
Reduced Row Echelon Form for Matrices
Mathematical Programming with Python

MATH 2604: Advanced Scientific Computing 4
Spring 2025

Monday/Wednesday/Friday, 1:00-1:50pm

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/tiling/tiling.pdf

1 / 24

The Broken Chessboard (Dudeney, 1919)

2 / 24

Pentominoes & Polyominoes (Golomb, 1965)

Can we tile a 6x10 rectangle with the 12 pentominos?

3 / 24

OK, But Is It Math?

“One can guess that there are several tilings of a 6× 10 rectangle using
the twelve pentominoes. However, one might not predict just how many
there are. An exhaustive computer search has found that there are 2339
such tilings. These questions make nice puzzles, but are not the kind of
interesting mathematical problem that we are looking for.”
“Tilings” - Federico Ardila, Richard Stanley

4 / 24

Tile Variations: Reflections, Rotations, All Orientations

5 / 24

Exact Cover

Knuth: “Tiling is a version of the exact cover problem.”

Add selected columns of a 0/1 matrix to form a column of 1’s:

A =



0 1 0 1 0 0
0 0 1 0 1 0
1 0 1 0 0 0
0 1 0 1 0 1
1 0 0 0 0 1
1 0 1 0 0 0
0 1 0 0 1 1



6 / 24

Exact Cover as a Linear System

This is equivalent to
Find x so that A*x=b where b is a vector of 1’s.

Now this is linear algebra!

0 1 0 1 0 0
0 0 1 0 1 0
1 0 1 0 0 0
0 1 0 1 0 1
1 0 0 0 0 1
1 0 1 0 0 0
0 1 0 0 1 1


*


1
0
0
1
1
0

 =



1
1
1
1
1
1
1



7 / 24

Tile the Reid Polygon (pink) with 4 Dominoes (yellow)

8 / 24

The Reid Equations: e1 : e8

The number of tiles above each square ei must be exactly 1!

e1 e2

e3 e4 e5

e6 e7 e8

9 / 24

The Reid Variables x1 : x10

Each variable xj is a particular orientation and position of a domino.

x1

x2

x3

x4 x5

x6

x7 x8

x9 x10

We start to see how the equations and variables combine:

x1 + x6 =1 Cell 1 must be covered once

x3 + x6 =1 Cell 2 must be covered once

x1 + x2 + x7 =1 Cell 3 must be covered once

. 10 / 24

The Reid Equations: 8 Equations, 10 Unknowns

Eight equations (squares in Reid polygon) for 10 variables (position
and orientation of a domino)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b

e1 : x1 +x6 = 1
e2 : +x3 +x6 = 1
e3 : x1 +x2 +x7 = 1
e4 : x3 +x4 +x7 +x8 = 1
e5 : x5 +x8 = 1
e6 : x2 +x9 = 1
e7 : x4 +x9 +x10 = 1
e8 : x5 +x10 = 1

11 / 24

Python set up of linear system

A = np . a r r a y ([\
[1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0] , \
[0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0] , \
[1 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0] , \
[0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0] , \
[0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0] , \
[0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0] , \
[0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1] , \
[0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1]])

#
We need r i g h t hand s i d e to be a column v e c t o r .
#

b = np . a r r a y ([[1] , [1] , [1] , [1] , [1] , [1] , [1] , [1]])
#
Append b to A, and get RREF .
#

Ab = np . h s t ack ([A, b])

RREF = r r e f c ompu t e (Ab)

12 / 24

Reduced Row Echelon Form of Reid Linear System

Notice that variables 7, 9 and 10 are free!

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b

e1 : 1 1 −1 = 0
e2 : 1 1 = 1
e3 : 1 1 −1 = 0
e4 : 1 1 1 = 1
e5 : 1 1 = 1
e6 : 1 −1 1 = 0
e7 : 1 −1 = 0
e8 : = 0

Equation 8 disappears because once we have covered the first 7 cells, cell
8 is guaranteed to be covered.

13 / 24

Drop Zero Row, Add Degrees of Freedom

We add placeholder equations for variables 7, 9 and 10. Each of these
free variables might be 0 (don’t use) or 1 (use).

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b

e1 : 1 1 −1 = 0
e2 : 1 1 = 1
e3 : 1 1 −1 = 0
e4 : 1 1 1 = 1
e5 : 1 1 = 1
e6 : 1 −1 1 = 0
f1 : 1 = 0?/1?
e7 : 1 1 = 0
f2 : 1 = 0?/1?
f3 : 1 = 0?/1?

The RREF tells us which variables are free. If we choose arbitrary values
for them, the RREF lets us solve the complete system.

14 / 24

Python modify RREF system

m = RREF . shape [0]
np1 = RREF . shape [1]
n = np1 − 1

C = np . eye (n)
b RREF = np . z e r o s (n)
f = np . a range (n)

#
Act i v e rows o f RREF r e p l a c e c o r r e s p ond i n g rows o f C .
f r e c o r d s the ” f r e e ” v a r i a b l e s .
#

f o r i i n range (0 , m) :
f o r j i n range (0 , n) :

i f (RREF [i , j] == 1 .0) :
C [j , :] = RREF [i , 0 : n]
b RREF [j] = RREF [i ,−1]
f o r k i n range (l e n (f)) :

i f (f [k] == j) :
f = np . d e l e t e (f , k)
break

break

15 / 24

4 Acceptable Solutions (only 0 and 1 values)

Each column is a solution, specifying which variables xj to use in the
tiling. Some of these are not legal solutions, since they involve stacking 2
tiles on top of each other, or using negative tiles!

✓ ✓ ✓ × × × ✓ ×
x1 : 0 0 1 1 −1 −1 0 0
x2 : 1 1 0 0 1 1 0 0
x3 : 0 0 1 1 −1 −1 0 0
x4 : 1 0 0 −1 1 0 0 −1
x5 : 1 0 1 0 1 0 1 0
x6 : 1 1 0 0 2 2 1 1
x7 : 0 0 0 0 1 1 1 1
x8 : 0 1 0 1 0 1 0 1
x9 : 0 0 1 1 0 0 1 1
x10 : 0 1 0 1 0 1 0 1

16 / 24

Python retrieve legal solutions (only 0 or 1)

from i t e r t o o l s import comb ina t i on s

f o r nz i n range (0 , 5) :
f o r combo i n comb ina t i on s (f , nz) :

bb = b RREF . copy ()
f o r i i n combo :

bb [i] = 1
x = np . l i n a l g . s o l v e (C , bb)
i f (np . a l l ((x == 0) | (x == 1))) :

p r i n t (x)

17 / 24

The Reid Tilings (Labeled)

x6

x2 x4 x5

x6

x2

x10

x8

x1 x3

x9

x5

x6

x7

x9

x5

18 / 24

Bigger Problems Need a Better Solver

The Reid linear system A*x=b was 8 equations in 10 unknowns. It was
easy to write a code to reduce A and b, via reduced row-echelon form;
then to deal with the free variables, and then to eliminate solutions with
unacceptable values. But for larger problems, this approach won’t work.

The row-reduced echelon form (RREF) is very sensitive to roundoff.

Tiling regions can have hundreds of cells (equations/rows = M).

Tiling problems can have tens or hundreds of tiles = T .

A tile may have roughly M configurations, not even counting
rotations and reflections (variables/columns N ≈ T ∗M).

The linear system may have many degrees of freedom D.

The number of possible solutions we will need to check rises like 2D .

To solve interesting problems, need accurate, efficient integer linear
programming solver;

19 / 24

Tiling by Multiple Copies of a Single Polyomino

1 trimino, 4 orientations, 90+1 equations, 272 variables

1,168,512 solutions computed by CPLEX in 3.8 minutes.

20 / 24

Tiling by One Copy of Each Pentomino

12 pentominoes, 1/2/4/8 orients, 60+12+1 equations, 2056 variables

9,356 solutions computed by CPLEX in 7.3 minutes.

21 / 24

Tiling a Nonrectangular Region

8 octominoes, 4 copies each, 265 equations, 9,878 variables

1 solution computed by CPLEX in 13 minutes.
22 / 24

A Large Problem

12 pentominoes, 20 copies each, 1,213 equations, 67,396 variables

8 solutions computed by CPLEX in 9.5 minutes.
23 / 24

Conclusion: Rebuilding with Linear Algebra

To solve a tiling problem, we look for an underlying grid of cells that
define both the region and the tiles. This isn’t always possible!

Equations: Each region cell must be covered, just once.

Equations: Each tile must be used, just once.

Variables: Each rotated, reflected, translated tile remaining in region

Equations + Variables: underdetermined linear system Ax = b.

Reduced Row Echelon Form lets us analyze the system.

Linear Programming Software solves big systems.

We seek binary vectors x whose entries are only 0 or 1.

There may be no such solutions at all.

If there are free variables, we may have multiple solutions.

Any solution x tells us exactly how to use the pieces so we can put a
broken object back together...

24 / 24

