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TESSELLATIONS

open set Ω

open subsets Vi ⊂ Ω, i = 1, . . . , K

{Vi}K
i=1 is a tessellation of Ω if

• Vi ∩ Vj = ∅ if i �= j

•
⋃K

i=1Vi = Ω



VORONOI SETS

• Given a set Ω

• Given K elements zi, i = 1, . . . , K , belonging to Ω

• Given a distance function d(z, w) for points z, w ∈ Ω

Then, the Voronoi set Vj is the set of all elements belonging to Ω that are
closer to zj than to any of the other elements zi, i = 1, . . . , K, i �= j, i.e.,

Vj = {w ∈ Ω | d(w, zj) < d(w, zi), i = 1, . . . , K, i �= j}

Voronoi sets =
Dirichlet regions =

Meijering cells =
S-mosaics =

Thiessen polygons =
area of influence polygons =

etc.
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perpendicular
bisector

Voronoi regions for two points in the plane
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Voronoi tessellation of 10 random points in a square



• Voronoi polygons and their dual tessellation, the Delaunay triangula-
tion, are very useful in numerical computations, e.g., in interpolation,
quadrature, partial differential equations, etc.

• For example, among all possible triangulations of a given set of points
in the plane, the Delaunay triangulation is the one with largest min-
imum angle. This, in turn, is a good thing for, e.g., finite element
approximations of partial differential equations.

• Another example is in “finite difference” discretizations of certain types
of partial differential equations for which one must associate variables
with points, and/or regions, and/or edges. On arbitrary grids, the best
way to do this is to choose regions to be Voronoi polygons and/or
Delaunay triangles, and to use the associated edges and vertices as
needed.



MASS CENTROID

Given a region R and a density function ρ(w), w ∈ R, the mass centroid z∗

of R is given by

z∗ =

∫

R

wρ(w) dw
∫

R

ρ(w) dw

— or —

Given a set of points W = {wj}M
j=1 and a density function ρ(wj), j =

1, . . . , M , the mass centroid z∗ of W is given by

z∗ =

M∑

j=1

wjρ(wj)

M∑

j=1

ρ(wj)



•Given K points zi, i = 1, . . . , K,
we can define the associated Voronoi sets

Vi , i = 1, . . . , K
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•Given K points zi, i = 1, . . . , K,
we can define the associated Voronoi sets

Vi , i = 1, . . . , K

•Given the Voronoi sets Vi, i = 1, . . . , K,
we can define the associated mass centroids

z∗i , i = 1, . . . , K

•We are interested in the special situation wherein

zi = z∗i , i = 1, . . . , K

=⇒ CENTROIDAL VORONOI TESSELLATION



 

Voronoi regions and their centroids for 10 randomly selected points (left)
and a 10-point centroidal Voronoi tessellation (right) in a square



THE CONSTRUCTION PROBLEM FOR
CENTROIDAL VORONOI TESSELLATIONS

• Given
a region Ω, an integer K > 1, and a density function ρ(w)

• we are interested in finding
K points {zi}K

i=1 and K regions {Vi}K
i=1

• such that
zi ∈ Ω , i = 1, . . . , K, {Vi}K

i=1 tessellates Ω

• and simultaneously
the regions {Vi}K

i=1 are Voronoi regions for the points {zi}K
i=1

the points {zi}K
i=1 are the mass centroids of the regions {Vi}K

i=1

Note that, in general, one does not have uniqueness



Two two-point centroidal Voronoi tessellations of a square



Three regular tessellations of the plane



— APPLICATION 1 —
OPTIMAL QUADRATURE RULES

• For a given region Ω and a given number K, consider the quadrature
rule

∫

Ω

f(x) dx ≈
K∑

i=1

Aif(zi)

where

{zi}K
i=1 are K points in Ω

{Ai}K
i=1 are the volumes of a set of regions {Vi}K

i=1 that tessellate Ω

• We want to choose the zi’s and Vi’s so that the quadrature error is
minimized



• Quadrature error for Lipschitz continuous functions

∣
∣
∣

∫

Ω

f(x) dx−
K∑

i=1

Aif(zi)
∣
∣
∣ =

∣
∣
∣

K∑

i=1

∫

Vi

f(x) dx −
K∑

i=1

∫

Vi

f(zi) dx
∣
∣
∣

≤
K∑

i=1

∫

Vi

∣
∣f(x) − f(zi)

∣
∣ dx ≤ L

K∑

i=1

∫

Vi

|x − zi| dx

• Optimal quadrature rule is one using a centroidal Voronoi tessellation
of Ω

– the Vi’s are the Voronoi regions for the zi’s

– the zi’s are the centroids of the Vi’s

• Can extend to higher-order quadrature rules, using function values and
derivative values at the points zi. Then, for functions having Lipschitz
continuous (m − 1)-st derivatives,

Quadrature error ≤ Lm

K∑

i=1

∫

Vi

|x − zi|m dx



— APPLICATION 2 —
NUMERICAL PDE’s

Covolume methods for the Poisson equation
(R. Nicolaides and N. Walkington)

• for Voronoi grids: L2 error is O(h)

• for centroidal Voronoi grids: L2 error is O(h2)

Finite difference methods for the Poisson eq.

• for general grids: truncation error is O(h)

• for centroidal Voronoi grids: truncation error is O(h2)



— APPLICATION 3 —
OPTIMAL DISTRIBUTION OF RESOURCES

What is the optimal placement of mailboxes in a given region?

• A user will use the mailbox nearest to their home

• The cost (to the user) of using a mailbox is proportional to the distance
from the user’s home to the mailbox

• The total cost to users as a whole is measured by the distance to the
nearest mailbox averaged over all users in the region

• The optimal placement of mailboxes is defined to be the one that min-
imizes the total cost to the users

The optimal placement of the mail boxes is at the centroids of a centroidal
Voronoi tessellation

A. Okabe, B. Boots, and K. Sugihara; Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, John Wiley, Chichester, 1992



— APPLICATION 4 —
OPTIMAL REPRESENTATION,

QUANTIZATION, AND CLUSTERING

Representation , e.g., interpolation, is replacement of observed data by a
simpler set of data

Centroidal Voronoi tessellations are intimately related to optimal rep-
resentation

Clustering is a tool to analyze similarities or dissimilarities between different
objects

Centroidal Voronoi tessellations are intimately related to optimal k-
means clustering

Quantization is the representation of a given quantity with less information
Centroidal Voronoi tessellations are intimately related to optimal vec-
tor quantization

These are central subjects of information theory and statistics



Clustering

• Let W contains m points in RN

• Given a subset (cluster) V of W with � points, the cluster is to be
represented by the arithmetic mean

xi =
1
�

∑

xj∈V

xj

which corresponds to the mass centroid of V

• The variance is given by

V ar(V ) =
∑

xj∈V

|xj − x|2



• For a K-clustering {Vi}K
i=1 (a tessellation of W into k disjoint subsets),

the total variance is given by

V ar(W ) =
K∑

i=1

V ar(Vi) =
K∑

i=1

∑

xj∈Vi

|xj − xi|2

• The optimal K-clustering having the minimum total variance occurs
when {Vi}K

i=1 is the Voronoi partition of W with {xi}K
i=1 as the gen-

erators, i.e., if we use the above variance-based criteria, the optimal
k-clustering is a centroidal Voronoi diagram



— APPLICATION 5 —
CELL DIVISION

There are many examples of cells that are polygonal – often they can be
identified with a Voronoi, indeed, a centroidal Voronoi tessellation

This is especially evident in monolayered or columnar cells, e.g., as in the
early development of a starfish (Asteria pectinifera)

Cell division

• Start with a configuration of cells that, by observation, form a Voronoi
tessellation

• The division of a cell can be modeled by the addition of a Voronoi
generator, or more precisely, the splitting of one generator into two

• Having added generators, i.e., cells, what is the shape of the new cell
arrangement?

• It is observed that the new cell arrangement is closely approximated
by a centroidal Voronoi tessellation



— APPLICATION 6 —
TERRITORIAL BEHAVIOR OF ANIMALS

Male moutbreeder fish – Tilapia mossambica

• Fishes dig nesting pits in sandy bottoms

• They adjust the centers and boundaries of the pits so that the final
configuration of territories is a centroidal Voronoi tessellation

Actually,

fishes are observed to perform an iteration known as Lloyd’s method !



A top view photograph, using a polarizing filter, of the territories of the
male Tilapia mossambica.

Photograph from: George Barlow; Hexagonal territories, Animal Behavior
22 1974, pp. 876–878.



— APPLICATION 7 —
DATA COMPRESSION (IMAGE PROCESSING)

• each point in a picture has a specific color

• each color is a combination of basic (primary, RGB, CMY) colors

• let the components of a vector w represent a possible combination of
the basic colors

• let ρ(w) denote the number of times the particular combination w
occurs in the picture

• let Ω denote the set of admissible color combinations

• there are zillions of different colors in a given picture

• one would like to approximate the picture using just a few combina-
tions of the basic colors



Questions:

1. How to choose the few colors that are to be used to represent the
picture?

2. How to assign the colors in the picture to the few chosen colors?



Why data compression?

• Suppose the picture has 106 pixels

• Suppose the color at each pixel is determined by a 24 bit number, i.e.,
the set Ω of possible colors has cardinality 224

amount of information in picture = 106 × 24 bits

• Now suppose we approximate the picture, by some replacement algo-
rithm, using only 8 bit numbers, i.e., 256 = 28 different colors

• we still have 106 pixels, so data reduction does not come from reducing
the number of points in the picture

amount of information in approximate picture = 106 × 8 bits

number of bits in approximate picture
number of bits in original picture

=
1
3



Algorithm for determining approximate picture

Given Ω, ρ(w), and K, choose

• K color combinations {zi}K
i=1

• K subsets {Vi}K
i=1 that tessellate Ω

• let w be any color appearing in the picture

• Replacement method

If w ∈ Vi , replace w with zi

Clearly, we want to choose {zi}K
i=1 and {Vi}K

i=1 so that the approximate
picture using only K different color combinations is a good approximation
of the given picture that contains zillions of different color combinations.



“Obvious”method

• using ρ(w) (suitably normalized) as a probability density, use a Monte
Carlo method to find {zi}K

i=1

• once {zi}K
i=1 is the determined, choose {Vi}K

i=1 to be the associated
Voronoi sets

With N = 256, “experts” can easily see differences between the original
and approximate pictures

RESULTS ARE NOT GREAT



Better method

• Determine {zi}K
i=1 and {Vi}K

i=1 so that

E =
K∑

i=1

∫

Vi

ρ(w)|w − zi|2 dw

is minimized over all possible sets of K points belonging to Ω and all
possible tessellations of Ω into K regions

• For Ω = a discrete set of M points {wj}M
j=1, we instead have

E =
K∑

i=1

∑

wj∈Vi

ρ(wj)|wj − zi|2

• Note that E = E(zi, Vi) and that we assume no a priori relation between
the zi’s and Vi’s



E is minimized when

• the Vi’s are the Voronoi sets for the zi’s

and

• the zi’s are the centroids of the Vi’s

PRODUCES GREAT APPROXIMATE PICTURES!!!



Original 8-bit grayscale image of Lena



Monte Carlo 3-bit approximate picture



Centroidal Voronoi 3-bit approximate picture



Contouring

Contouring is an effect that results from discontinuous approximations to
“continuous” pictures

• 1-D picture w(x) where w is the color and x is a physical length coor-
dinate

• Suppose w(x) is continuous

• Suppose we have K colors {zi}K
i=1 to which the colors in the picture

are assigned

• Result: a piecewise constant picture - contouring

• Contouring is a problem with the assignment part of the algorithm,
and not with the choice of the colors zi used in the assignment
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Piecewise constant (contoured) 3-color approximation to a continuous 1-D
picture



Dithering

• Dithering is a class of solutions of the contouring problem such that
one does not always assign to the nearest color in the set {zi}K

i=1

• A simple dithering algorithm:

a. Let w be the color to be assigned to one of the zi , i = 1, . . . , K

b. Find the two closest zi’s to w; call them za and zb

c. Replace w with either za or zb, according to a probability based
on the inverse of the distances from w to za and zb

• Results in a picture that is no longer piecewise constant



Dithered centroidal Voronoi 3-bit approximate picture



Original 8-bit grayscale image of Lena



CENTROIDAL VORONOI TESSELLATIONS
IN THE SQUARE [−1, 1]2

Effect of the density function

• Constant ρ = 1

• Peaked at the center ρ = e−x2−y2

• A more pronounced peak at the center ρ = e−10x2−10y2

• A very pronounced peak at the center plus a small variation throughout
the picture

ρ = e−20x2−20y2
+ 0.05 sin2(πx) sin2(πy)

• An even more pronounced peak at the center plus a smaller variation
throughout the picture

ρ = e−40x2−40y2
+ 0.001 sin2(πx) sin2(πy)

• Peaked at the lower left corner ρ = e−2x−2y



ρ = 1 64 generators
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Monte Carlo Centroidal Voronoi



ρ = 1 256 generators
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Monte Carlo Centroidal Voronoi



ρ = e−x2−y2
64 generators
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ρ = e−x2−y2
256 generators
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Monte Carlo Centroidal Voronoi



ρ = e−10(x2+y2) 64 generators
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ρ = e−10(x2+y2) 256 generators
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ρ = e−20(x2+y2) + 0.05 sin2(πx) sin2(πy) 64 generators
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Monte Carlo Centroidal Voronoi



ρ = e−20(x2+y2) + 0.05 sin2(πx) sin2(πy) 256 generators
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Monte Carlo Centroidal Voronoi



ρ = e−40(x2+y2) + 0.001 sin2(πx) sin2(πy) 64 generators

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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ρ = e−40(x2+y2) + 0.001 sin2(πx) sin2(πy) 256 generators

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Monte Carlo Centroidal Voronoi



ρ = e−2x−2y 64 generators
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ρ = e−2x−2y 256 generators
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Monte Carlo Centroidal Voronoi



Stability of centroidal Voronoi tessellations

• A small perturbation of the square lattice (64 generators) leads to the
hexagonal lattice
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Perturbation (top-right) of a uniform square Voronoi diagram (top-left)
with 64 generators leads to a hexagonal-like lattice (bottom-right) with
Lloyd’s iteration. The pictures are generated at iteration numbers 0, 15,
30, 60, and 120.



Density functions with large peaks

• Let’s return to Lena to examine the effects of density functions having
large peaks

• We embed Lena in a picture having a nearly uniform background



The original 8-bit image embedded in a nearly uniform background
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The grayscale density function



• Example has 256 gray scales (represented by the integers 0 to 255)

• The background has the 8 contiguous shades (126 to 133)
– clearly, the background could be well approximated by just one or

two shades

• Generators chosen at random tend to cluster near large peaks in the
density function; this may not be a good

• A random choice for generators picks 7 shades in the background (126-
129 and 131-133) and only 1 shade (50) not in the background

– results in a very bad approximate picture

• The centroidal Voronoi generators contain only two shades in the back-
ground (127 and 132) and 6 shades not in the background (49, 76, 101,
154, 177, 205)

– there are now more shades available to approximate the interesting
part of the picture

– results in a much better approximate picture



The Monte Carlo compressed 3-bit image



The centroidal Voronoi compressed 3-bit image



The original 8-bit image embedded in a nearly uniform background



ALGORITHMS FOR CONSTRUCTING
CENTROIDAL VORONOI TESSELLATIONS

Lloyd’s method

0. Start with some initial set of K points {zi}K
i=1 , e.g., using a Monte

Carlo method

1. Construct the Voronoi tessellation {Vi}K
i=1 of Ω associated with the

points {zi}K
i=1

2. Compute the mass centroids of the Voronoi regions {Vi}K
i=1 found in

Step 1; these centroids are the new set of points {zi}K
i=1

3. Go back to Step 1, or, if happy with convergence, quit



McQueen’s method (a random sampling algorithm)
(Doesn’t require the calculation of Voronoi sets)

0. Start with some initial set of K points {zi}K
i=1 , e.g., using a Monte

Carlo method; set the integer array Ji = 1 for i = 1, . . . , K

1. Pick a point w ∈ Ω at random according to the probability distribution
ρ(w) (normalized)

2. Find the zi closest to w; denote the index of that zi by i∗

3. Set
zi∗ ← Ji∗zi∗ + w

Ji∗ + 1
and Ji∗ ← Ji∗ + 1

(Note that Ji keeps track of how many times the point zi has been
updated)

4. Go back to Step 1, or, if happy with convergence, quit



A random 2-clustering algorithm for the discrete case

Given a finite set of points W = {y�}M
�=1

0. Sample an initial subset T of m points from W , e.g., by using a Monte
Carlo method.

1. For every linearly separable 2-clustering (T1, T2) of T ,
– compute the centroids t1 and t2 of T1 and T2, respectively;
– find a 2-clustering (W1, W2) of W divided by the perpendicular

bisector of the line segment connecting t1 and t2;
– compute the total variance of the 2-clustering (W1, W2) and main-

tain the minimum among these values.

2. Output the 2-clustering of W with minimum value above.



Many other algorithms are known

• Gradient based deterministic algorithms

• Newton and quasi-Newton methods

• For the discrete case, one can change McQueen’s method so that one
goes through all the elements of the set W sequentially; get a deter-
ministic algorithm

• Other probabilistic and deterministic algorithms



CENTROIDAL VORONOI TESSELLATIONS
AND THEIR MINIMIZATION PROPERTIES

Centroidal Voronoi tessellations as minimizers

Proposition – Given Ω ⊂ RN , a positive integer K, and a density function
ρ(·) defined on Ω. Let {zi}K

i=1 denote any set of K points belonging to Ω
and let {Vi}K

i=1 denote any tessellation of Ω into K regions. Let

F
(
(zi, Vi), i = 1, . . . , K

)
=

K∑

i=1

∫

y∈Vi

ρ(y)|y − zi|2 dy .

A necessary condition for F to be minimized is that the Vi’s are the Voronoi
regions corresponding to the zi’s and, simultaneously, the zi’s are the cen-
troids of the corresponding Vi’s.



Proposition – Given Ω ⊂ RN , a positive integer K, and a density function
ρ(·) defined on Ω. Given a set of points {zi}K

i=1, let {V̂i}K
i=1 denote the

corresponding Voronoi regions. Let

K(zi, i = 1, . . . , K) =
K∑

i=1

∫

y∈V̂i

ρ(y)|y − zi|2 dy .

Then, F and K have the same minimizer.



Existence of a minimizer

Theorem – If Ω ∈ RN is bounded, then K has a global minimizer.

Proposition – Assume that ρ(·) is positive except on a set of measure zero
in Ω. Then zi �= zj for i �= j.

Remark – For general metrics, existence is provided by the compactness of
the Voronoi regions. Uniqueness can also be attained under some assump-
tions, e.g., convexity, on the Voronoi regions and the metric.

Results for the discrete case

There are many results available for the discrete case. Many of these are
in the nature of limiting results as the sample size increases.



LLOYD’S METHOD AS A FIXED POINT ITERATION

• Let Ω ⊂ RN

• Let the mappings Gi : RKN → RK , i = 1, . . . , K be given by

Gi(z) =

∫

Vi(z)

wρ(w) dw

∫

Vi(z)

ρ(w) dw

where
z = (z1, z2, . . . , zK)T

and
Vi(z) = Voronoi regions for zi

• Let the mapping G(·) : RKN → RKN be defined by

G = (G1, G2, . . . , GK)T



• A centroidal Voronoi tessellation is a fixed point of the Lloyd map G

• Not all fixed points of the Lloyd map correspond to minimizers

Two possible moves from the saddle point of the Voronoi tessellations of a
square. The left move increases the energy while the right move decreases
the energy.



Consider the fixed point iteration

z(n+1) = G(z(n))

i.e., for i = 1, . . . , K,

z
(n+1)
i =

∫

Vi(z(n))

wρ(w) dw

∫

Vi(z(n))

ρ(w) dw

• A fixed point exists for any density function

G(z) : D ⊂ RKN → D and is continuous

• The iteration converges for any density function

E(z(n+1)) < E(z(n)) and E(z(n)) ≥ 0



• The convergence rate is, in general, no better than linear, i.e.

|z(n+1) − z| ≤ α|z(n) − z| , 0 < α < 1

look at N = 1 and ρ(w) = 1

• With certain restrictions on the density function, convergence is linear

spectral radius(G′) < 1 at the fixed point

• Results hold for functionals of the form

N∑

i=1

∫

Vi

ρ(w)|w − zi|p dw

and
N∑

i=1

∑

wj∈Vi

ρ(wj)|wj − zi|p



Details may be found in:
Qiang Du, Vance Faber, and Max Gunzburger; Centroidal Voronoi tes-
sellations: Applications and algorithms; SIAM Review 41 1999, 637–
676.

Some of these results about Lloyd’s method were previously obtained by
Gray, Kieffer, and Linde (1980) (and others)

Convergence results for McQueen’s random sampling algorithm were ob-
tained by MacQueen (1967)



NEW ALGORITHMS FOR DETERMINING
CENTROIDAL VORONOI TESSELLATIONS

Algorithm 1 McQueen’s method (of course, this is not new)

0. Choose an initial set of k points {zi}k
i=1, e.g., by using a Monte Carlo

method; set ji = 1 for i = 1, . . . , k;

1. determine a point y in Ω at random, according to the probability den-
sity function ρ(x);

2. find a zi∗ among {zi}k
i=1 that is the closest to y;

3. set
zi∗ ← ji∗zi∗ + y

ji∗ + 1
and ji∗ ← ji∗ + 1

the new zi∗ , along with the unchanged {zj}, j �= i∗, form the new set
of points {zi}k

i=1;

4. if this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.



Generating sampling points for nonuniform densitities
Before continuing, a few words about how we generate sampling points
from a given density function ρ(x)

• Classical procedure in 1D
Given the interval [a, b] and the density function ρ(x) defined on
[a, b], a random point x in [a, b] is determined as follows:

1. sample a random point X with constant density in [0,1];

2. solve for x which satisfies

∫ x

a

ρ(s) d s

∫ b

a

ρ(s) d s

= X

Very expensive due to the need to do repeated numerical integrations



• The rejection method in 1D (a completely probabilistic procedure)
Given the interval [a, b] and the density function ρ(x) defined on
[a, b], set ρ̂ = maxx∈[a,b] ρ(x).

Then, a random point x in [a, b] is determined as follows:

1. sample a random point X ′ with constant density in [0,1];

2. set X = a + (b − a)X ′;

3. sample a random point U with constant density in [0,1];

4. if U < ρ(X)/ρ̂, let x = X; otherwise, return to step 1.

Although we may need to call the random number generator many
times (the number of times depend on the density function ρ(x)), the
total computation time is in general trivial compared to the classical
procedure using numerical integrations.

The two procedures are theorticaly equivalent when applied to a con-
stant density function.



• The rejection method in 2D
Given the domain Ω and the density function ρ(x, y) defined on
Ω, set ρ̂ = max(x,y)∈Ω ρ(x, y). Choose a, b, c, and d such that
Ω ⊂ [a, b] × [c, d]. Set ρ(x, y) = 0 in ([a, b] × [c, d])\Ω.

Then, a random point (x, y) ∈ Ω is determined as follows:

1. sample a random point X ′ with constant density in [0,1] and set
X = a + (b − a)X ′;

2. sample a random point Y ′ with constant density in [0,1] and set
Y = c + (d − c)Y ′;

3. sample a random point U with constant density in [0,1];

4. if U < ρ(X, Y )/ρ̂, set (x, y) = (X, Y ); otherwise, return to step 1.



TABLE 1



TABLE 2



TABLE 3



Algorithm 2 Lloyd’s method (also not new)

0. Select an initial set of k points {zi}k
i=1, e.g., by using a Monte Carlo

method;

1. construct the Voronoi sets {Vi}k
i=1 associated with {zi}k

i=1;

2. determine the mass centroids of the Voronoi sets {Vi}k
i=1; these cen-

troids form the new set of points {zi}k
i=1;

3. if this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.

• Each McQueen iteration is cheap, but lots of them are needed.

• Lloyd’s method requires fewer iterations, but each iteration is expen-
sive



Algorithm 3 A probabilistic Lloyd’s/generalized McQueen’s method

0. Choose a positive integer q and positive constants {αi, βi}2
i=1 such that

α1 +α2 = 1, β1 +β2 = 1; choose an initial set of k points {zi}k
i=1, e.g.,

by using a Monte Carlo method; set ji = 1 for i = 1, . . . , k;

1. choose q points {yr}q
r=1 in Ω at random, according to the probability

density function ρ(x);

2. for r = 1, . . . , q, determine a zr∗ among {zi}k
i=1 that is closest to yr;

3. for i = 1, . . . , k, gather together in the set Wi all sampling points yr

closest to zi (i.e., in the Voronoi region of zi); if the set Wi is empty,
do nothing; otherwise, compute the average y∗

i of the set Wi and set

z∗i ← (α1ji + β1)zi + (α2ji + β2)y∗
i

ji + 1
and ji ← ji + 1;

the new set of {z∗i }, along with the unchanged {zj}, j �= i, form the
new set of points {zi}k

i=1;

4. if this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.



• For q = 1, α1 = β2 = 1, and α2 = β1 = 0, this method reduces to the
McQueen’s method.

• If α1 = β1 = 0, α2 = β2 = 1, then z∗i = y∗
i , the average of the points

in the set Wi;
– then, since the points in Wi are randomly selected points in the

Voronoi region Vi correspoding to zi, we one may view z∗i as an
probabilistic approximation to the centroid of Vi

– thus, for α1 = β1 = 0, α2 = β2 = 1, this method is a probabilistic
version of Lloyd’s method;

– the larger q is, the better the centroid approximations.

• Other choices for {αi, βi}2
i=1 define other methods.

• For all three density functions, Algorithm 3 performs much better than
McQueen’s method; specifically, for the same number of total random
sampling points generated or for the same CPU time, Algorithm 3
gives a larger reduction in the energy
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TABLE 8



TABLE 9



Algorithm 4 A parallel McQueen’s method

0. Suppose we have p processors with rank = 0, 1, . . . , p− 1 respectively,
let m =

[k
p
]
, s =

[q
p
]
; then, each processor independently chooses its

own initial set of m points {zrank
i }m

i=1, e.g., by using a Monte Carlo
method; set jrank

i = 1 for i = 1, . . . , m;

1. processor 0 selects a y ∈ Ω at random, according to the probability
density function ρ(x) and then broadcasts it to all other processors;

2. each processor finds that zrank which is the closest to y in {zrank
i }m

i=1

respectively; determine the corresponding distance drank;

3. compare them by communication to get the set of drank∗
, where drank∗

is the minimum among the drank of all processors;

4. on each processor, if drank �= drank∗
, do nothing; otherwise, set

zrank∗ ← jrank∗
zrank∗

+ y

jrank∗
+ 1

and jrank∗ ← jrank∗
+ 1;



this new zrank∗
, along with the unchanged zrank

i , form the new set of
points {zrank

i }m
i=1;

5. if this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.

This parallel version of McQueen’s method is not efficient with respect to
communications between procesors



Algorithm 5 A modified parallel McQueen’s method

0. Suppose we have p processors with rank = 0, 1, . . . , p−1, respectively;
choose a positive integer s; let m =

[k
p
]
; then, each processor indepen-

dently chooses its own initial set of m points {zrank
i }m

i=1, e.g., by using
a Monte Carlo method; set jrank

i = 1 for i = 1, . . . , m;

1. each processor independently selects s points in Ω at random, according
to the probability density function ρ(x); combine them together by
communication to form a set of sampling points {yr}q

r=1 (q = sp),
keeping a copy on each processor;

2. on each processor, for r = 1, . . . , q, find a zrank
i∗,r among {zrank

i }m
i=1 that

is closest to yr; determine the corresponding distance drank
i∗,r ;

3. compare them by communication to obtain the set {drank∗
i∗,r }q

r=1 where
drank∗

i∗,r is the minimum among drank
i∗,r on all processors.



4. for r = 1, . . . , q, on each processor, if drank
i∗,r �= drank∗

i∗,r , do nothing;
otherwise, set

zrank∗

r∗ ← jrank∗

r∗ zrank∗

r∗ + yr

jrank∗

r∗ + 1
and jrank∗

r∗ ← jrank∗

r∗ + 1;

this new set of {zrank∗
r∗ }q

r=1, along with the unchanged zrank
i , form the

new set of points {zrank
i }m

i=1;

5. If this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.
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Algorithm 6 Parallel version of of algorithm 3

0. Suppose we have p processors with rank = 0, 1, . . . , p−1, respectively;
choose a positive integer s and positive constants {αi, βi}2

i=1 such that
α1 + α2 = 1,β1 + β2 = 1; let m =

[k
p
]
; then, each processor indepen-

dently chooses its own initial set of m points {zrank
i }m

i=1, e.g., by using
a Monte Carlo method;

1. combine them together by communication to form a complete initial
set of k points {zi}k

i=1, keeping a copy on each processor; set ji = 1
for i = 1, . . . , k;

2. each processor selects its own set ofs points {yrank
r }s

r=1 in Ω at random
according to the probability density function ρ(x);

3. on each processor, for r = 1, . . . , s, find a zrank
i∗,r among {zi}k

i=1 that is
closest to yrank

r ;



4. on each processor, for each generator zi, gather together all sampling
points yrank

r closest to zi, (i.e., in the Voronoi region of zi) in the set
W rank

i , and denote the size of W rank
i by wrank

i ;

5. if the set W rank
i is empty, set urank

i = 0; otherwise, determine the sum
urank

i of the members of the set W rank
i ;

6. by communication, obtain the set {ui}k
i=1, where ui is the sum of urank

i

over all processors, and the corresponding set {wi}k
i=1, where wi is the

sum of wrank
i over all processors;

7. on each processor, for i = 1, . . . , k, if (wi �= 0) and (rank ∗ m < i <
(rank + 1) ∗ m + 1), set

z∗i ← (α1ji + β1)zi + (α2ji + β2)y∗
i

ji + 1
and ji ← ji + 1;

otherwise, do nothing; by communication, this new set of z∗i , along
with the unchanged zi, form the new set of points {zi}k

i=1;

8. if this new set of points meets some convergence criterion, terminate;
otherwise, return to step 1.
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Two-dimensional Voronoi diagrams for 256 generators in [−1, 1]2 found by
the deterministic Lloyd’s method; left: ρ(x, y) = 1; middle: ρ(x, y) =
e−10(x2+y2); right: ρ(x, y) = e−20(x2+y2) + 0.05 sin2(πx) sin2(πy).

Details may be found in:
Qiang Du, Max Gunzburger, and Lili Ju; Probablistic methods for
centroidal Voronoi tessellations or k-means clustering and their parallel
implementation; to appear.



APPLICATION TO GRID GENERATION

• We are currently exploring the use of centroidal Voronoi tessellations
(more precisely, their associated dual Delaunay grids) for the numerical
solution of partial differential equations

• The density function used to determine the distribution of the Voronoi
generators is to be related to a posteriori error estimators

• Anisotropic and/or tensor valued density functions could possibly be
used to obtain grids with special features, e.g., large aspect ratio tri-
angles in boundary layers

• There is reason to believe that grids generated from centroidal Voronoi
tessellations have desirable features and avoid undesirable features such
as slivers in three dimensions



Centroidal Voronoi-Delaunay triangulations (CVDT)

• We first illustrate the Delaunay triangulations corresponding to Voronoi
tessellations determined by random selection of the generating points
and to centroidal Voronoi tessellations

• We use a constant density function and the density function

exp(−2(x + 1)2 − 2(y + 1)2))
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2-D Delaunay triangulations for random Voronoi diagrams (left) and CVT’s
(right) for a constant density
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2-D Delaunay triangulations for random Voronoi diagrams (left) and CVT’s
(right) for the density exp(−2(x + 1)2 − 2(y + 1)2))



Numerical solution of PDE’s

• We next illustrate the use of CVDT’s for the solution of partial dif-
ferential equations by considering the Poisson equation with Dirichlet
boundary conditions in a unit square domain

• Discretization is effected using standard continuous, piecewise quadratic
finite element spaces

• A “uniform” CV grid is one generated using a constant density function

• The uniform Cartesian grid illustrated has 98 triangles, 225 nodes, and
169 unknowns; the “uniform” CVDT has 96 triangles, 223 nodes, and
163 unknowns



Uniform Cartesian (on the left) and centroidal Voronoi (on the right) grids



TABLE 14



• We next use the exact solution

u(x, y) =
1

1 + 40x2 + 40y2

which decays quickly away from the origin

• For Cartesian grids, refinement in each coordinate direction is effected
by monomial mappings, i.e., the interval [0, 1] is mapped into itself
using the mapping xs which, for s > 1, has the effect of piling up
points near the left end of the interval

– we use the values s = 1, 2, 3, and 4

• The 8 × 8 Cartesian grids have 225 nodes, 98 triangles, and 169 un-
knowns; the 16 × 16 grids have 961 nodes, 450 triangles, and 841 un-
knowns



8× 8 Cartesian grids increasingly refined near the origin: s = 2, 3, 4 (left to
right)



16× 16 Cartesian grids increasingly refined near the origin: s = 1, 2, 3 (left
to right)
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• If the number of grid points remains fixed, then refinement near the
origin (with the corresponding coarsening away from the origin) at first
yields better approximations

– compare the s = 1 and s = 2 cases

• However, more refinement, e.g., the s = 3 and s = 4 cases, near the
origin causes sufficient coarsening away form the origin so that the
overall error increases

• Of course, adding grid points for the same refinement exponent reduces
the error

– the 8 × 8 and 16 × 16 certainly illustrate the quadratic and cu-
bic convergence of the H1-seminorm and L2-norm of the error,
respectively



• For CVDT grids, refinement is effected by appropriately choosing the
density function

• Ultimately, we would like to relate the density function to an a poste-
riori error estimate for the solution

• Here, we merely choose a series of density functions to see their effect
on the accuracy of the solution

• Since a priori error estimates for quadratic finite element approxima-
tions involve local norms of the third derivatives of the exact solution,
we choose the density functions to be proportional to powers of these
local third derivative,

ρ(x, y) =

{
3∑

i=0

∣
∣∂i

x∂3−i
y u(x, y)

∣
∣2

}k/2

.

• The number of triangles for grids corresponding to 64 Voronoi gen-
erators is roughly the same as that for an 8 × 8 Cartesian grid; the
number of triangles for grids having 256 Voronoi generators is roughly
the same as for a 16 × 16 Cartesian grid



CVDT grids having roughly 100 triangles and increasing refinement near
the origin; k = 0.5, 1.0, 1.5 (left to right).



CVDT grids having roughly 450 triangles and increasing refinement near
the origin; k = 0.25, 0.50, 0.75 (left to right.)
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• Refinement near the origin reduces the error from that of a uniform
grid

• However, with a fixed number of Voronoi generators, too much refine-
ment near the origin causes excessive coarsening away from the origin
and results in increases in the error

• To achieve further reduction in the error, refinement near the origin
should be accompanied by the addition of Voronoi generators, i.e.,
more triangles.

• We certainly see that having more points greatly reduces the error
– as was the case for Cartesian grids, we see, for CVDT grids, the

expected quadratic and cubic convergence of the H1-seminorm
and L2-norm of the error, respectively

Details may be found in:
Qiang Du and Max Gunzburger; Grid generation and optimization
based on centroidal Voronoi tessellations; to appear.



APPLICATION TO MESHLESS COMPUTING

• Meshless computing refers to numerical methods which do not involve
meshes

• They can be used, e.g., for approximating
– multivariate functions
– multiple integrals
– solutions of partial differential equations

• The hope is that since meshes are not required, problems posed on
complicated regions can be treated more easily

• Of course, meshless computing is nothing new, e.g., recall
– Monte Carlo methods for numerical integration and the numerical

solution of PDEs
– particle methods for PDEs



• A typical efficient meshless computing method requires
1. the selection of a set of points
2. the selection of a support region associated with each point
3. the selection of a basis function associated with each point having

support over the region selected in step 2

• The implementation of a typical meshless method also requires
4. knowledge about the overlap of the support regions associated

with distinct basis functions
5. the application of a discretization method, e.g., in the PDE set-

ting, one can use any of
– Galerkin method
– collocation method
– mixed method
– least squares method

while in the function approximation setting, one can use, among
many choices, one of

– interpolation
– least squares approximation



• One can also analyze meshless methods
6. derive error estimates

• A great deal of attention, especially in the mathematical literature,
has been devoted to steps 3 and 6

– lots of papers on deriving error estimates for specific choices of
basis functions, assuming the point destribution is given and the
support radii and the overlap information are known or at least
are easily determined

• In fact, many papers consider one-dimensional problems or uniform
point distributions in higher dimensions

• Other papers determine support radii and overlap information by using
graph theoretic ideas

– since graph = mesh, these papers do not address truly meshless
methods

• Much less effort has been devoted to efficient determination, in a truly
meshless way, of optimal point distributions, support radii, and overlap
information



Centroidal Voronoi point selection

• We select the points to be the generators of a centroidal Voronoi tes-
sellation corresponding to a density function ρ(x)

• We use Algorithm 6 to determine the points in a meshless manner

Halton sequences point selection

• We will compare centroidal Voronoi point sets to a popular way of
generating uniformly distributed points based on Halton sequences

– Given a prime number q, any n ∈ IN can be represented as n =
∑

i niq
i

– We can then define a mapping Hq from IN to [0, 1] by Hq(n) =
∑

i ni/qj+1

– Then, the (q, r) Halton-sequence of k points in two dimensions is de-
fined as {Hq(n), Hr(n)}k

n=1

• Halton-sequences are pseudo Monte Carlo sequences



Support radii

• Having chosen a set of k points {xi}k
i=1 in the domain Ω ⊂ IRN , we

want to now choose, for each point xi, an associated radius hi

• For each point xi we then define the sphere centered at xi and having
radius hi

Si = { y ∈ IRN : ‖y − xi‖ ≤ hi }
• Other patches associated with points can be used, e.g., ellipsoids, rect-

angles, or bricks

• The spheres (or other patches) associated with each point will deter-
mine the support regions for basis functions associated with the points

• The selection of the radii {hi}k
i=1 should meet the two requirements:

– the union of the spheres {Si}k
i=1 covers Ω

Ω ∈ ∪k
i=1Si

– if the intersection Si ∩ Sj of two distinct spheres is not empty, it
should not be “too small” nor “too large”



Algorithm 7– (adapted from C. Duarte and J. Oden and
also M. Griebel and M. Schweitzer)

Given a region Ω, a density function ρ(x) defined for all x ∈ Ω, and a set
of points {xi}k

i=1 in Ω;

0. choose a positive integer m and a constant γ > 1 and set hi = 0 for all
i = 1, 2, . . . , k;

1. select a set of points {ξi}m
i=1 which are the nodes of a coarse meshing

of Ω; let P = {ξi}m
i=1 ∪ {xi}k

i=1;

2. for all y ∈ P :
• evaluate the set Sy,R of all points xi that fall within a searching

sphere BR centered at y and having radius is equal to R; if Sy,R =
∅ or, in case of y ∈ {xi}k

i=1, if Sy,R = {y}, then increase R and
try again;

• compute the distances dy
i = ||y−xi|| for all xi ∈ Sy,R with xi �= y

• determine the point xi∗ with dy
i∗ = mini dy

i

• if hi∗ < dy
i∗ , then increase hi∗ such that y ∈ Si holds;

3. for all i = 1, 2, . . . , k, set hi = γhi.



The ideas behind Algorithm 7 areas follows.

• The additional mesh nodes {ξi}m
i=1 are used as pseudo-points to guar-

antee that the patches {Si}k
i=1 cover the entire domain Ω

• The parameter γ is motivated by the requirement of having not too
small nor too large intersection of patches

– γ controls the density of nonzeros in the stiffness matrix; if γ
is “too large,” then the stiffness matrix will have lots of nozero
entries; if γ is “too small,” then the approximation capabilities of
the associated functions could be compromised

• An efficient way to evaluate the sets Sy,R (which is a crucial step in
Algorithm 7) has been given by J. Swegle, S. Attaway, F. Mello, and
D. Hicks



• Algorithm 7 has some defficiencies and is not well suited for point sets
{xi}k

i=1 that are generators of a centroidal Voronoi tessellation

– it employs a coarse mesh

– the points {xi}k
i=1 are determined according to a density function

and generally they are not uniformly distributed; as a result, the
coarse set of points {ξi}m

i=1 often has to be refined so that the
sets Si are not too often trivial; this may not be easy and may, in
Algorithm 7, involve mesh generation

– Algorithm 7 does not take advantage of any of the many special
properties of centroidal Voronoi tessellations, e.g., each point in
the set {xi}k

i=1 has a associated Voronoi region that is generally
a polyhedra

• We thus propose a new (totally meshless) algorithm for determining
support radii



Algorithm 8

Given a region Ω, a density function ρ(x) defined for all x ∈ Ω, and a set
of points {xi}k

i=1 in Ω;

0. choose positive integers m1 and m2 and a constant γ > 1 and set
hi = 0 for all i = 1, 2, . . . , k;

1. select a set of m1 points {ξi}m1
i=1 uniformily distributed over Ω by,

e.g., a Monte Carlo method; select another set of m2 points {ηj}m2
j=1

distibuted over Ω according to the density function ρ(x), e.g., again by
a Monte Carlo method; let P = {ξi}m1

i=1 ∪ {ηj}m2
j=1;

2. for all y ∈ P:
• find a xi∗ in {xi}k

i=1 which is closest to y;
• compute the distance di∗ = ‖y − xi∗‖;
• if hi∗ < di∗ , then set hi∗ = di∗ ;

3. set hi = γhi for all i = 1, 2, . . . , k.



There are a number of ideas behind Algorithm 8.

• The coarse mesh nodes are replaced by a set {ξi}m1
i=1 of uniformly dis-

tributed random points

• The set of points {ηi}m2
i=1 generated by a Monte Carlo method associ-

ated with the density fuction ρ(x) is used to

– to refine the pseudo-points set {ξi}m1
i=1

– to find approximations, in the form of discrete point sets, of the
Voronoi regions corresponding to {xi}k

i=1

– for all xi, to find an approximation to the maximum distance
between the generator xi and the farthest pseudo-point in its as-
sociated region

• If the number of the pseudo-points is large enough, then the sphere
with the maximum distance should cover the corresponding Voronoi
region for each xi

– thus, the union of all spheres should cover the domain Ω



– since the Voronoi regions are in general polyhedra, the covering is
optimal in some sense

• The parameter γ is used for the same reasons as for Algorithm 7 and,
since we only have a probabilistic approximation to the maximum dis-
tances within patches, to guarantee the complete covering of the do-
main Ω
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Sets of 128 uniformly distributed
points in the square and the
corresponding sphere coverings;

left - Monte Carlo
point distribution;

right - centroidal Voronoi
point distribution;

middle - Algorithm 7;
bottom - Algorithm 8.
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• Some meshless methods for PDE’s require that each point in Ω be
covered several times by the support spheres associated with the point
set.

• The following algorithm guarantees (in a probabilistic sense) that each
point in Ω is covered p-times, where p is an input integer.



Algorithm 9

Given a region Ω, a density function ρ(x) defined for all x ∈ Ω, an integer
p > 1, and a set of points {xi}k

i=1 in Ω;

0. choose positive integers m1 and m2 and a constant γ > 1 and set
hi = 0 for all i = 1, 2, . . . , k;

1. select a set of m1 points {ξi}m1
i=1 uniformily distributed over Ω by,

e.g., a Monte Carlo method; select another set of m2 points {ηj}m2
j=1

distibuted over Ω according to the density function ρ(x), e.g., again by
a Monte Carlo method; let Q = {ξi}m1

i=1 ∪ {ηj}m2
j=1 ∪ {xi}k

i=1;

2. For all y ∈ Q:
• determine the set Sy,R of all points xi that fall within a searching

square BR which is centered at y and whose side length is equal
to 2R; if card(Sy,R) < p, then increase R and try again; denote
the points in the set Sy,R by xk(j), j = 1, 2, . . . , card(Sy,R);

• determine the distance dk(j) = ‖y−xk(j)‖ for all xk(j) ∈ Sy,R, i.e.,
for j = 1, 2, . . . , card(Sy,R);



• sort the set {dk(j)}card(Sy,R)
j=1 in increasing order;

• for j = 1, 2, . . . , p, if hk(j) < dk(j), then set hk(j) = dk(j);

3. set hi = γhi for all i = 1, 2, . . . , k.

• Each xi and all of Ω is probabilistically guaranteed to be covered p
times.

• An efficient implementation of the evaluation of the set Sy,R is given
by J. Swegle, S. Attaway, F. Mello, and D. Hicks.

• The overall complexity of Algorithm 9 is O(card(Q) log(n)).

• Note that P = {ξi}m1
i=1∪{ηj}m2

j=1 in Algorithm 8 because xi is the center
of the patch, i.e., we already have xi in its associated patch for each i,
but {xi}n

i=1 is added to Q in Algorithm 9 since now p > 1 and each xi

also has to be covered by at least p − 1 other support regions.



(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

(a3)

(b3)

(c3)

The sets of 128 points in a square (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (with p = 2) (right) for the Monte
Carlo (top), (2,3) Halton sequence (middle), and centroidal Voronoi tessellation
(bottom) point selection methods for a uniform density function.
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The sets of 128 points in a circle (left) and the associated spherical patches
determined by Algorithms 8(middle) and 9 (with p = 2) (right) for the Monte
Carlo (top), (2,3) Halton sequence (middle), and centroidal Voronoi tessellation
(bottom) point selection methods for a uniform density function.
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The sets of 128 points in a square (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo (top) and
centroidal Voronoi tessellation (bottom) point selection methods for the density

function e−3(x2+y2).
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(b3)

The sets of 128 points in a square (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo (top) and
centroidal Voronoi tessellation (bottom) point selection methods for the density

function e−(2+x+y).
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(b3)

The sets of 128 points in a square (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo (top) and
centroidal Voronoi tessellation (bottom) point selection methods for the density

function e−(1+x).
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(a3)

(b3)

The sets of 128 points in a circle (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo (top) and
centroidal Voronoi tessellation (bottom) point selection methods for the density

function e−4(x2+y2).
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(b3)

The sets of 128 points in a circle (left) and the associated spherical patches
determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo (top) and
centroidal Voronoi tessellation (bottom) point selection methods for the density

function e−3(1−x2−y2).
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The sets of 128 points in a non-convex domain (left) and the associated spherical
patches determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo
(top) and centroidal Voronoi tessellation (bottom) point selection methods for a
uniform density function.
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(b3)

The sets of 128 points in a non-convex domain (left) and the associated spherical
patches determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo
(top) and centroidal Voronoi tessellation (bottom) point selection methods for a
uniform density function.
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The sets of 128 points in a non-convex domain (left) and the associated spherical
patches determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo
(top) and centroidal Voronoi tessellation (bottom) point selection methods for a
uniform density function.
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The sets of 128 points in a non-convex domain (left) and the associated spherical
patches determined by Algorithms 8 (middle) and 9 (right) for the Monte Carlo
(top) and centroidal Voronoi tessellation (bottom) point selection methods for a
uniform density function.
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Anisotropic point distributions

• One very important and useful feature of centroidal Voronoi tessel-
lations is that for any smooth density function, the the centroidal
Voronoi point distribution is locally uniform and isotropic, e.g., in two
dimensions, as the number of generators tends to infinity, locally the
centroidal Voronoi regions become congruent regular hexagons.

• In grid generation, this feature may be useful for avoiding mishaped
regions, e.g., slivers, as one refines a grid

• On the other hand, one often needs anisotropic grid distribution, e.g.,
in boundary layers or near interfaces

• We illustrate with some examples how the methodologies we have been
looking at can be adapted to generate anisotropic point distributions
and thus anisotropic grids



• A central task in our probabilistic point generation algorithms is to
determine which element of the set of current generators {zi}K

i=1 is
closest to a sampled point y, i.e., to find and index j such that

‖zj − y‖ ≤ ‖zj − y‖ ∀ j = 1, . . . , K ,

where ‖ · ‖ denotes the Euclidean distance, e.g., in two dimensions

‖z − y‖2 = (z1 − y1)2 + (z2 − y2)2

• If y is closest to the generator zj , then y is assigned to that generator

• Anistropic point distributions are generated by using instead

µ1(y1, y2)(z1 − y1)2 + µ2(y1, y2)(z2 − y2)2 ,

where µ1(·, ·) and µ2(·, ·) are postive functions, when we determine the
assigment of a sample point y to a generator



• We illustrate with some examples for which we assume that we want
a point distribution that is more closely packed normal to a boundary
than tangential to it

• We look at two cases:

– the point distribution is anisotropic and uniform in the sense that
the anisotropy is independent of point location

– the point distribution is anisotropic and nouniform; in particu-
lar, near one side of a square the points are more closely packed
normally than they are tangentially, but away from that side the
point distribution is uniform
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Anisotropic distributions of 64 points in the square [−1, 1]2
(a) 256(z1 − y1)2 + (z2 − y2)2 (b) 20(z1 − y1)2 + (z2 − y2)2

(c)
(
1 + 20e−2(y1+1)2

)
(z1 − y1)2 + (z2 − y2)2

(d)
(
1 + 100e−2(y1+1)2

)
(z1 − y1)2 + (z2 − y2)2
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Anisotropic distributions of 128 points in the square [−1, 1]2
(a) 80(z1 − y1)2 + (z2 − y2)2 (b) 5(z1 − y1)2 + (z2 − y2)2

(c)
(
1 + 10e−2(y1+1)2

)
(z1 − y1)2 + (z2 − y2)2

(d)
(
1 + 150e−2(y1+1)2

)
(z1 − y1)2 + (z2 − y2)2



Centroidal Voronoi tessellations on surfaces

• In many applications, point distributions on surfaces are needed

• In order to generalize CVT’s to surfaces, two main ingredients are
needed

– the generalization of the concept of Voronoi regions to surfaces
– the generalization of the concept of mass centroids to surfaces

• There are a number of ways to do each of these
– we choose generalizations which are “easy” to use

• We consider a compact and continuous surface S ⊂ IRN defined by

S = {x ∈ IRN | g0(x) = 0 and gj(x) ≤ 0 for j = 1, . . . , m}



• Given a set of points {zi}k
i=1 ∈ S, we define their corresponding

Voronoi regions on S by

Vi = {x ∈ S | |x − zi| < |x − zj | for j = 1, . . . , k, j �= i }
for i = 1, . . . , k

• For each Voronoi region Vi, we call zc
i the constrained mass centroid of

Vi on S if zc
i is a solution of the following problem:

min
z∈S

Fi(z) , where Fi(z) =
∫

Vi

ρ(x)|x − z|2 dx

• We call a Voronoi tessellation a constrained centroidal Voronoi tes-
sellation (CCVT) if and only if the points {zi}k

i=1 which serve as the
generators of the Voronoi regions {Vi}k

i=1 are also the constrained mass
centroids of those regions

• Note that the definition of CCVT implies that
– the generators are constrained to the surfaces
– but distances are still the standard Euclidean distances, not the

more general geodesic distances



• Due to the following result, the constrained mass centroid is “easy” to
construct by normal projection

For each i = 1, · · · , k, the constrained mass centroid of Vi exists.
Furthermore, if zc

i is a constrained centroid of Vi, then z∗i − zc
i is

a vector normal to the surface S at zc
i , where z∗i is the ordinary

mass centroid of Vi, i.e. zc
i is the projection of z∗i onto S along

the normal direction at zc
i .

• Constrained CVT’s defined in the manner above enjoy, in much the
same way as do CVT’s, an optimization property

Given a compact surface S ⊂ IRN , a positive integer k, and a
positive and measurable density function ρ(·) defined on S. Let
{zi}k

i=1 denote any set of k points belonging to S and let {Vi}k
i=1

denote any tessellation of S into k regions. Define the energy
functional or the distortion value for {(zi, Vi)}k

i=1 by

F({(zi, Vi)}k
i=1) =

k∑

i=1

∫

x∈Vi

ρ(x)|x − zi|2 dx .

A necessary condition for F to be minimized is that the Vi’s are
the Voronoi regions corresponding to the zi’s and, simultaneously,



the zi’s are the constrained centroids of the corresponding Vi’s, i.e.
{(zi, Vi)}k

i=1 is a constrained centroidal Voronoi tessellation of S.

• Algorithms (deterministic or probabilistic, serial or parallel) for CVT’s
may be then easily generalized to the case of CCVT’s

• We illustrate the use of CCVT’s on three surfaces
– the sphere
– the developable surface

S =
{

(x, y, z) | z = −x2, |x| ≤ 1
2
, |y| ≤ 1

2

}

– the torus

S =
{

(x, y, z) | (x − x

r
)2 + (y − y

r
)2 + z2 = 0.32, r =

√
x2 + y2

}

• We illustrate the quality of CCVT’s by examining their use for inter-
polation and quadrature on the sphere
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Voronoi diagrams for 256 generators on the surface of the unit sphere.
top: Monte Carlo (random sampling); bottom: constrained CVT;
left: ρ(x, y, z) = 1; middle: ρ(x, y, z) = e−6.0z2

; right: ρ(x, y, z) =
e−3.0(1−z)2
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Voronoi diagrams for 256 generators on a developable surface.
top: Monte Carlo (random sampling); bottom: constrained CVT;
left: ρ(x, y, z) = 1; right: ρ(x, y, z) = e−20.0x2



Voronoi diagrams for 256 generators on a torus.
top: Monte Carlo (random sampling); bottom: constrained CVT;
left: ρ(x, y, z) = 1; right: ρ(x, y, z) = e−5.0|y|



• The mesh norm h of a set of points {xi}k
i=1 on the unit sphere S2 is

defined by
h = max

x∈S2
min

i=1,...,k
cos−1(xT xi)

• Of course, it is topologically impossible to tessellate the surface of a
sphere exactly uniformly

– however, that it is clear that a “uniform” tessellation of the surface
of a sphere into hexagonal-like regions would result in h

√
k ≈√

8
√

3π/9 ≈ 2.2 when k is large

• Thus, we can use h as an indicator of the “uniformity” of point distri-
butions on the sphere

• CCVT’s on the sphere achieve very good uniformity

• This implies that CCVT point distributions are useful for piecewise
polynomial interpolation on the sphere and for finite element dis-
cretizations of partial differential equations posed on a sphere
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• Consider global polynomial interpolation on the sphere S2

– note that if the degree of interpolating polynomial is n, then kn =
(n + 1)2 interpolating points {xi}kn

i=1 are needed
– the “goodness” of a set of interpolation points can be characterized

by the uniform norm of the interpolation operator

• Also consider interpolatory quadrature on the surface of the sphere S2

based on the interpolating polynomial of degree n
– one would like all the quadrature weights to be positive and to be

as uniform as posssible

• CCVT point sets yield high-quality quadrature rules, but there are
better choices of interpolation points known

– however, the better choices are much more expensive to compute
– CCVT interpolation points, although not the best, are perfectly

adequate for applications
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• One important observation is that all algorithms discussed locate local
minimizers of the energy functional

– this may account for the lack of monotonicity in the plots

– moreover, it is possible that if global minimizers were located, that
the performance of CCVT point sets for global interpolation on
the sphere would be as good as that of the best point sets known



Current work

• Connecting the density function used for generating the points with a
priori and a posteriori error estimates

– then adaptive point generation algorithms are easily defined

• Further explorations of the generation of anisotropic point distribu-
tions

• Further explorations of centroidal Voronoi tessellations under constraints

• Developing algorithms for determining global minimizers of the energy
functional associated with centroidal Voronoi tessellations

• Using our point distributions to solve PDE’s
– grid generation
– meshless methods
– adaptive point placement

• Using centroidal Voronoi tessellations for model reduction

• More analyses


