quad_rule


quad_rule, a Fortran77 code which sets up a variety of quadrature rules, used to approximate the integral of a function over various domains.

The code returns the abscissas and weights for a variety of one dimensional quadrature rules for approximating the integral of a function. The best rule is generally Gauss-Legendre quadrature, but other rules offer special features, including the ability to handle certain weight functions, to approximate an integral on an infinite integration region, or to estimate the approximation error.

Licensing:

The information on this web page is distributed under the MIT license.

Languages:

quad_rule is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.

Related Programs:

quad_rule_test

f77_rule, a Fortran77 code which computes a quadrature rule which estimates the integral of a function f(x), which might be defined over a one dimensional region (a line) or more complex shapes such as a circle, a triangle, a quadrilateral, a polygon, or a higher dimensional region, and which might include an associated weight function w(x).

Reference:

  1. Milton Abramowitz, Irene Stegun,
    Handbook of Mathematical Functions,
    National Bureau of Standards, 1964,
    ISBN: 0-486-61272-4,
    LC: QA47.A34.
  2. Philip Davis, Philip Rabinowitz,
    Methods of Numerical Integration,
    Second Edition,
    Dover, 2007,
    ISBN: 0486453391,
    LC: QA299.3.D28.
  3. Arthur Stroud, Don Secrest,
    Gaussian Quadrature Formulas,
    Prentice Hall, 1966,
    LC: QA299.4G3S7.

Source Code:


Last revised on 08 June 2023.