06 October 2025 6:02:39.097 PM bvls_test(): Fortran90 version Test bvls(). TEST01 M = 2, N = 2, UNBND = 0.10000E+07 Bounds: 1.00000 3.00000 2.00000 4.00000 Matrix A: 0.455418 0.334268 0.638949 0.171855 RHS B: 0.129783 0.758983 BVLS_REPORT: Number of components not at constraints = 0 Solution vector, X: 1.00000 3.00000 Lower bounds: 1.00000 3.00000 Upper bounds: 2.00000 4.00000 Variable index INDEX: 1 2 Residual R = B - A*X: -1.32844 -0.395530 Residual norm = 1.3861 Residual norm from BVLS = 1.3861 Dual vector: W = (A')*R: -0.857719 -0.512029 Dual vector from BVLS: W -0.857719 -0.512029 TEST02 M = 2, N = 4, UNBND = 0.10000E+07 Bounds: 0.00000 0.00000 0.00000 0.00000 10.0000 10.0000 10.0000 10.0000 Matrix A: 0.553142 0.125398 0.512546 0.474784 0.405077 0.473458 0.189272 0.629234 RHS B: 0.554066 0.594104 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 0.889783 0.493545 0.00000 0.00000 Lower bounds: 0.00000 0.00000 0.00000 0.00000 Upper bounds: 10.0000 10.0000 10.0000 10.0000 Variable index INDEX: 1 2 3 4 Residual R = B - A*X: -0.111022E-15 0.00000 Residual norm = 0.11102E-15 Residual norm from BVLS = 0.0000 Dual vector: W = (A')*R: -0.614111E-16 -0.139220E-16 -0.569040E-16 -0.527116E-16 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 TEST03 M = 4, N = 2, UNBND = 0.10000E+07 Bounds: 0.00000 -100.000 100.000 100.000 Matrix A: 0.522708 0.750420 0.697823 0.869381 0.968528 0.621913 0.380232 0.994412 RHS B: 0.439990E-01 0.330003 0.901345 0.557061 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 0.731423 -0.494862E-02 Lower bounds: 0.00000 -100.000 Upper bounds: 100.000 100.000 Variable index INDEX: 1 2 Residual R = B - A*X: -0.334608 -0.176098 0.196019 0.283872 Residual norm = 0.51184 Residual norm from BVLS = 0.51184 Dual vector: W = (A')*R: -0.235922E-15 -0.249800E-15 Dual vector from BVLS: W 0.00000 0.00000 TEST04 M = 5, N = 10, UNBND = 0.10000E+07 Bounds: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 0.00000 -0.399400 1.00000 -0.200000 22.0000 -4.00000 45.0000 100.000 -0.179769+309 -1.00000 -3.00000 46.0000 101.000 0.179769+309 1.00000 Matrix A: 0.964934 0.163388E-01 0.406668 0.550526 0.649728E-01 0.135143 0.596510 0.211107 0.704195 0.251722 0.734411 0.107103E-01 0.868296 0.364885 0.530008 0.285078 0.581197 0.331164 0.676880 0.438954 0.574810 0.650682 0.451301 0.729725 0.897234E-01 0.601481 0.300468 0.399738 0.275743 0.671697E-01 0.173084 0.349761 0.906527E-02 0.134819 0.552924 0.604568 0.539770 0.829995 0.964659 0.268045 0.984382 0.728053 0.809769 0.984836 0.539163 0.534734 0.816798 0.850265 0.645714 0.136640 RHS B: 0.301859 0.700085 0.102161 0.803939 0.565967 BVLS_REPORT: Number of components not at constraints = 1 Solution vector, X: 0.00000 -0.399400 -1.00000 -0.300000 22.0000 -4.00000 45.0000 100.000 -133.916 1.00000 Lower bounds: 0.00000 -0.399400 -1.00000 -0.300000 21.0000 -4.00000 45.0000 100.000 -0.179769+309 -1.00000 Upper bounds: 0.00000 -0.399400 1.00000 -0.200000 22.0000 -3.00000 46.0000 101.000 0.179769+309 1.00000 Variable index INDEX: 9 6 10 3 4 5 7 8 2 1 Residual R = B - A*X: -14.7788 -2.62908 13.4684 13.4577 -33.7866 Residual norm = 41.586 Residual norm from BVLS = 41.586 Dual vector: W = (A')*R: -20.3089 -15.8282 -5.66176 -20.6187 8.39221 -6.02097 -15.8891 -12.5827 -0.197240E-12 3.80307 Dual vector from BVLS: W 0.00000 0.00000 -5.66176 -20.6187 8.39221 -6.02097 -15.8891 -12.5827 0.00000 3.80307 TEST05 M = 10, N = 5, UNBND = 0.10000E+07 Bounds: 0.00000 -1.00000 0.00000 0.300000 0.480000E-01 1.00000 0.00000 1.00000 0.400000 0.490000E-01 Matrix A: 0.289790 0.334282 0.594403 0.911109 0.599717 0.888260 0.986218E-01 0.781082 0.713685 0.296587 0.863762 0.241899 0.503475 0.746571 0.550786 0.685036 0.252239 0.106442 0.940715 0.359620 0.251893 0.161442 0.505528E-01 0.852080 0.691337 0.941661 0.642583 0.102990E-01 0.655394E-01 0.710232 0.280834E-01 0.701990 0.193028 0.486936 0.333948 0.281998 0.547117 0.166855 0.590018 0.839607 0.429935E-01 0.448264 0.241100 0.402361 0.791212 0.617757 0.795408 0.816742 0.123950 0.996366 RHS B: 0.775495E-01 0.939505 0.866252 0.729130 0.426844 0.933168 0.516517 0.250678 0.634465 0.986978 BVLS_REPORT: Number of components not at constraints = 2 Solution vector, X: 0.741118 0.00000 0.129486 0.300000 0.490000E-01 Lower bounds: 0.00000 -1.00000 0.00000 0.300000 0.480000E-01 Upper bounds: 1.00000 0.00000 1.00000 0.400000 0.490000E-01 Variable index INDEX: 1 3 5 4 2 Residual R = B - A*X: -0.516905 -0.485781E-01 -0.900505E-01 -0.921808E-01 -0.558837E-01 0.179489 0.308265 -0.198067 0.411905 0.337383 Residual norm = 0.85980 Residual norm from BVLS = 0.85980 Dual vector: W = (A')*R: 0.471845E-15 0.444729 0.499600E-15 -0.454630 0.280398 Dual vector from BVLS: W 0.00000 0.444729 0.00000 -0.454630 0.280398 TEST06 M = 6, N = 4, UNBND = 999.00 Bounds: -100.000 -0.179769+309 -0.179769+309 -0.179769+309 100.000 0.179769+309 0.179769+309 0.179769+309 Matrix A: 0.952484 0.482869 0.546075 0.192832 0.756336 0.180050 0.941633 0.982574 0.649400 0.600847 0.630738 0.222530 0.467236 0.381674 0.125484 0.657108 0.593172 0.338529 0.664744 0.523449 0.662776 0.664132 0.713876 0.744911E-01 RHS B: 0.252038 0.842799 0.281366 0.192376 0.866093 0.884555 BVLS_REPORT: Number of components not at constraints = 4 Solution vector, X: -0.702340 0.437822 1.19326 0.252778 Lower bounds: -100.000 -0.179769+309 -0.179769+309 -0.179769+309 Upper bounds: 100.000 0.179769+309 0.179769+309 0.179769+309 Variable index INDEX: 1 2 3 4 Residual R = B - A*X: 0.923898E-02 -0.768152E-01 -0.334485 0.375913E-01 0.208954 0.188606 Residual norm = 0.44555 Residual norm from BVLS = 0.44555 Dual vector: W = (A')*R: -0.277556E-15 -0.166533E-15 -0.249800E-15 -0.180411E-15 Dual vector from BVLS: W 0.00000 0.00000 0.00000 0.00000 bvls_test(): Normal end of execution. 06 October 2025 6:02:39.098 PM