
Home (/) / Blog (/blog/) / The two-dimensional wave equation

The two-dimensional wave equation
Posted by: christian (/blog/author/christian/) on 17 Feb 2024

(2 comments)

The wave equation (https://en.wikipedia.org/wiki/Wave_equation) is a second-order linear partial differential

equation describing the behaviour of mechanical waves; its two (spatial) dimensional form can be used to

describe waves on a surface of water:

To model such waves numerically, it is common to work with a discrete grid of spatial and time points and to

approximate the partial derivatives using the method of �nite differences. A simple approach is to take the

central difference using neighbouring points on the grid. In one dimension, for a grid spacing of , the �rst and

second derivatives are approximately:

and

In two dimensions (assuming equal grid spacing in each direction), the most basic numerical approach is to use

the �ve-point stencil (https://en.wikipedia.org/wiki/Five-point_stencil): which amounts to the following:

Therefore, the procedure is to choose a spatial grid size, , and time step size, , and represent the function as:

 where labels the time step: and and the and coordinates

of the spatial grid: e.g., , etc.

The above �nite difference equations then approximate the wave equation as:

The goal of the simulation is to predict how the wave function will evolve in time for each point on the spatial

grid: i.e. to �nd :

where .This would be the end of the story if the spatial grid had in�nite extent, but in practice we

have to choose a �nite number of points and therefore need to worry about what happens at the

boundary of the grid. One choice is simply to �x the boundary values of the wave function to be zero:

. This is a Dirichlet boundary condition

(https://en.wikipedia.org/wiki/Dirichlet_boundary_condition) and means that no wave energy leaves the

simulation grid: the waves are re�ected back.

An alternative choice is an absorbing boundary condition (ABC), for which no re�ection occurs: there are

different ways of approximating this condition, but a popular one is the Mur boundary condition. This can be

demonstrated in one-dimension by factorizing the wave equation as

Each factor represents a "one-way" wave equation since they correspond to equations with solutions traveling

in the and directions:

− (+) = 0
u∂2

∂t2
c2 u∂2

∂x2

u∂2

∂y2

h

≈
df

dx

f(x +) − f(x −)h
2

h
2

h

fd2

dx2
≈

−
f(x+h)−f(x)

h

f(x)−f(x−h)

h

h

= .
f(x + h) − 2f(x) + f(x − h)

h2

≈
f∂2

∂x2

f(x + h, y) − 2f(x, y) + f(x − h, y)

h2

≈
f∂2

∂y2

f(x, y + h) − 2f(x, y) + f(x, y − h)

h2

h δt

u(t; x, y) = u
(k)
i,j k u(t + ; x, y) =δt u

(k+1)
i,j i j x y

u(t, x + h, y) = u
(k)
i+1,j u(t, x, y + h) = u

(k)
i,j+1

(− 2 +) − (+ + + − 4) = 0
1

δ2
t

u
(k+1)
i,j u

(k)
i,j u

(k−1)
i,j

c2

h2
u

(k)
i+1,j u

(k)
i−1,j u

(k)
i,j+1 u

(k)
i,j−1 u

(k)
i,j

u

u
(k+1)
i,j

= (+ + + − 4) + 2 − ,u
(k+1)
i,j α2 u

(k)
i+1,j u

(k)
i−1,j u

(k)
i,j+1 u

(k)
i,j−1 u

(k)
i,j u

(k)
i,j u

(k−1)
i,j

α = c /hδt

(x, y)

= = = = 0u0,j ui,0 u ,jNx
ui,Ny

− = (− c)(+ c) u = 0,
u∂2

∂t2
c2 u∂2

∂x2

∂

∂t

∂

∂x

∂

∂t

∂

∂x

−x +x

− c = 0 ⇒
∂u

∂t

∂u

∂x

+ c = 0 ⇒
∂u

∂t

∂u

∂x

= ,u← ei(kx+ωt)

= .u→ ei(kx−ωt)

https://scipython.com/
https://scipython.com/
https://scipython.com/blog/
https://scipython.com/blog/
https://scipython.com/blog/author/christian/
https://scipython.com/blog/author/christian/
https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Five-point_stencil
https://en.wikipedia.org/wiki/Dirichlet_boundary_condition
https://en.wikipedia.org/wiki/Dirichlet_boundary_condition

We therefore apply the �rst of these equations at the boundary so that only waves traveling out of the

domain in the negative direction are supported (no re�ection back into the domain); at the other boundary,

we apply the second equation to ensure that the solution consists solely of waves travelling out of the domain

in the positive direction.

In the discretized versions of these equations there is a complication in that the spatial and time derivatives

have to be evaluated at the same point (in time and space), e.g. for the left hand boundary:

Of course, we don't have half-integer indexes for our space and time steps, so instead choose to take the

average of the neighbouring points:

Rearranging for the required quantity, gives:

Similarly, at the right hand boundary:

where is the index of the �nal coordinate in the direction (here, because of Python's zero-

based indexing). Corresponding equations apply for the top and bottom boundaries in the direction.

The class below implements this integration scheme for the two-dimensional wave equation.

x = 0

x

x

− − (−) = 0.u
(k+1)

,j1

2

u
(k)

,j1

2

cδt

h
u
(k+)1

2

1,j u
(k+)1

2

0,j

+ − + = 0
1

2

⎛

⎝

−u
(k+1)
1,j u

(k)
1,j

δt

−u
(k+1)
0,j u

(k)
0,j

δt

⎞

⎠

c

2

⎛

⎝

−u
(k+1)
1,j u

(k+1)
0,j

h

−u
(k)
1,j u

(k)
0,j

h

⎞

⎠

u
(k+1)
0,j

= − (−) .u
(k+1)
0,j u

(k)
1,j

1 − α

1 + α
u

(k+1)
1,j u

(k)
0,j

= + (−) ,u
(k+1)
N,j u

(k)
N−1,j

1 − α

1 + α
u

(k)
N,j u

(k+1)
N−1,j

N x N = − 1nx

y

import numpy as np

class WaveEqn2D:
 def __init__(self, nx=500, ny=500, c=0.2, h=1, dt=1,
 use_mur_abc=True):
 """Initialize the simulation:

 nx and ny are the dimension of the domain;
 c is the wave speed;
 h and dt are the space and time grid spacings;
 If use_mur_abc is True, the Mur absorbing boundary
 conditions will be used; if False, the Dirichlet
 (reflecting) boundary conditions are used.

 """

 self.nx, self.ny = nx, ny
 self.c = c
 self.h, self.dt = 1, 1
 self.use_mur_abc = use_mur_abc
 self.alpha = self.c * self.dt / self.h
 self.alpha2 = self.alpha**2

 self.u = np.zeros((3, ny, nx))

 def update(self):
 """Update the simulation by one time tick."""

 # The three planes of u correspond to the time points
 # k+1, k and k-1; i.e. we calculate the next frame
 # of the simulation (k+1) in u[0,...].
 u, nx, ny = self.u, self.nx, self.ny
 u[2] = u[1] # old k -> new k-1
 u[1] = u[0] # old k+1 -> new k

 # Calculate the new k+1:
 u[0, 1:ny-1, 1:nx-1] = self.alpha2 * (
 u[1, 0:ny-2, 1:nx-1]
 + u[1, 2:ny, 1:nx-1]
 + u[1, 1:ny-1, 0:nx-2]
 + u[1, 1:ny-1, 2:nx]
 - 4*u[1, 1:ny-1, 1:nx-1]) \
 + (2 * u[1, 1:ny-1, 1:nx-1]
 - u[2, 1:ny-1, 1:nx-1])

 if self.use_mur_abc:
 # Mur absorbing boundary conditions.
 kappa = (1 - self.alpha) / (1 + self.alpha)
 u[0, 0, 1:nx-1] = (u[1, 1, 1:nx-1]
 - kappa * (
 u[0, 1, 1:nx-1]
 - u[1, 0, 1:nx-1])
)
 u[0, ny-1, 1:nx-1] = (u[1, ny-2, 1:nx-1]
 + kappa * (
 u[1, ny-1, 1:nx-1]
 - u[0, ny-2, 1:nx-1])
)
 u[0, 1:ny-1, 0] = (u[1, 1:ny-1, 1]
 - kappa * (
 u[0, 1:ny-1, 1]
 - u[1, 1:ny-1, 0])
)
 u[0, 1:ny-1, nx-1] = (u[1, 1:ny-1, nx-2]
 + kappa * (
 u[1, 1:ny-1, nx-1]
 - u[0, 1:ny-1, nx-2])
)

Its use is illustrated below for modelling the waves produced by a signal, sinusoidally varying in time at the

centre of the domain.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from wave_eqn2d import WaveEqn2D

A = 80
dt = 1
T = 50
freq = 2 * np.pi / T
nx = ny = 200
sim = WaveEqn2D(nx, ny, dt=dt, use_mur_abc=True)

fig, ax = plt.subplots()
ax.axis("off")
img = ax.imshow(sim.u[0], vmin=0, vmax=40, cmap='Blues_r')

def update(i):
 """Advance the simulation by one tick."""
 # A regular sinusoidal signal at the centre of the domain.
 sim.u[0, ny//2, nx//2] = A * np.sin(i * freq)
 sim.update()

def init():
 """
 Initialization, because we're blitting and need references to the
 animated objects.
 """
 return img,

def animate(i):
 """Draw frame i of the animation."""
 update(i)
 img.set_data(sim.u[0])
 return img,

interval, nframes = sim.dt, 1000
ani = animation.FuncAnimation(fig, animate, frames=nframes,
 repeat=False,
 init_func=init, interval=interval, blit=True)
plt.show()

The difference between the re�ecting (Dirichlet) and absorbing (Mur) boundary conditions can be seen in the

animations produced using use_mur_abc=False and use_mur_abc=True :

Dirichlet boundary conditions

Mur absorbing boundary conditions

Another example, creating a raindrop effect by randomly placing two-dimensional Gaussian pro�les on the

domain:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from wave_eqn2d import WaveEqn2D

Raindrop probability (with each time tick) and intensity.
drop_probability, max_intensity = 0.01, 10
Width of the Gaussian profile for each initial drop.
drop_width = 2
Number of Gaussian widths to calculate to.
ndrop_widths = 3
Size of the Gaussian template each drop is based on.
NDx = NDy = drop_width * ndrop_widths
Dx, Dy = np.arange(0, NDx, 1, dtype=np.int32), np.arange(0, NDy, 1, dtype=np.int32)
MDx, MDy = np.meshgrid(Dx, Dy)
Create the 2D template of the initial drop.
cx, cy = NDx // 2, NDy // 2
gauss_template = np.exp(-(((MDx-cx)/drop_width)**2 + ((MDy-cy)/drop_width)**2))

dt = 1
nx = ny = 200
sim = WaveEqn2D(nx, ny, dt=dt, use_mur_abc=True)

fig, ax = plt.subplots()
ax.axis("off")
img = ax.imshow(sim.u[0], vmin=0, vmax=max_intensity, cmap='YlGnBu_r')

def update(i):
 """Advance the simulation by one tick."""
 # Random raindrops.
 if np.random.random() < drop_probability:
 x, y = np.random.randint(NDx//2, nx-NDx//2-1), np.random.randint(NDy//2, ny
-NDy//2-1)
 sim.u[0, y-NDy//2:y+NDy//2, x-NDx//2:x+NDx//2] = max_intensity * gauss_temp
late
 sim.update()

def init():
 """
 Initialization, because we're blitting and need references to the
 animated objects.
 """
 return img,

def animate(i):
 """Draw frame i of the animation."""
 update(i)
 img.set_data(sim.u[0])
 return img,

interval, nframes = 2*sim.dt, 4000
ani = animation.FuncAnimation(fig, animate, frames=nframes,
 repeat=False,
 init_func=init, interval=interval, blit=True)
plt.show()

Current rating: 5 Rate 1 2 3 4 5

← Analysing �ight punctuality data for UK airports: I. Basic statistics for 2022 (/blog/analysing-�ight-

punctuality-data-for-uk-airports/)

The Kelvin wake pattern → (/blog/the-kelvin-wake-pattern/)

Share on Twitter (http://twitter.com/home?status=https%3A//scipython.com/blog/the-two-dimensional-wave-equation/%20The%20two-dimensional%20wave%20equation)

Share on Facebook (http://facebook.com/sharer.php?u=https://scipython.com/blog/the-two-dimensional-wave-equation/&t=The%20two-dimensional%20wave%20equation)

Related posts
The Kelvin wake pattern (/blog/the-kelvin-wake-pattern/)

Comments
Comments are pre-moderated. Please be patient and your comment will appear soon.

Elie RAPHAEL 8 months, 1 week ago

Hi Christian,

Thanks for the very interesting post.

A parenthesis seems to be missing at the end of the de�nition of the update function.

All the best,

Elie.

 Link (/blog/the-two-dimensional-wave-equation/#comment-804) | Reply

Currently unrated Rate

christian 8 months, 1 week ago

Fixed – thank you!

 Link (/blog/the-two-dimensional-wave-equation/#comment-805) | Reply

Currently unrated Rate

New Comment
Name

required

Email

required (not published)

Website

optional

Comment

required

Comment

 1 2 3 4 5

 1 2 3 4 5

https://scipython.com/blog/analysing-flight-punctuality-data-for-uk-airports/
https://scipython.com/blog/the-kelvin-wake-pattern/
http://twitter.com/home?status=https%3A//scipython.com/blog/the-two-dimensional-wave-equation/%20The%20two-dimensional%20wave%20equation
http://facebook.com/sharer.php?u=https://scipython.com/blog/the-two-dimensional-wave-equation/&t=The%20two-dimensional%20wave%20equation
https://scipython.com/blog/the-kelvin-wake-pattern/
https://scipython.com/blog/the-kelvin-wake-pattern/

