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Abstract

Nearest neighbor searching is one of the most frequently occurring
problems in computational geometry. Many classes of problems include
nearest neighbor searching, and often one approach to finding the nearest
neighbor is more suitable for one class of problems than for another. This
paper will present six algorithms that solve the nearest neighbor problem
with uniformly distributed points in a two dimensional square region,
and compare them using the following metrics: time complexity, space
complexity, accuracy, ease of implementation, and extensibility to other
dimensions and distribution functions.
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1 Introduction

The nearest neighbor problem for two dimensions is defined as follows: given a
set of points  in the plane, and a point « also in the plane, we are interested in
which point in € is closest to a. Any distance metric can be used in computing
the nearest neighbor, but for simplicity this paper will assume Euclidean dis-
tance. It 1s easy to see how this problem can be extended to higher dimensions.
The goal of this paper is to serve as a guide to anyone who is interested in
implementing a nearest neighbor algorithm.

Section 2 defines and briefly discusses the notion of time and space complex-
ity. The author presents both big-oh notation and probabilistic big-oh notation,
and mentions how for the purposes of this paper it is sometimes more relevant
to discuss probabilistic big-oh notation.

Many problems in computational geometry involve computing the nearest
neighbor, such as, for example, the construction of centroidal Voronoi tessella-
tions. Section 3 discusses how the author came across the problem of computing
the nearest neighbor, and how the computationally intensive nature of the prob-
lem demanded a more efficient solution than the straightforward approach.

Section 4 presents the straightforward algorithm for solving the nearest
neighbor problem, and discusses its performance with respect to each of the
metrics defined in the abstract.

Section 5 describes the spiral method for computing the nearest neighbor
proposed by Bentley, Weide, and Yao [1]. The algorithm’s performance is once
again evaluated, and compared with the performance of the straightforward
algorithm.

Section 6 discusses how the ideas proposed by Bentley, Weide, and Yao and
the complexities involved in implementing the spiral method of Section 5 lead the
author and John Burkardt, professor of mathematics at lowa State University,
to develop the grid-bin method. The performance of the new algorithm and its
relation to the performance of the previous two algorithms is also addressed.

Section 7 discusses how problems with the time complexity of the grid-bin
method lead the author and Professor Burkardt to improve upon the algorithm,
and develop a similar algorithm that uses more efficient means of preprocessing
by “sweeping” across the grid. The advantages and disadvantages of the updated
grid-bin method are discussed, along with the algorithm’s performance with
respect to the metrics.

Section 8 presents the notion of the Delaunay triangulation and describes the
Delaunay triangle neighbor search. The new method is evaluated and compared
with the previous algorithms.

Section 9 expands upon the use of the Delaunay triangulation and presents
the Delaunay node neighbor search. The two algorithms based on the Delaunay
triangulation are compared, and the new algorithm’s performance is evaluated.

Section 10 reviews the topics discussed in this paper and qualitatively com-
pares each of the six algorithms presented, giving suggestions as to when each
algorithm is appropriate. The metrics themselves and how they can be applied
to other approaches to the nearest neighbor problem are discussed as well.



2 Time and Space Complexity

The notion of time complexity is concerned with the rate at which the time it
takes for a program to run grows with respect to some increasing input variable.
Space complexity, similarly, is concerned with the rate at which the amount of
allocated memory grows. Time and space complexity are often measured using
big-oh notation. (For a detailed explanation of big-oh notation, see [2]). For
example, suppose some algorithm performs f(n) operations when its input is of
size n. Then that algorithm is O(g(n)) if f(n) grows no faster than a constant
multiple of g(n). The same definition is true for space complexity. Essentially,
g(n) is an upper bound on the growth rate of f(n).

Probabilistic big-oh notation is similar to big-oh notation, except that g(n)
is an upper bound on what the growth rate of f(n) will probably be. There are
some algorithms such that for almost every case their time complexity is, for
instance, O(n), but for some rare cases is O(n?). These algorithms have time
complexity of O(n?), but have probabilistic time complexity of O(n). Some
of the algorithms presented in this paper are of this class, and so are better
described using probabilistic big-oh notation.

It is evident why, for practical purposes, we prefer to have algorithms with
slower time and space growth rates. For example, an algorithm with time com-
plexity of O(n) might perform one thousand operations for n = 1000, while an
algorithm with time complexity of O(n?) might perform one million operations
for n = 1000. Assuming for simplicity that it takes one second to perform one
operation, our first algorithm would take 16.7 minutes to execute, while our
second algorithm would take 11.6 days.

3 The Setting

The author became acquainted with nearest neighbor searching while working on
the problem of constructing probabilistic centroidal Voronoi tessellations using
random sampling. Voronoi tessellations in two dimensions can be described as
follows: given a set of points €2 in the plane, we can divide the plane into regions,
or cells, such that each point in € is assigned a cell and each point « in the plane
is in the cell of # € Q if and only if a is closer to # than to any other point in Q,
with respect to some distance function d. Voronoi diagrams can be constructed
in any dimension. A centroidal Voronoi tessellation is a Voronoi tessellation in
which each 7 € Q, or cell generator, is the centroid of its respective Voronoi
cell. A detailed treatment of centroidal Voronoi tessellations is given in [3].

In order to construct centroidal Voronoi tessellations, the author used a
revised version of an algorithm known as Lloyd’s method. Lloyd’s method is
described as follows:

1. Choose n points at random and generate the associated Voronoi diagram
2. Calculate the centroids of each of the Voronoi cells

3. Return to step 1, using these centroids as the new generators



Each iteration brings the calculated centroids closer to their respective gen-
erators. Eventually the algorithm converges and the two points are the same.
The algorithm used by the author is a probabilistic version of Lloyd’s method.
Instead of generating the Voronoi diagram, we approximate it by sampling ran-
dom points within the region, and assigning each of those random points to
the closest cell generator. With enough points, this method gives a reasonably
accurate Voronoi diagram, and is less computationally intensive than directly
generating the tessellation. Since we only have an approximation of each Voronoi
polygon, we must use an alternative method of calculating the centroid. Instead
of computing the centroid directly, we average each of the points assigned to a
given generator, and assume that value as the centroid. This revised version of
Lloyd’s method results in a set of generators that, when the Voronoi diagram is
generated, are approximately equal to the centroids of their respective Voronoi
regions. It should be noted that this algorithm does not generate the Voronoi
diagram, but returns a list of possible centroidal Voronoi cell generators.

The problem of computing the nearest neighbor arises during the approxi-
mation of the Voronoi diagram using random sampling. During each iteration
of Lloyd’s method, we sample n * C' points, where C is some chosen constant,
calculate to which generator each sampled point is closest, and average each of
the n sets of sampled points to determine the new centroids. Since we sample
n * C' points, we expect to have on average C sampled points per Voronoi cell.

The straightforward algorithm for computing the nearest neighbor, discussed
in the next section, has time complexity of O(n), where n is the number of pos-
sible nearest neighbors. Using probabilistic Lloyd’s method and assuming the
straightforward algorithm for computing the nearest neighbor (in which the
distance to each possible nearest neighbor is computed), we see that we make
approximately n * (n * C') = Cn? nearest neighbor computations. Since com-
puting the nearest neighbor is the most computationally intensive portion of
the algorithm, probabilistic Lloyd’s method has time complexity of O(n?), with
n equal to the number of cell generators. Applications of centroidal Voronoi
diagrams often demand thousands of generator points, and thus the resulting
computation is often too slow for practical use. The author was therefore inter-
ested in finding a faster method of computing the nearest neighbor.

4 The Straightforward Algorithm

The most intuitive approach to computing the nearest neighbor is to compute
the distances from «a to each point in Q and compare them. As this is the
most straightforward algorithm, it is also the easiest to implement. On the
following page is an implementation of the straightforward algorithm, referred
to as Method 1 for brevity, in MATLAB v5.2 [4].

As we increase the number of points in Q by one, we must perform one
extra distance calculation and one extra comparison. Since there is a constant
amount of additional work with each extra point, Method 1 has time complexity
of O(n). Aside from the extra initial storage that is needed to store the new



function nearest = nearestNeighbor( omega, alpha )

distance = realmax;
omegaSize = size( omega,l );

for i = 1l:omegaSize
distSq = sum( ( omega( i,: ) - alpha )."2)
if distSq < distance
distance = distSq;
nearest = i;
end
end

Figure 1: MATLAB implementation of Method 1

points, no additional memory is allocated as n increases. By examining the
above MATLAB implementation, we see that no preprocessing of any sort is
necessary. Below is a summary of these results.

Preprocessing time | Preprocessing space | Time | Space | Accuracy

Method 1 NA NA O(n) | O(1) | 100%

Table 1: An analysis of Method 1

It is evident that Method 1 works for higher dimensions as well. As far as
ease of extensibility, the code in Figure 1 will work for any dimension, provided
that the input variables are of the appropriate form for the dimension. Each
additional dimension requires only one extra subtraction operation, one extra
squaring operation, and one extra addition operation during the distance cal-
culation. We see then that the time and space complexity remain the same for
higher dimensions. It is also evident that Method 1 will find the correct nearest
neighbor with 100% accuracy, and that the computation remains unchanged
whether the points in € are uniformly distributed about the region or not.

Thus with respect to our metrics, the only drawback of Method 1 is its
time complexity. While O(n) may not appear computationally intensive, it
must be remembered that in applications of nearest neighbor search such as
the construction of centroidal Voronoi tessellations, time complexity of O(n) for
computing the nearest neighbor may result in greater time complexities, such
as O(n?), for the whole problem.




5 The Spiral Method

One alternative to the straightforward approach is the spiral method proposed
by Bentley, Weide, and Yao, referred to as Method 2. Method 2 involves di-
viding the region into grid boxes, or squares, of the same size. The number
of grid boxes is proportional to the number of points in Q. For simplicity, our
implementation of Method 2 generates a grid of g by g grid boxes where g is
equal to floor(y/numberofpoints/pointsperbox). This will give us a grid with
approximately the number of points per grid box that we have specified. Say,

for instance, that we decided upon four points per grid box. If there are one
hundred possible nearest neighbor points in the region defined by 0 < z < 1;
0 <y < 1, then our grid might look like Figure 2 below.

1

9] 9]
o
Q
o]
0918 o
go
o ® o)

0.8

O R o

o oo o
0.7 o o D % o
o o | © olo o

o © [}
0.6

o

o o | o
05 o © ®
o ° 4 o

o) o o ° o o

0.4 ©
o o o [} e}
o ° o
0.3F © o
o
O O
0.2 5
®©
o o° o
0.1f ©
o
© o

0 1 1 1 1 1 )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: One hundred points in 0 < 2 < 1; 0 < y < 1, and the associated grid

Once the region is divided into a grid, the next step is to assign a grid box to
each point in Q, based upon that point’s coordinates. A point g € Q is in grid
box A if and only if the coordinates of § fall within the region defined by A.
These two steps, the division of the region into a grid and the sorting of points
in Q into their appropriate grid boxes, or bins, constitute the preprocessing
phase of Method 2. 1t 1s clear that since the amount of grid boxes is directly
proportional to the number of points in €2, the time and space complexity of
the preprocessing phase of Method 2 are both O(n).

Once we have sorted the points in Q into grid boxes, or bins, we have enough
information to find the nearest neighbor in constant time. First, we locate the
grid box that contains a. We then begin to check grid boxes that are close by
for possible nearest neighbors. We begin by checking the box that contains a.



If no point is found, we then move on to the surrounding eight boxes. If still no
point is found, we check the surrounding sixteen boxes. An intuitive approach
to this search is to start with the box that contains a, and “spiral” outwards
until a point is found, as is demonstrated in Figure 3 below.
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Figure 3: “Spiraling” outward from the center box until a point is found

Once a point has been found, we need only to compute the distances to
each point that belongs to a grid box falling within the circle of radius defined
by the distance between o and the point found, since we are guaranteed that
the greatest distance between a and any point in Q is at most the length of
that radius. On average, this is done in constant time, since we expect to find
a constant number of points per grid box regardless of the number of points
in Q. It is clear that we do not require any additional memory allocation as
we increase the number of possible nearest neighbors, since we do not store any
additional information. It is also evident that Method 2 finds the correct nearest
neighbor every time. Below is a comparison of the performances of Method 1

and Method 2.

Preprocessing time | Preprocessing space | Time | Space | Accuracy
Method 1 NA NA O(n) | O(1) 100%
Method 2 O(n) O(n) o) | O(1) 100%

Table 2: An analysis of Method 1 and Method 2




The implications of the time complexity of Method 2 are significant. As far
as nearest neighbor searching in the problem of constructing centroidal Voronoi
tessellations, the preprocessing phrase takes O(n) time, and the actual neigh-
bor searching only takes O(n) time as well, since we must only perform n x C
constant-time computations. This reduces the time complexity of probabilistic
Lloyd’s method from O(n?) to O(n).

As far as efficient performance with uniformly distributed points in two di-
mensions, the spiral method is superior to the other five algorithms presented in
this paper. The problems with the algorithm are the difficulties that are encoun-
tered during its implementation and extension to higher dimensions, and non-
optimal performance with distribution functions that are non-uniform. These
three obstacles are now discussed in turn.

While the concept is simple, implementation of Method 2 is more compli-
cated. One of the complications that arises during implementation is the calcu-
lation of which grid boxes are intersected by the circle produced when the first
point is found. This problem can be circumvented by instead considering every
grid box that is contained within the square in which the circle is inscribed, but
at the cost of efficiency. Another complication is the problem of implementing
the “spiraling” outward from the center grid box. While this isn’t a monumental
problem, it can provide some difficulty and should be considered. An important
issue related to the spiral algorithm’s extensibility to other dimensions is the
density of points per grid box. To understand why this is a problem, we must
consider the following. In one dimension, we see that if we do not find a point in
the first grid box, or line segment in this case, we must check two additional line
segments, and then two more, et cetera. In two dimensions, if we do not find
a point in the first bin, then we must check eight more, and then sixteen. For
three dimensions, we have one, then twenty-six, then ninety-nine. In the general
case, we must check (2¢ — 1)? total grid boxes, where ¢ is the outermost “layer”
that we consider, or one less than the number of times we have failed to find a
point in a layer, and d is the dimension. Thus it becomes increasingly costly to
fail to find a point in a layer, though at the same time failure becomes increas-
ingly unlikely. Increasing the point density of the grid boxes would suppress the
problem of failing to find a point, but would increase the cost of computing the
distances to each point in a specific grid box. In the extreme case, where the
point density is maximum and there is one grid box, the algorithm is reduced
to Method 1. Thus for each dimension, the implementor must find an optimal
point-bin density. We expect that for some cases no changes would be neces-
sary, but such results would have to be determined empirically for the specific
problem in question. While in any case the spiral method performs in constant
time, it must be remembered that the algorithm may not be practical if that
constant is too large of a number.

Finally, we see that this method isn’t necessarily optimal for point distri-
butions that are not uniform. In the case where it is more likely for points to
appear near the edges of a region than the center, for example, we may run
into the following complication. If we assume that a point we choose is nearer
to the center of the region than to any of its borders, then we most likely will



not encounter a box with a point in it until we near the edges of the region.
Once we do find a point, we must check every grid box that intersects with the
corresponding circle. Since this circle is so relatively large, we expect it will
encompass many grid boxes, and thus we will have to compute the distances
to many points. For this reason, an implementor should keep the distribution
function in mind when considering Method 2.

6 The Grid-Bin Method

The complexity involved in implementing Method 2 resulted in the author’s and
Professor Burkardt’s development of the grid-bin method (Method 3). Method
3 is similar to Method 2 in that it also involves a preprocessing step in which
the region is divided into a grid and each point in Q is assigned a grid box.
Method 3 involves an additional preprocessing step as well. The closest point
in © to the corner of each grid box is calculated (via Method 1) and stored.
Unfortunately, while this extra preprocessing step allows the nearest neighbor
search to occur in constant time, the time complexity of the preprocessing is
raised to O(n?). For each additional point in Q, we add on average b grid boxes,
where b is some constant. We then must perform an additional 4 x b x n Method
1 nearest neighbor searches. It is evident that the space complexity of the
preprocessing is linear, as with each additional point we require an additional
constant amount of storage.

Once we have the points in €2 sorted into the grid-bin, we can find the nearest
neighbor by computing into which grid box « falls, and calculating which of the
one through four points in Q assigned to the four corners of the grid box is
closest to a. This search is performed in constant time with no additional
memory allocation.

The grid-bin algorithm introduces the notion of approzimate nearest neighbor
searching. That is, Method 3 is not guaranteed to find the nearest neighbor.
It 1s possible to encounter a situation in which a point that lies within a grid
box has a different nearest neighbor than any of the four corners of that grid
box. Our implementation of Method 3, with approximately three points per
box, found the correct nearest neighbor 98% of the time. Approximate nearest
neighbor searching is suitable for some classes of problems, while for others
the precise nearest neighbor is needed. Constructing probabilistic centroidal
Voronoi tessellations, for example, is possible using an approximate nearest
neighbor algorithm. Below is a comparison of the three algorithms we have now
discussed.

Preprocessing time | Preprocessing space | Time | Space | Accuracy
Method 1 NA NA O(n) | O(1) 100%
Method 2 O(n) O(n) o) | O(1) 100%
Method 3 O(n?) O(n) o1y | O(1) 98%

Table 3: An analysis of Method 1, Method 2, and Method 3




Method 3 presents a simpler, less efficient alternative to Method 2. The
grid-bin method is relatively easy to implement. In addition, implementation
is not complicated by extending the algorithm to higher dimensions, and the
performance of the algorithm should remain comparable to its performance in
two dimensions. Method 3 should also perform well regardless of the distribution
function, since it embodies the same simple search principle of Method 1.

One might question if Method 3 has any advantage over Method 1. While
Method 3 has time complexity of O(n?), we must remember that this is a mea-
surement of the preprocessing phase of the algorithm, which only occurs once.
For instance, if we were to use Method 1 to find the nearest neighbors of one
thousand points for || = 100, we would have to make 100 * 1000 = 100000
distance calculations. If we were to use Method 3, on the other hand, and we
assumed a point density of three points per box, then we would make approxi-
mately 36 x 100 = 3600 distance calculations for the preprocessing phase (5 -5
grid boxes, 6 - 6 corners), and at most 4 x 1000 = 4000 calculations during the
neighbor searching. Thus we have 100000 distance calculations for Method 1,
and only 7600 for Method 3. For some problems, then, Method 3 may be more
appropriate than Method 1. In the case of problems that are extremely compu-
tationally intensive in two dimensions, such as constructing centroidal Voronoi
tessellations, Method 2 would be preferable to both Method 1 and Method 3.

7 The Grid-Bin Method with Sweeping Prepro-
cessing

In order to increase the speed of the preprocessing phase of Method 3, the author
implemented a revised version of the algorithm. The complication with Method
3 1s that for each additional point, we made on the order of n additional nearest
neighbor computation. We want to reduce the number of additional nearest
neighbor computations so that it is not directly dependent upon n. This is
accomplished in the following manner.

We begin by dividing the region into grid boxes, the same way that we did
for Method 2 and Method 3. We also create a list of the points in £ sorted
by z-coordinate. Instead of computing the nearest neighbors of each of the box
corners by brute force, we only compute the nearest neighbors of the first column
of corner points (in the case of Figure 2, the points {(0.0,0.0), (0.0,0.2), (0.0,0.4),
(0.0,0.6), (0.0,0.8), (0.0,1.0)}). For each succeeding column of corner points, we
compute the set of nearest neighbors using only a subset of the points in Q
(approximately of size \/n), which we determine based upon the set of nearest
neighbors obtained from the last column of corner points and the relative z-
position of the current column of corner points. Thus we severely reduce the
number of nearest neighbor computations. (It should be noted that the above
description is a summary of the algorithm, as the complexity of the details
prevents a full description of the algorithm from being concisely expressed. For
more information on the details of the algorithm, please contact the author.)
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The number of grid boxes ¢ - g in our grid is on the order of n. For each
column of corner points, then, we have approximately /n points, for each of
which we make approximately y/n nearest neighbor computations (as a result
of our improved algorithm). Since there are approximately 1/n columns, our
preprocessing time is expected to be v/n ¥ \/n % /1 = n%/? + nlogn (we require
nlogn time to sort the n points in © by z-coordinate). Therefore the time
complexity of the preprocessing phase of Method 4 is O(n3/2). It is clear that
the space complexity of Method 4 is O(n), since the amount of information we
store i1s dependent on the number of grid boxes we have.

Once we have completed the preprocessing phase, we proceed in the same
manner that we did for Method 3. The space and time complexity of the neigh-
bor searching phase of the algorithm, then, are both O(1). As with the previous
method, this is an approximate nearest neighbor algorithm. Since there is a
chance that not only do the four corner points have different nearest neighbors
than does «, but that we did not compute the correct nearest neighbors for the
four corner points, our percentage error is compounded. Using our implemen-
tation of Method 4 and three points per grid box, we found the correct nearest
neighbor about 93% of the time. Below is a summary of these results.

Preprocessing time | Preprocessing space | Time | Space | Accuracy
Method 1 NA NA O(n) | O(1) 100%
Method 2 O(n) O(n) o) | O(1) 100%
Method 3 O(n?) O(n) o) | O(1) 98%
Method 4 O(n * /n) O(n) o)y | O(1) 93%

Table 4: An analysis of Methods 1 - 4

Despite the complications in describing Method 4, implementation is fairly
straightforward. The details of the algorithm require more attention than the
previous method, but we do not foresee any major problems. As far as extensi-
bility to other dimensions, we expect that it can be done without much compli-
cation. We also expect the time and space complexity to remain unchanged for
higher dimensions.

Method 4, though, is largely dependent on a uniform distribution of points.
We could not make the assumptions that we do based upon the z-coordinates
of the points in Q if our points were not distributed uniformly. Perhaps the
algorithm could be altered so that assumptions are made based upon another
distribution function. For instance, if we used a distribution function where
points were more likely to appear in the center of the region than toward the
edges, we might allow more nearest neighbor computations to be made for the
columns near the center of the region. As it stands, though, the implemen-
tation of Method 4 that we present would not perform well with non-uniform
distribution functions.
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8 The Delaunay Triangle Neighbor Search

The last two algorithms presented in this paper involve the Delaunay triangu-
lation. A Delaunay triangulation of set of points €2 is a triangulation of those
points such that no fourth point is contained within the circumcircle of the
triangle defined by any three triangulated points. The Delaunay triangulation
can also be described as the dual of a Voronoi diagram, and can be constructed
by connecting each node of a Voronoi diagram with each of the nodes of the
adjacent Voronoi regions. Below is a Delaunay triangulation of twenty points
in theregion 0 <z < ;0 <y < 1.
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Figure 4: A Delaunay triangulation of twenty points in the region 0 < z <
Lo<y<1

The preprocessing phases of Method 5 and Method 6 involve constructing the
Delaunay triangulation. It has been shown that the Delaunay triangulation in
the plane can be computed in O(nlog(n)) time, using O(n) storage. For a proof
of the above assertion and a more detailed explanation of Delaunay triangula-
tions, see [5]. Once we have generated the Delaunay triangulation, we are ready
to compute the nearest neighbor. The author’s implementation of Method 5
is based on the implementation offered by Barry Joe in the GEOMPACK [6]
software package. To understand the algorithm, we must first understand the
concept discussed below.
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Given a point d and a line in the plane, we can define a function f such
that f(e) = 1 for some point € if and only if that point lies on the line, or on
the same side of the line as does J, and f(¢) = 0 otherwise. With three such
functions, one for each line of a triangle, we can determine whether or not a
given point is inside that triangle. In addition, we can also determine where the
point is relative to the triangle by analyzing the values of f. For instance, if the
three values of our three functions are positive, then we know that the point
lies within the triangle. If one value is negative, then we know that the point
is “behind” that side of the triangle. Method 5 begins by picking a triangle at
random. We then pick one side of the triangle, and determine the value of f
with respect to that side and a. If that value is positive, we move clockwise to
the next side. If it is negative, we have an idea of where « is relative to our
triangle, and we move repeat the process with the triangle that neighbors the
current triangle on that side. If all three values of f are positive, then we have
found the triangle in which a lies. Once we have found the correct triangle,
we simply check which of the three vertices of the triangle is closest to a. The
closest vertex is assumed to be the nearest neighbor, although as mentioned
below, the triangle search is an approximate nearest neighbor algorithm, and so
we are not guaranteed.

We know that the time complexity of the preprocessing phase of Method 5
is O(nlog(n)) and the space complexity is O(n). As with the other algorithms,
the space complexity of neighbor search is O(1), since no additional memory
allocation is required as n increases. The probabilistic time complexity of the
neighbor search is O(y/n). This is shown as follows. The number of triangles in
a Delaunay triangulation is never more than 2n, where n is the number of points
in the triangulation. Consider the region of size g - g. In the z-dimension, it is
clear that we expect to have v/2n triangles per length g. The same is true for
the y dimension. Two points in two triangles selected at random are on average
separated by a distance of ¢/2 in the z-dimension, and g/2 in the y-dimension
(in other words, two points selected at random from a line segment of length
s are on average separated by a distance of s/2). Thus two such points are
approximately separated by a distance of \/(g/2)? + (9/2)> = g. Since there
are approximately v/2n triangles per distance g, we expect to traverse on average
V/2n triangles, which is on the order of \/n.

The Delaunay triangle neighbor search is an approximate nearest neighbor
algorithm. We are guaranteed to find the correct triangle if we are careful with
the boundary cases, but there are situations where the nearest neighbor of a
point within a triangle is not one of the three vertices of the triangle. The accu-
racy in this case is dependent upon the density of points in the region. If there
are a relatively large number of points in the region, then the Delaunay triangles
are smaller, and there is a better chance that any triangle containing o has a
vertex that is its nearest neighbor. For one hundred possible nearest neighbor
points in the region defined by 0 < z < 100; 0 < y < 100, Method 5 found
the correct nearest neighbor approximately 92% of the time. For one thousand
possible nearest neighbors in the same region, the algorithm was approximately
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94% accurate. We summarize these results on the following page. For ease of

comparison, we assume 94% accuracy for Method 5.

Preprocessing time | Preprocessing space Time Space | Accuracy
Method 1 NA NA O(n) o(1) 100%
Method 2 O(n) O(n) o) o(1) 100%
Method 3 O(n?) O(n) o) o(1) 98%
Method 4 O(n+/n) O(n) o) o(1) 93%
Method 5 (nlog(n)) O(n) O(n+/n) | O(1) 94%

Table 5: An analysis of Methods 1 - 5

Computing the values of each of the functions f is straightforward, as is
choosing the appropriate triangle once the values have been computed. The
only complication that may arise during implementation of Method 5 is dealing
with boundary cases. For example, consider the situation where the position
of a dictates that two of our f values are negative. Depending on the shape
of the region, our current triangle could have no neighboring triangle on one
of the sides that the f values specify. If this happens, our algorithm should
simply choose to follow the path specified by the other negative f value. If this
is accounted for, then the properties of the Delaunay triangulation guarantee
that we will find the correct triangle [6].

The generalized expected time for computing the Delaunay triangulation is
O(nlogn+nl%?1) ([5]). Thus Method 5 in higher dimensions is impractical for
most applications. However, it can be shown using a similar argument as the
one we used to prove that the time complexity of Method 5 in two dimensions is
O(/n) that the generalized time complexity of Method 5 is O(n'/¢). Therefore
if the time it takes to compute the overhead of the preprocessing phase can be
sacrificed, we expect the triangle search to perform well in higher dimensions.

While the triangle search is not necessary limited to uniformly distributed
points, there are some distributions that compromise the algorithm. For ex-
ample, a distribution function that tended to place points along a straight line
would produce a similar line of Delaunay triangles. In this case, the time com-
plexity of the algorithm is increased from O(y/n) to O(n).

The last algorithm presented in this paper is an improved variation of this
algorithm for the general nearest neighbor problem. However, this algorithm
might be appropriate for certain types of problems that require not only the
nearest neighbor, but also the Delaunay triangle in which « is contained.

9 The Delaunay Node Neighbor Search

Our final algorithm is the Delaunay node neighbor search. A detailed discussion
of the node neighbor search (Method 6) can be found in [7]. Like the previous
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algorithm, the preprocessing phase of Method 6 involves generating the Delau-
nay triangulation. Once we have done this, we proceed as follows. First, we pick
a point f in Q at random. We then determine if « is closer to # than to any
of #’s neighbors (connected nodes in the Delaunay triangulation). If this is so,
then we are finished, and ( is the nearest neighbor. If not, then we repeat this
process with # now equal to the neighbor that was closest to . Essentially, we
perform a greedy search that determines the local nearest neighbor and iterate
until we find the global nearest neighbor. Using the same argument as we did
for Method 5, the probabilistic time complexity of Method 6 is O(y/n). The
straightforward implementation of this algorithm, as described above, requires
no additional memory allocation as n increases. The properties of the Delaunay
triangulation ensure that we will find the correct nearest neighbor every time.
Below is a final summary of our results.

Preprocessing time | Preprocessing space | Time | Space | Accuracy
Method 1 NA NA O(n) O(1) 100%
Method 2 O(n) O(n) o) O(1) 100%
Method 3 O(n?) O(n) o) O(1) 98%
Method 4 O(n+/n) O(n) o(1) O(1) 93%
Method 5 (nlog(n)) O(n) O(v/n) | O(1) 94%
Method 6 (nlog(n)) O(n) O o(1) 100%

Table 6: An analysis of Methods 1 -

Implementation of this algorithm is straightforward. One problem we expect
to run into is the redundant calculation of distances, since multiple nodes will
share neighbors. This can be avoided by keeping track of every node and its
distance to a. This will reduce the amount of time that it takes for the algo-
rithm to execute (though it will not reduce the probabilistic time complexity),
but will increase the probabilistic space complexity to O(y/n). Either variation
might be appropriate, depending on the requirements of the problem.

As mentioned above, construction of the generalized Delaunay triangulation
takes O(nlogn + n[d/z]) time, rendering this algorithm inefficient for large di-
mensions. As with the previous method, the probabilistic time complexity of
Method 6 is expected to be O(nl/d), where d is the dimension. Thus as with
Method 5, the algorithm performs relatively better in higher dimensions. There-
fore if we can once again sacrifice the overhead of the preprocessing time, Method
5 might be an appropriate algorithm for problems in higher dimensions. We ex-
pect to encounter the same problems with this algorithm’s dependence upon the
distribution function as we did with the previous method. It is evident then that
for the general problem of computing the nearest neighbor, the node neighbor
search is an improvement upon the less accurate triangle neighbor search.
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10 Conclusions and Discussion

The purpose of the study presented in this paper is to offer both a comparison of
six approaches to the nearest neighbor problem and a set of metrics by which to
judge further approaches. The author became acquainted with nearest neighbor
searching while working on the problem of constructing probabilistic centroidal
Voronoi tessellations, and decided that the subject was interesting after witness-
ing how the straightforward approach performs under computationally intensive
conditions. The author and Professor John Burkardt of lTowa State University
proceeded to study four existing nearest neighbor algorithms and develop two
more, and determine which metrics were most important in evaluating these
algorithms. The results presented in this paper are meant to serve as a guide
to anyone who is interested in implementing a nearest neighbor search.

The nearest neighbor problem takes several different forms, and for simplicity
the author decided to consider the problem in two dimensions for uniformly
distributed points in a square region. In some respects, there is little or no
difference between the simplified problem that the author presents and many
of the other instantiations of the problem. In other respects, however, the
simplified model discussed in this paper serves as a probabilistic study of the
general problem, in which trends in the simple model may be generalized and
compared with similar trends in related problems. Some instantiations of the
nearest neighbor problem are so far removed from our simple model, though,
that our discussion can only be used as a general heuristic from which we can
only draw very general conclusions. It is the goal of this paper to at least in
some sense help facilitate the choosing and implementation of a nearest neighbor
algorithm, even if that facilitation is minimal.

Each of the metrics that are presented in this paper and the algorithms
that perform best with respect to those metrics are now briefly discussed. As
for time complexity in two dimensions, the spiral method (Method 2) is the
most efficient, with preprocessing time of only O(n) and processing time of only
O(1). Space complexity is not as important of an issue; all of the algorithms
presented have space complexity of at most O(n). If it is imperative that mini-
mal space is used, though, then the straightforward method (Method 1) should
be considered. Three of the six algorithms (Method 1, Method 2, and Method
6) are guaranteed to find the precise nearest neighbor, which is an important
feature for a large class of problems. The straightforward method is the sim-
plest to implement, but the grid-bin methods (Method 3 and Method 4) are
simple as well, if approximate neighbor searching is sufficient. The algorithms
based on the Delaunay triangulation (Method 5 and Method 6) are relatively
simple to implement, excluding construction of the Delaunay triangulation in
higher dimensions. The straightforward algorithm and the grid-bin methods
are easily extended to higher dimensions. The spiral method performs well in
higher dimensions if the problems presented in Section 5 are considered. The
straightforward method and the grid-bin method will perform just as well with
any distribution function as they do for the uniform distribution assumed in
this paper. The grid-bin method with sweeping preprocessing can be adjusted
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to perform well with other distribution functions. The spiral method and the
Delaunay methods will work well with some distribution functions, but not, as
demonstrated in this paper, with others.

The environment in which one is working should also be taken into consid-
eration. For example, while working on the problem of constructing centroidal
Voronoi tessellations in MATLAB, the author decided upon the Delaunay node
neighbor search because MATLAB provides construction of the Delaunay trian-
gulation. MATLARB also has a procedure called dsearch, which finds the nearest
neighbor given «, €2, and the Delaunay triangulation of 2. The author presumes
that dsearch is based upon the Delaunay neighbor node search. It is evident,
then, that 1t might be in the best interest of the implementor to take advantage
of the resources presented by the work environment, depending on how much
time the implementor wishes to spend on the nearest neighbor aspect of his
problem.

There are doubtlessly several other approaches to the nearest neighbor prob-
lem, each of which might be better suited to one class of problems than are any
of the six algorithms presented in this paper. While these six algorithms may
not be directly suited to the purposes of every reader, the metrics provided
should be useful in evaluating how appropriate a specific algorithm is, regard-
less of whether or not it is presented here. With that in mind, it is the author’s
hope that this paper will assist the reader in deciding which nearest neighbor
algorithm is most appropriate for the reader’s purposes.
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