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Linear Algebra

• Python’s numpy library gives us tools for linear algebra;
• Vectors have norm (length), unit direction, pairwise angle;
• A matrix is a vector whose entries are rows;
• numpy math operators apply to an entire array;
• Matrix-vector and matrix-matrix multiplication functions exist;
• Linear solution or least squares approximations available;
• Factorizations like LU, QR, SVD are available;
• Eigenvalue can be computed.

The numpy() library enables Python to do linear algebra efficiently. To carry out linear algebra operations,
we need a simple way to create, manipulate, and display matrices and vectors. The Python list() data
type is not suitable for this work. The numpy() library gives Python some of the same power as MATLAB.
With a single command, we can carry out many linear algebra operations. Some simple tasks we have in
mind include:

• initialize the size, shape, value and data type of an array;
• find the shape of an array;
• find the number of rows and columns of an array;
• report or change any entry of an array:
• compute the norm of an array;
• compute the distance and angle between two vectors;
• multiply a vector by a matrix;
• solve a system of linear equations;

In order to do our linear algebra this way, we have to begin by importing the library:
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import numpy as np

It is customary to use np as the abbreviation for the numpy() library. Then to use a function such as sum()
from this library, we use the name np.sum().

1 A vector is a 1-dimensional numpy array

Let’s begin by creating a simple example of a vector. We do this by invoking the numpy() function array(),
which expects a list of comma-separated values enclosed in square brackets.

import numpy as np
x = np . array ( [ 1 , 2 , 3 ] )

There are several facts we can check for our array:

type ( x )
<class ’numpy . ndarray ’>

x . dtype
dtype ( ’ in t64 ’ ) # The va lue s in x are presumed to be i n t e g e r s

x . shape
( 3 , ) # x i s a 1 dimensional array . The f i r s t dimension i s 3 .

x . shape [ 0 ]
3 # x . shape i s a vec to r . x . shape [ 0 ] i s a number .

len ( x )
3 # There are a t o t a l o f 3 en t r i e s in x .

print ( x )
[ 1 2 3 ]

Useful numpy() functions include

np .max ( x )
np .min ( x )
np .mean ( x )
np .sum ( x )
np . l i n a l g . norm ( x ) # Some numpy opera t ions are in s u b l i b r a r y ” l i n a l g ”

Most numpy() functions can be applied to a vector element by element, creating a vector result:

a = np . exp ( x )
b = np . l og ( x )
c = np . s i n ( x )
d = np . sq r t ( x )
e = x + 10
f = 1 / x # Why i s t h i s probab ly not what you want?
g = 1 .0 / x
h = x∗∗2

If we define a vector y, we can perform various arithmetic operations, which are done element by element.
(By comparison, many such operations in MATLAB would require a special notation to indicate elementwise
computation):

y = np . array ( [ 10 , 20 , 30 ] )
a = x + y
b = x ∗ y
c = x / y
d = x∗∗y
e = np . dot ( x , y ) # This i s a dot product

In mathematics, and in MATLAB, we distinguish between row and column vectors. The numpy() library
doesn’t quite support this difference. The vectors we have created are all sort of row vectors. To create what
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behaves like a column vector of m entries, we would have to go to some trouble to create an m×1 matrix. It
turns out that in Python, we generally won’t need to worry about the distinction between row and column
vectors that is rather important in MATLAB.

Occasionally, we need to set aside space for a vector before we know what we are going to put in it. or we
need to create a vector of 0’s, 1’s, or random values. We can do any ot these tasks as follows:

a = np . empty ( 4 )
b = np . z e r o s ( 5 )
c = np . ones ( 6 )
d = np . random . rand ( 7 )

The entries of an array can be indexed. In an array of n entries, the first has index 0, the last index n-1.

a = np . array ( [ 10 , 20 , 30 ] )
a [ 0 ] = a [ 0 ] + a [ 2 ]
print ( a [ 0 ] )
print ( a [ 2 ] )

It is natural to use a for() loop to access each item of a vector:

a = np . array ( [ 10 , 20 , 30 ] )
n = a . shape [ 0 ]
for i in range ( 0 , n ) :

a [ i ] = max ( a [ i ] , 25 ) # I t would be wrong to use np .max() here !
print ( a )

Another version of the for() loop accesses entries by a temporary name, without using an index. (However,
if we don’t have an index, we can’t put a computed result back into the array.)

a = np . array ( [ 10 , 20 , 30 ] )
for a i in a : # Automat ica l l y s e l e c t s one element at a time

print ( max ( ai , 15 ) )

One of the tricky featurs of Python involves the assignment operator. When an assignment statement
involves arrays, and has the form a=b, then instead of copying the values of b into z

x = np . array ( [ 1 , 2 , 3 ] )
y = x # Don ’ t do t h i s !
y = 2 ∗ y
print ( x ) # x i s the SAME as y ; t ha t ’ s what ”y=x” means !
print ( y )

x = np . array ( [ 1 , 2 , 3 ] )
z = z . copy ( )
z = 2 ∗ z
print ( x ) # x i s unchanged
print ( z )

2 Indexing a range of array entries

We have seen how to set a single entry of a vector to 7, or all the vectors to 0, 1, or random values. Sometimes
we want to read or update just a subset of the vector entries. We can do this using indexing that is similar
to what we have seen for the for() statement. In particular, suppose we begin with

x = np . array ( [ 500 , 501 , 502 , 503 , 504 , 505 , 506 , 607 , 508 ] )

We mentioned that the first entry is x[0], and the last can be written as x[8] or x[-1]. Then, to set all
the entries of x to 99, we could write
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x [ : ] = 99
x [ 0 : ] = 99
x [ 0 : 9 ] = 99
x [0 : −1 ] = 99 # wrong !
x [ 0 : 8 ] = 99 # wrong !
x = 99 # very wrong !

Recall that in Python, an index sequence start:end begins with the value start but the final index is
end-1. If start is omitted, the sequence begins with the first index; If end is omitted, the sequence ends
with the last index.

As with the for() statement, the index sequence can include an increment. To change every second element
of x to 88, we can write any of these statements:

x [ 0 : 9 : 2 ] = 88
x [ 0 : : 2 ] = 88
x [ : : 2 ] = 88

Finally, and most confusingly, the increment can be negative. Look carefully at the following command,
which makes a new vector by copying half of the elements of x in reverse order:

y = x [8: −1: −2]

The increment is -2. The seqnece starts at x[8]. Then it copies x[6], x[4], x[2], x[0] and stops,
because the end index is -1. I don’t blame you if you find this confusing at first!

3 Selecting some vector elements using a condition

Suppose we have a vector and we want to identify all the small elements, and maybe even copy them into a
new vector. We can identify the small elements with a simple logical function, which returns a logical vector
of True and False values.

x = np . random . rand ( 10 )
smal l = x < 0 .5
print ( smal l )

We can copy the small elements into a new array by using the logical vector:

y = x [ smal l ]

If you are brave, you can combine these into a single step:

y = x [ x < 0 .5 ]

We can even ask for elements between 0.20 and 0.60, but we have to be careful about how we phrase this
statement:

y = x [ 0 .20 < x and x < 0 .6 ] # Fai l s , ”and” doesn ’ t work here .
y = x [ 0 .20 < x & x < 0 .6 ] # Fai l s , because & operator i s confused
y = x [ ( 0 .20 < x ) & ( x < 0 .6 ) ] # Works

It is easy to see how to ask for values that are greater than 0.60 or less than 0.20 by using the | operator,
or the logical not:

z = x [ ( x < 0 .20 ) | ( 0 . 5 < x ) ]
z = x [ not [ ( 0 .20 < x ) & ( x < 0 .6 ) ] ]

It’s easy to get tripped up by the syntax, the parentheses, and the correct logical operators, but a well-written
selection expression is an efficient means of getting the information you want.
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4 The vector norm

In linear algebra, a vector v of size n has direction, and a length or norm. The numpy() library provides
tools to determine both these quantities.

There are several ways of defining a norm, with the most common being the Euclidean norm, the square
root of the sum of the squares of the entries. The linalg sublibrary of the numpy() library provides the
function norm() to compute this. By default, the Euclidean norm is computed, but other options can be
requested by including a second argument.

import numpy as np
v = np . random . rand ( 4 )
t0 = np . l i n a l g . norm ( v ) # Eucl idean
t1 = np . l i n a l g . norm ( v , 1 ) # L1 , sum of a b so l u t e va lue s
t2 = np . l i n a l g . norm ( v , 2 ) # L2 , Eucl idean
t3 = np . l i n a l g . norm ( v , ’ f r o ’ ) # Frobenius , = Eucl idean
t5 = np . l i n a l g . norm ( v , i n f ) # Loo , maximum ab so l u t e va lue

While the Frobenius and Euclidean norms are the same for vectors, we will see that they differ when we
come to look at matrices.

For a vector in 2D, we think of the direction as an angle. But this idea doesn’t generalize well. Instead, it
is better to describe the direction of a vector by a vector of unit norm. This vector u is simply the quotient
of v divided by its Euclidean norm.

This give us the following decomposition of any nonzero vector into a length t and direction u , which
mathematically is

v = ||v|| · −→v

as

t = np . l i n a l g . norm ( v )
u = v / t
v = t ∗ u

we can ask:

• Can we add w and v?
• Is w equal to v?
• Is w simply a multiple of v (longer? shorter?)
• Does w lie somewhat or very little, along the direction of v?
• What is the angle between v and w?

Geometrically, we can think of adding two vectors as a kind of two-stage walk. We start at the origin, then
walk in the direction and length of vector w. Once we reach the end of that first stage, we continue to walk
from there, but now in the direction and length of v. You can make a corresponding plot by drawing the
vector w starting at the origin, and then adding a picture of v that starts at the tip of w.

Algebraically, things are very simple. The sum of w and v is a new vector we can call u, whose components
are found by adding the corresponding pairs of components of w and v:

ui = wi + vi

It turns out that w is equal to v exactly if the norm of v−w is zero. So this is easy to check! In fact, ||v−w||
measures the magnitude or distance between the two vectors, so the size of this quantity is an indication of
how close they are.
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To answer the other questions, we need to know about the vector inner product, usually known by the more
familiar name of dot product:

< v,w >=

n∑
i=1

v(i) ∗ w(i)

It turns out that
< v,w >= ||v|| · ||w|| · cos(α)

where α is the angle between the two vectors. In particular, this means that

cos(α) =
< v,w >

||v|| ||w||

If w is simply a multiple of v, then

• cos(α) = 1 (the vectors point in the same direction), or
• cos(α) = −1 (the vectors point in opposite directions.)

On the other hand, if cos(α) = 0, then the vectors are perpendicular.

In general, two vectors will have cos(α) somewhere between -1 and +1. Values near +1 or -1 mean the two
directions are close, while values near 0 mean they have little relation. In our work, we will often need to
use this measurement to decide whether two objects, represented by vectors, are closely related or not.

In Python, we can compute the vector dot product of v and w using np.dot(v,w)

import numpy as np
w = np . random . rand ( 2 )
x = np . random . rand ( 2 )
wdotx = np . dot ( w, x )
print ( ’ dot (w, x ) = ’ , wdotx )

and the cosine of α is also easy:

import numpy as np
w = np . random . rand ( 2 )
w norm = np . l i n a l g . norm ( w )
x = np . random . rand ( 2 )
x norm = np . l i n a l g . norm ( x )
cwx = np . dot ( w, x ) / w norm / x norm
print ( ’ cos (w, x ) = ’ , cwx )

Notice in these examples that w and x are defined as simple numpy arrays (essentially lists). We did not try
to define them as row or column vectors.

In mathematics, and in MATLAB, the vector dot product can only be applied to a row vector dotted with a
column vector. If the dot product of two column vectors, say c1 and c2 is desired, then the first factor must
be transposed before the dot product is computed. Mathematically this might be written as

c1dotc2 = cT1 · c2

or in MATLAB, as

c1dotc = c1 ’ ∗ c2

If you are used to the conventions of mathematics or MATLAB, you should be aware that the np.dot()

function, can be applied to simple numpy arrays as long as they have the same extent (number of entries).
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5 The projection of one vector on another

Given any two vectors, it is unlikely that they are equal, but we would still like some information about
whether they are closely related or not. We already know how to compute the angle between vectors u and
v. However, another way to view this relationship is to measure what is called the projection of v onto u.
What we want to know is, how much of vector v is going in the direction of u?

We are going to compute a dot product between v and the direction of u. In other words, we compute a
number which we might call α:

α =< v, û >

Now we can think of v = v1 + v2, where the v1 component is in the direction u, and the v2 component is
perpendicular to u. Thus we can also compute v2:

v1 = α ∗ û
v = v1 + v2 = α ∗ û+ v2

v2 = v − α ∗ û
v = v1 + v2 = α ∗ û+ (v − α ∗ û)

As an example of projection, let u = (3, 4), and v = (5, 1):

u = np . array ( [ 3 , 4 ] )
u norm = np . l i n a l g . norm ( u )
uhat = u / u norm
uhat norm = 1.0
v = np . array ( [ 5 , 1 ] )
v norm = np . l i n a l g . norm ( v )

beta = np . dot ( v , uhat )
v1 = beta ∗ uhat
v2 = v − v1

v1 norm = np . l i n a l g . norm ( v1 )
v2 norm = np . l i n a l g . norm ( v2 )

cos1 = np . dot ( v1 , uhat ) / v1 norm / uhat norm
angle1 = np . a r c co s ( cos1 ) # Python may complain cos1 i l l e g a l input f o r arccos
cos2 = np . dot ( v2 , uhat ) / v2 norm / uhat norm
angle2 = np . a r c co s ( cos2 )

You may find that the computation of angle1 fails, because the value of cos1 is illegal as input to
np.arccos(). If so, look carefully at the value of cos1, explain what is wrong, and figure out a way to
fix the problem.

Projection decomposes a vector v into two components v1 and v2 which are perpendicular to each other.
This means that the three vectors v, v1, and v2 form a 90 degree triangle, and hence we must have ||v||2 =
||v1||2+ ||v2||2. You can verify this from the previous calculations by printing and comparing v norm**2 and
v1 norm**2+v2 norm**2.
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