 0.299500E-01 RHS B: 0.897522 0.799296 0.485944 0.304802 0.416415 0.384992E-01 0.753189 0.303616 0.743585 0.447838 BVLS_REPORT: Number of components not at constraints = 3 Solution vector, X: 0.457827 -0.423469 0.578739 0.400000 0.490000E-01 Lower bounds: 0.00000 -1.00000 0.00000 0.300000 0.480000E-01 Upper bounds: 1.00000 0.00000 1.00000 0.400000 0.490000E-01 Variable index INDEX: 1 2 3 5 4 Residual R = B - A*X: 0.140660 0.363663E-01 0.172679 0.885230E-01 -0.165688 -0.324786 0.123158 -0.122103 0.133702 -0.145215 Residual norm = 0.51063 Residual norm from BVLS = 0.51063 Dual vector: W = (A')*R: 0.249800E-15 0.166533E-15 0.166533E-15 0.179683E-01 0.139879 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.179683E-01 0.139879 TEST06 M = 6, N = 4, UNBND = 999.00 Bounds: -100.000 -0.179769+309 -0.179769+309 -0.179769+309 100.000 0.179769+309 0.179769+309 0.179769+309 Matrix A: 0.542989 0.139540 0.996269 0.927245 0.209525 0.246349 0.132516 0.562432E-01 0.934291 0.212559 0.893200 0.915154 0.241053 0.874655 0.709425E-01 0.523290 0.314308 0.518756 0.625444 0.281723E-01 0.656298 0.371527 0.541958E-02 0.157912 RHS B: 0.361671 0.779595 0.654039 0.118880 0.346657 0.579177 BVLS_REPORT: Number of components not at constraints = 4 Solution vector, X: 1.00690 0.155510 0.141805 -0.434893 Lower bounds: -100.000 -0.179769+309 -0.179769+309 -0.179769+309 Upper bounds: 100.000 0.179769+309 0.179769+309 0.179769+309 Variable index INDEX: 1 2 3 4 Residual R = B - A*X: 0.552106E-01 0.535982 -0.484221E-01 -0.423388E-01 -0.126932 -0.715202E-01 Residual norm = 0.56186 Residual norm from BVLS = 0.56186 Dual vector: W = (A')*R: 0.270617E-15 0.208167E-15 0.208167E-15 0.217274E-15 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 bvls_test(): Normal end of execution. 09 May 2025 8:57:17.626 PM