# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); int file_column_count ( string filename ); int file_row_count ( string filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void i4mat_write ( string output_filename, int m, int n, int table[] ); int i4row_compare ( int m, int n, int a[], int i, int j ); void i4row_sort_a ( int m, int n, int a[] ); void i4row_swap ( int m, int n, int a[], int irow1, int irow2 ); void i4vec_zero ( int n, int a[] ); void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); void r8mat_write ( string output_filename, int m, int n, double table[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); void timestamp ( ); double triangle_area_2d ( double t[2*3] ); void triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ); void triangulation_order6_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_CORNER refines a triangulation by doubling. // // Usage: // // triangulation_corner prefix // // where 'prefix' is the common filename prefix: // // * prefix_nodes.txt contains the node coordinates, // * prefix_elements.txt contains the element definitions. // * prefix_corner_nodes.txt will contain the revised node coordinates, // * prefix_corner_elements.txt will contain the revised element definitions. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2009 // // Author: // // John Burkardt // { double area; int dim_num; int i; int j; int j1; int j2; int j3; int j4; int n1_index; int n2_index; int negative; int negative_total[4]; int neighbor; int node; string node_filename; int node_num; double *node_xy; int node1; int node2; int node3; string node_corner_filename; string element_corner_filename; string prefix; int t1_to_t2; int t2_to_t1; double t3[2*3]; int triangle; string element_filename; int *triangle_neighbor; int *triangle_node; int triangle_num; int triangle_order; int triangle1; int triangle2; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TRIANGULATION_CORNER\n"; cout << " C++ version:\n"; cout << "\n"; cout << " Read a node file of NODE_NUM point coordinates in 2 dimensions.\n"; cout << " Read an associated triangle file of\n"; cout << " TRIANGLE_NUM triangles, listing 3 or 6 node indices.\n"; cout << "\n"; cout << " Any triangle which has exactly two sides on the boundary\n"; cout << " is a corner triangle.\n"; cout << "\n"; cout << " If there are any corner triangles this program tries to\n"; cout << " eliminate them.\n"; cout << "\n"; cout << " The \"repaired\" triangle file is written out.\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " Please enter the filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; node_corner_filename = prefix + "_corner_nodes.txt"; element_corner_filename = prefix + "_corner_triangles.txt"; // // Read the node data. // r8mat_header_read ( node_filename, &dim_num, &node_num ); cout << "\n"; cout << " Read the header of \"" << node_filename << "\".\n"; cout << "\n"; cout << " Spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " Number of nodes NODE_NUM = " << node_num << "\n"; node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); cout << "\n"; cout << " Read the data in \"" << node_filename << "\".\n"; r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, dim_num, 5, " First 5 nodes:" ); // // Read the element data. // i4mat_header_read ( element_filename, &triangle_order, &triangle_num ); if ( triangle_order != 3 && triangle_order != 6 ) { cout << "\n"; cout << "TRIANGULATION_CORNER - Fatal error!\n"; cout << " Data is not for a 3-node or 6-node triangulation.\n"; exit ( 1 ); } cout << "\n"; cout << " Read the header of \"" << element_filename << "\".\n"; cout << "\n"; cout << " Triangle order TRIANGLE_ORDER = " << triangle_order << "\n"; cout << " Number of triangles TRIANGLE_NUM = " << triangle_num << "\n"; triangle_node = i4mat_data_read ( element_filename, triangle_order, triangle_num ); cout << "\n"; cout << " Read the data in \"" << element_filename << "\".\n"; i4mat_transpose_print_some ( triangle_order, triangle_num, triangle_node, 1, 1, triangle_order, 5, " First 5 triangles:" ); // // Detect and correct 1-based node indexing. // mesh_base_zero ( node_num, triangle_order, triangle_num, triangle_node ); // // Create the triangle neighbor array. // triangle_neighbor = new int[3*triangle_num]; if ( triangle_order == 3 ) { triangulation_order3_neighbor_triangles ( triangle_num, triangle_node, triangle_neighbor ); } else if ( triangle_order == 6 ) { triangulation_order6_neighbor_triangles ( triangle_num, triangle_node, triangle_neighbor ); } // // Examine the triangle neighbor array. // i4vec_zero ( 4, negative_total ); for ( triangle = 0; triangle < triangle_num; triangle++ ) { negative = 0; for ( neighbor = 0; neighbor < 3; neighbor++ ) { if ( triangle_neighbor[neighbor+triangle*3] < 0 ) { negative = negative + 1; } } negative_total[negative] = negative_total[negative] + 1; } cout << "\n"; cout << " Number of boundary sides Number of triangles\n"; cout << "\n"; for ( i = 0; i < 4; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << negative_total[i] << "\n"; } // // Try to patch problems. // if ( 0 < negative_total[3] ) { cout << "\n"; cout << "TRIANGULATION_CORNER - Fatal error!\n"; cout << " There is at least one triangle with all sides\n"; cout << " on the boundary.\n"; exit ( 1 ); } else if ( 0 == negative_total[2] ) { cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " No corner triangles were found.\n"; cout << " No corrections need to be made.\n"; } else { // // We need the triangles to be oriented properly. // negative = 0; for ( triangle = 0; triangle < triangle_num; triangle++ ) { for ( j = 0; j < 3; j++ ) { for ( i = 0; i < 2; i++ ) { t3[i+j*2] = node_xy[i+(triangle_node[j+triangle*triangle_order]-1)*dim_num]; } } area = triangle_area_2d ( t3 ); if ( area < 0.0 ) { negative = negative + 1; node = triangle_node[1+triangle*triangle_order]; triangle_node[1+triangle*triangle_order] = triangle_node[2+triangle*triangle_order]; triangle_node[2+triangle*triangle_order] = node; if ( triangle_order == 6 ) { node = triangle_node[3+triangle*triangle_order]; triangle_node[3+triangle*triangle_order] = triangle_node[5+triangle*triangle_order]; triangle_node[5+triangle*triangle_order] = node; } neighbor = triangle_neighbor[0+triangle*3]; triangle_neighbor[0+triangle*3] = triangle_neighbor[2+triangle*3]; triangle_neighbor[2+triangle*3] = neighbor; } } if ( 0 < negative ) { cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " Reoriented " << negative << " triangles.\n"; cout << "\n"; } else { cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " Triangles were already properly oriented.\n"; cout << "\n"; } // // Now consider each triangle that has exactly two boundary sides. // for ( triangle1 = 0; triangle1 < triangle_num; triangle1++ ) { negative = 0; for ( neighbor = 0; neighbor < 3; neighbor++ ) { if ( triangle_neighbor[neighbor+triangle1*3] < 0 ) { negative = negative + 1; } } if ( negative == 2 ) { triangle2 = -1; for ( neighbor = 0; neighbor < 3; neighbor++ ) { if ( 0 < triangle_neighbor[neighbor+triangle1*3] ) { triangle2 = triangle_neighbor[neighbor+triangle1*3] - 1; t1_to_t2 = neighbor; } } cout << " Adjusting triangle " << triangle1+1 << " using triangle " << triangle2+1 << "\n"; t2_to_t1 = -1; for ( neighbor = 0; neighbor < 3; neighbor++ ) { if ( triangle_neighbor[neighbor+triangle2*3] - 1 == triangle1 ) { t2_to_t1 = neighbor; } } n1_index = i4_wrap ( t1_to_t2 - 1, 0, 2 ); node = triangle_node[n1_index+triangle1*triangle_order]; n1_index = i4_wrap ( t1_to_t2 + 1, 0, 2 ); n2_index = i4_wrap ( t2_to_t1 - 1, 0, 2 ); triangle_node[n1_index+triangle1*triangle_order] = triangle_node[n2_index+triangle2*triangle_order]; n1_index = i4_wrap ( t1_to_t2 - 1, 0, 2 ); n2_index = i4_wrap ( t2_to_t1 + 1, 0, 2 ); triangle_node[n2_index+triangle2*triangle_order] = node; if ( triangle_order == 6 ) { // // Adjust coordinates of the new midside node. // j1 = i4_wrap ( t1_to_t2 - 1, 0, 2 ); j2 = i4_wrap ( t1_to_t2 + 3, 3, 5 ); j3 = i4_wrap ( t2_to_t1 - 1, 0, 2 ); node1 = triangle_node[j1+triangle1*triangle_order] - 1; node2 = triangle_node[j2+triangle1*triangle_order] - 1; node3 = triangle_node[j3+triangle2*triangle_order] - 1; node_xy[0+node2*2] = 0.5 * ( node_xy[0+node1*2] + node_xy[0+node3*2] ); node_xy[1+node2*2] = 0.5 * ( node_xy[1+node1*2] + node_xy[1+node3*2] ); // // Update the triangle array. // j1 = i4_wrap ( t1_to_t2 + 4, 3, 5 ); j2 = i4_wrap ( t1_to_t2 + 3, 3, 5 ); j3 = i4_wrap ( t2_to_t1 + 4, 3, 5 ); j4 = i4_wrap ( t2_to_t1 + 3, 3, 5 ); node = triangle_node[j1+triangle1*triangle_order]; triangle_node[j1+triangle1*triangle_order] = triangle_node[j2+triangle1*triangle_order]; triangle_node[j2+triangle1*triangle_order] = triangle_node[j3+triangle2*triangle_order]; triangle_node[j3+triangle2*triangle_order] = triangle_node[j4+triangle2*triangle_order]; triangle_node[j4+triangle2*triangle_order] = node; } // // Update the neighbor array. // n2_index = i4_wrap ( t2_to_t1 + 1, 0, 2 ); triangle = triangle_neighbor[n2_index+triangle2*3] - 1; triangle_neighbor[n2_index+triangle2*3] = triangle1 + 1; triangle_neighbor[t2_to_t1+triangle2*3] = -1; n1_index = i4_wrap ( t1_to_t2 + 1, 0, 2 ); triangle_neighbor[n1_index+triangle1*3] = triangle2 + 1; triangle_neighbor[t1_to_t2+triangle1*3] = triangle + 1; } } // // Write out the corrected triangle file. // i4mat_write ( element_corner_filename, triangle_order, triangle_num, triangle_node ); cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " New triangle file with repaired corners written to\n"; cout << " \"" << element_corner_filename << "\".\n"; // // Write out the corrected node coordinate file. // This may only differ for quadratic elements. // r8mat_write ( node_corner_filename, dim_num, node_num, node_xy ); cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " New node coordinate file with adjusted midside nodes\n"; cout << " written to \"" << node_corner_filename << "\".\n"; } // // Free up memory. // delete [] node_xy; delete [] triangle_neighbor; delete [] triangle_node; cout << "\n"; cout << "TRIANGULATION_CORNER:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the character was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; char text[255]; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; int record_num; int row_num; char text[255]; row_num = 0; comment_num = 0; record_num = 0; input.open ( filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the file: \"" << filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { input.getline ( text, sizeof ( text ) ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( text[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( text ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80* int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80* // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I Value // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4mat_write ( string output_filename, int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_WRITE writes an I4MAT file with no header. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "I4MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int i4row_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4ROW_COMPARE compares two rows of a integer array. // // Discussion: // // The two dimensional information is stored in a one dimensional array, // by columns. The entry A(I,J) is stored in A[I+J*M]. // // The input arguments I and J are row indices. They DO NOT use the // C convention of starting at 0, but rather start at 1. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 3 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4ROW_COMPARE = -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], the array of data. // // Input, int I, J, the rows to be compared. // I and J must be between 1 and M. // // Output, int I4ROW_COMPARE, the results of the comparison: // -1, row I < row J, // 0, row I = row J, // +1, row J < row I. // { int k; // // Check that I and J are legal. // if ( i < 1 ) { cout << "\n"; cout << "I4ROW_COMPARE - Fatal error!\n"; cout << " Row index I is less than 1.\n"; cout << " I = " << i << "\n"; exit ( 1 ); } else if ( m < i ) { cout << "\n"; cout << "I4ROW_COMPARE - Fatal error!\n"; cout << " Row index I is out of bounds.\n"; cout << " I = " << i << "\n"; cout << " Maximum legal value is M = " << m << "\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4ROW_COMPARE - Fatal error!\n"; cout << " Row index J is less than 1.\n"; cout << " J = " << j << "\n"; exit ( 1 ); } else if ( m < j ) { cout << "\n"; cout << "I4ROW_COMPARE - Fatal error!\n"; cout << " Row index J is out of bounds.\n"; cout << " J = " << j << "\n"; cout << " Maximum legal value is M = " << m << "\n"; exit ( 1 ); } if ( i == j ) { return 0; } for ( k = 0; k < n; k++ ) { if ( a[(i-1)+k*m] < a[(j-1)+k*m] ) { return -1; } else if ( a[(j-1)+k*m] < a[(i-1)+k*m] ) { return +1; } } return 0; } //****************************************************************************80 void i4row_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4ROW_SORT_A ascending sorts the rows of an I4ROW. // // Definition: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Example: // // Input: // // M = 5, N = 3 // // A = // 3 2 1 // 2 4 3 // 3 1 8 // 2 4 2 // 1 9 9 // // Output: // // A = // 1 9 9 // 2 4 2 // 2 4 3 // 3 1 8 // 3 2 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of M rows of N-vectors. // On output, the rows of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( m, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4row_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4row_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4row_swap ( int m, int n, int a[], int irow1, int irow2 ) //****************************************************************************80 // // Purpose: // // I4ROW_SWAP swaps two rows of an I4ROW. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int IROW1, IROW2, the two rows to swap. // These indices should be between 1 and M. // { # define OFFSET 1 int j; int t; // // Check. // if ( irow1 < 0+OFFSET || m-1+OFFSET < irow1 ) { cout << "\n"; cout << "I4ROW_SWAP - Fatal error!\n"; cout << " IROW1 is out of range.\n"; exit ( 1 ); } if ( irow2 < 0+OFFSET || m-1+OFFSET < irow2 ) { cout << "\n"; cout << "I4ROW_SWAP - Fatal error!\n"; cout << " IROW2 is out of range.\n"; exit ( 1 ); } if ( irow1 == irow2 ) { return; } for ( j = 0; j < n; j++ ) { t = a[irow1-OFFSET+j*m]; a[irow1-OFFSET+j*m] = a[irow2-OFFSET+j*m]; a[irow2-OFFSET+j*m] = t; } return; # undef OFFSET } //****************************************************************************80 void i4vec_zero ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of integer values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0; } return; } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " NODE_MIN = " << node_min << "\n"; cout << " NODE_MAX = " << node_max << "\n"; cout << " NODE_NUM = " << node_num << "\n"; } return; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file with no header. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // For greater precision, try // // output << " " << setw(24) << setprecision(16) << table[i+j*m]; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 February 2004 // // Author: // // FORTRAN77 original version by Albert Nijenhuis and Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double triangle_area_2d ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_AREA_2D computes the area of a triangle in 2D. // // Discussion: // // If the triangle's vertices are given in counter clockwise order, // the area will be positive. If the triangle's vertices are given // in clockwise order, the area will be negative! // // An earlier version of this routine always returned the absolute // value of the computed area. I am convinced now that that is // a less useful result! For instance, by returning the signed // area of a triangle, it is possible to easily compute the area // of a nonconvex polygon as the sum of the (possibly negative) // areas of triangles formed by node 1 and successive pairs of vertices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the vertices of the triangle. // // Output, double TRIANGLE_AREA_2D, the area of the triangle. // { double area; area = 0.5 * ( t[0+0*2] * ( t[1+1*2] - t[1+2*2] ) + t[0+1*2] * ( t[1+2*2] - t[1+0*2] ) + t[0+2*2] * ( t[1+0*2] - t[1+1*2] ) ); return area; } //****************************************************************************80 void triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES determines triangle neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // Example: // // The input information from TRIANGLE_NODE: // // Triangle Nodes // -------- --------------- // 1 3 4 1 // 2 3 1 2 // 3 3 2 8 // 4 2 1 5 // 5 8 2 13 // 6 8 13 9 // 7 3 8 9 // 8 13 2 5 // 9 9 13 7 // 10 7 13 5 // 11 6 7 5 // 12 9 7 6 // 13 10 9 6 // 14 6 5 12 // 15 11 6 12 // 16 10 6 11 // // The output information in TRIANGLE_NEIGHBOR: // // Triangle Neighboring Triangles // -------- --------------------- // // 1 -1 -1 2 // 2 1 4 3 // 3 2 5 7 // 4 2 -1 8 // 5 3 8 6 // 6 5 9 7 // 7 3 6 -1 // 8 5 4 10 // 9 6 10 12 // 10 9 8 11 // 11 12 10 14 // 12 9 11 13 // 13 -1 12 16 // 14 11 -1 15 // 15 16 14 -1 // 16 13 15 -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up each // triangle. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the three triangles // that are direct neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) // is the index of the triangle which touches side 1, defined by nodes 2 // and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative if there is no // neighbor on that side. In this case, that side of the triangle lies // on the boundary of the triangulation. // { int i; int irow; int j; int k; int *row; int side1; int side2; int tri; int triangle_order = 3; int tri1; int tri2; row = new int[triangle_order*triangle_num*4]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,1,T) or (J,I,1,T), // (J,K,2,T) or (K,J,2,T), // (K,I,3,T) or (I,K,3,T) // // where we choose (I,J,1,T) if I < J, or else (J,I,1,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*triangle_order]; j = triangle_node[1+tri*triangle_order]; k = triangle_node[2+tri*triangle_order]; if ( i < j ) { row[3*tri+0+0*3*triangle_num] = i; row[3*tri+0+1*3*triangle_num] = j; row[3*tri+0+2*3*triangle_num] = 1; row[3*tri+0+3*3*triangle_num] = tri + 1; } else { row[3*tri+0+0*3*triangle_num] = j; row[3*tri+0+1*3*triangle_num] = i; row[3*tri+0+2*3*triangle_num] = 1; row[3*tri+0+3*3*triangle_num] = tri + 1; } if ( j < k ) { row[3*tri+1+0*3*triangle_num] = j; row[3*tri+1+1*3*triangle_num] = k; row[3*tri+1+2*3*triangle_num] = 2; row[3*tri+1+3*3*triangle_num] = tri + 1; } else { row[3*tri+1+0*3*triangle_num] = k; row[3*tri+1+1*3*triangle_num] = j; row[3*tri+1+2*3*triangle_num] = 2; row[3*tri+1+3*3*triangle_num] = tri + 1; } if ( k < i ) { row[3*tri+2+0*3*triangle_num] = k; row[3*tri+2+1*3*triangle_num] = i; row[3*tri+2+2*3*triangle_num] = 3; row[3*tri+2+3*3*triangle_num] = tri + 1; } else { row[3*tri+2+0*3*triangle_num] = i; row[3*tri+2+1*3*triangle_num] = k; row[3*tri+2+2*3*triangle_num] = 3; row[3*tri+2+3*3*triangle_num] = tri + 1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on columns 1 and 2; the routine we call here // sorts on columns 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two rows of ROW that start out ( I, J, ?, ? ). By sorting ROW, // we make sure that these two rows occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4row_sort_a ( 3*triangle_num, 4, row ); // // Step 3. Neighboring triangles show up as consecutive rows with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } irow = 1; for ( ; ; ) { if ( 3 * triangle_num <= irow ) { break; } if ( row[irow-1+0*3*triangle_num] != row[irow+0*3*triangle_num] || row[irow-1+1*3*triangle_num] != row[irow+1*3*triangle_num] ) { irow = irow + 1; continue; } side1 = row[irow-1+2*3*triangle_num]; tri1 = row[irow-1+3*3*triangle_num]; side2 = row[irow +2*3*triangle_num]; tri2 = row[irow +3*3*triangle_num]; triangle_neighbor[side1-1+(tri1-1)*3] = tri2; triangle_neighbor[side2-1+(tri2-1)*3] = tri1; irow = irow + 2; } delete [] row; return; } //****************************************************************************80 void triangulation_order6_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_NEIGHBOR_TRIANGLES determines triangle neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRIANGLE_NUM], the nodes that make up each triangle. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the three triangles that are direct // neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) is the index of the triangle // which touches side 1, defined by nodes 2 and 3, and so on. TRIANGLE_NEIGHBOR(1,I) // is negative if there is no neighbor on that side. In this case, that // side of the triangle lies on the boundary of the triangulation. // { int i; int irow; int j; int k; int *row; int side1; int side2; int tri; int tri1; int tri2; row = new int[3*triangle_num*4]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,1,T) or (J,I,1,T), // (J,K,2,T) or (K,J,2,T), // (K,I,3,T) or (I,K,3,T) // // where we choose (I,J,1,T) if I < J, or else (J,I,1,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*6]; j = triangle_node[1+tri*6]; k = triangle_node[2+tri*6]; if ( i < j ) { row[3*tri+0*3*triangle_num] = i; row[3*tri+1*3*triangle_num] = j; row[3*tri+2*3*triangle_num] = 1; row[3*tri+3*3*triangle_num] = tri + 1; } else { row[3*tri+0*3*triangle_num] = j; row[3*tri+1*3*triangle_num] = i; row[3*tri+2*3*triangle_num] = 1; row[3*tri+3*3*triangle_num] = tri + 1; } if ( j < k ) { row[3*tri+1+0*3*triangle_num] = j; row[3*tri+1+1*3*triangle_num] = k; row[3*tri+1+2*3*triangle_num] = 2; row[3*tri+1+3*3*triangle_num] = tri + 1; } else { row[3*tri+1+0*3*triangle_num] = k; row[3*tri+1+1*3*triangle_num] = j; row[3*tri+1+2*3*triangle_num] = 2; row[3*tri+1+3*3*triangle_num] = tri + 1; } if ( k < i ) { row[3*tri+2+0*3*triangle_num] = k; row[3*tri+2+1*3*triangle_num] = i; row[3*tri+2+2*3*triangle_num] = 3; row[3*tri+2+3*3*triangle_num] = tri + 1; } else { row[3*tri+2+0*3*triangle_num] = i; row[3*tri+2+1*3*triangle_num] = k; row[3*tri+2+2*3*triangle_num] = 3; row[3*tri+2+3*3*triangle_num] = tri + 1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on columns 1 and 2; the routine we call here // sorts on columns 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two rows of ROW that start out ( I, J, ?, ? ). By sorting ROW, // we make sure that these two rows occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4row_sort_a ( 3*triangle_num, 4, row ); // // Step 3. Neighboring triangles show up as consecutive rows with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } irow = 1; for ( ; ; ) { if ( 3 * triangle_num <= irow ) { break; } if ( row[irow-1+0*3*triangle_num] != row[irow+0*3*triangle_num] || row[irow-1+1*3*triangle_num] != row[irow+1*3*triangle_num] ) { irow = irow + 1; continue; } side1 = row[irow-1+2*3*triangle_num]; tri1 = row[irow-1+3*3*triangle_num]; side2 = row[irow +2*3*triangle_num]; tri2 = row[irow +3*3*triangle_num]; triangle_neighbor[side1-1+(tri1-1)*3] = tri2; triangle_neighbor[side2-1+(tri2-1)*3] = tri1; irow = irow + 2; } delete [] row; return; }