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A tricky path integrates the Gaussian integral to a simple result.

”The sympy library”

• The sympy library supports symbolic calculations;
• Symbolic calculations work with exact data and return exact results.
• Symbolic calculations can fail to produce a usable result if no suitable algorithm is known.
• sympy can produce results for expressions in arithmetic, algebra, integration, limits, summation,
differentiation, differential equations and linear algebra;

• Results can be “translated” to numerical values;

1 The sympy library

The sympy library carries out mathematical operations on symbolic variables and expressions. You are
perhaps more familiar with numerical calculations, in which variables are given finite precision numerical
values, and operated on with finite precision. The results of such operations are numerical, and of limited
precision. The operations carried out by sympy are intended to be mathematically exact; sympy can operate
on formulas rather than numbers, and so, for instance, it can be asked to determine the formula for the
derivative of function, rather than the value of that derivative at a specific argument. At any time, however,
the results of sympy can be evaluated at specific numerical values.

Versions of sympy have been used to build applications in chemistry, circuit analysis, finite elements, linear
algebra, optimization, quantum mechanics, relativity, statistical modeling, and tensor algebra.

The sympy homepage is

https://docs.sympy.org/latest/index.html

and has instructions on downloading and installing the package, as well as a tutorial.
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2 The sympy environment

To work with the sympy library, it is necessary to issue the appropriate import command. Depending on
your taste, you may import every additional sympy function with a separate statement

from sympy import p lo t
from sympy import s i n
from sympy import symbols

which can also be rolled up into a single statement

from sympy import plot , s in , symbols

But if you are going to make extensive use of library functions, it may be worthwhile to import the entire
library

from sympy import ∗

3 Doing simple arithmetic

If you import the entirety of the sympy library, then you can

from sympy import ∗
pi
p i . e v a l f ( ) # eva lua t e to d e f a u l t number o f decimals
pi . e v a l f (30) # eva lua t e to 30 decimal p l a c e s
s q r t ( p i ) . e v a l f (20)
sq r t ( 600 )
f a c t o r i a l (20)
binomial (100 ,30)

What is more important is that you can declare symbolic variables and then manipulate functions of them:

x = symbols ( ’ x ’ )
expr = sq r t ( 1 − cos ( x ) ∗∗2 )
s imp l i f y ( expr ) # sq r t ( s in ( x ) ∗∗2) , NOT sin ( x ) !\
poly = ( x + 7 ) ∗ ( x∗∗2 − 4 ∗ x + 3 )
poly / ( x − 1 )

As we will see, you can do much more with symbolic expressions, including integration, differentiation, series
expansion, and taking limits.

4 Working with the humps() function

For some of the following exercises, we will repeatedly use the “humps()” function to test out features of
sympy. There is nothing special about this function, except that it’s not just a boring old polynomial. We
will be interested in the function especially over the interval 0 ≤ x ≤ 2, and we want to understand how to
define it, evaluate it, plot it, compute derivatives and integrals, request zeros and extreme values, and solve
a related differential equation.

The function can be defined mathematically as:

y(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.04
− 6

but we will see in a moment that we should rewrite the function to avoid the decimal fractions.

Here is a plot of the function:
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5 Defining a function

A symbolic function is simply an expression involving symbolic variables. Our humps() function only depends
on a single variable x. We can define it using normal Python syntax; however, the decimal fractions would
be interpreted as limited precision real values. To avoid this, we multiply top and bottom of the fractions
by 100 to get a form that the symbolic package can handle better.

Here is how we define humps:

from sympy import symbols

x = symbols ( ’ x ’ )

humps = 100 / ( ( 10 ∗ x − 3 ) ∗∗2 + 1 ) \
+ 100 / ( ( 10 ∗ x − 9 ) ∗∗2 + 4 ) \
− 6

6 Evaluating a function

If you have defined an expression involving a symbolic variable, then the subs() operator substitutes a given
symbol, expression, or value for the symbolic variable. If we want to do some numerical calculations with
our symbolic function the lambdify() operator will create a corresponding numerical function for us that
can be evaluated by numpy:

from sympy import cos
from sympy import lambdify
from sympy import symbols
import numpy
import numpy as np

x = symbols ( ’ x ’ )

humps = 100 / ( ( 10 ∗ x − 3 ) ∗∗2 + 1 ) \
+ 100 / ( ( 10 ∗ x − 9 ) ∗∗2 + 4 ) \
− 6
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y = symbols ( ’ y ’ )
humps y = humps . subs ( x , y )
print ( ’ humps . subs (x , y ) = ’ , humps y )

humps cosy = humps . subs ( x , cos ( y ) )
print ( ’ humps . subs (x , cos ( y ) ) = ’ , humps cosy )

humps 1 = humps . subs ( x , 1 )
print ( ’ humps . subs (x , 1 ) = ’ , humps 1 )

z = np . l i n s p a c e ( 0 . 0 , 2 . 0 , 5 )
humps lambda = lambdify ( x , humps , ’numpy ’ )
humps lambda ( z )
print ( ’ humps( z ) = ’ , humps lambda ( z ) )

7 Plotting a function

We may wish to plot a function that has been defined as a symbolic expression. One way to do this would be
to use lambdify() to create a corresponding numpy numerical formula. But there is also a plot() function
available which can work directly with the symbolic expression.

from sympy import symbols
from sympy . p l o t t i n g import p lo t

x = symbols ( ’ x ’ )

humps = 100 / ( ( 10 ∗ x − 3 ) ∗∗2 + 1 ) \
+ 100 / ( ( 10 ∗ x − 9 ) ∗∗2 + 4 ) \
− 6

p = p lo t ( humps , ( x , 0 , 2 ) )

Here we have reset the plot range from its default value of −10 ≤ x ≤ 10. Many other parameters can be
altered as additional arguments to plot(). Several functions can be plotted together; the plot can be saved
to a file. For more information, try

help ( sympy . p l o t )

8 Derivatives

The sympy function diff() computes the derivative of an expression with respect to a variable. Repeated
differentiation and differentiation with respect to multiple variables is possible.

from sympy import d i f f
from sympy import exp
from sympy import symbols

x = symbols ( ’ x ’ )

humps = 100 / ( ( 10 ∗ x − 3 ) ∗∗2 + 1 ) \
+ 100 / ( ( 10 ∗ x − 9 ) ∗∗2 + 4 ) \
− 6

dhumpsdx = d i f f ( humps , x )
d2humpsdx2 = d i f f ( humps , x , 2 )

print ( ’ d humps /dx = ’ , dhumpsdx )
print ( ’ d2 humps /dx2 = ’ , d2humpsdx2 )
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t = symbols ( ’ t ’ )
z = x ∗ exp ( x ∗ t )
dzdx = d i f f ( z , x )
dzdt = d i f f ( z , t )
dz2dt2 = d i f f ( z , t , 2 )
dz2dtdx = d i f f ( z , t , x )

print ( ’ ’ )
print ( ’ z = x ∗ e ˆ(x∗ t ) ’ )
print ( ’ dzdx = ’ , dzdx )
print ( ’ dzdt = ’ , dzdt )
print ( ’ d2zdt2 = ’ , dz2dt2 )
print ( ’ d2zdtdx = ’ , dz2dtdx )

9 Definite and indefinite integrals

Integrals are computed by the integrate() function. If a definite integral is desired, then the integrand is
followed by a tuple containing the variable name and the limits.

from sympy import exp
from sympy import i n t e g r a t e
from sympy import oo
from sympy import symbols

x = symbols ( ’ x ’ )

humps = 100 / ( ( 10 ∗ x − 3 ) ∗∗2 + 1 ) \
+ 100 / ( ( 10 ∗ x − 9 ) ∗∗2 + 4 ) \
− 6

humps anti = i n t e g r a t e ( humps , x )
print ( ’ humps an t i d e r i v a t i v e = ’ , humps anti )

humps def = i n t e g r a t e ( humps , ( x , 0 , 2 ) )
print ( ’ humps i n t e g r a l 0 to 2 = ’ , humps def )
print ( ’ humps i n t e g r a l 0 to 2 ( numeric ) = ’ , humps def . e v a l f ( ) )

print ( ’ ’ )
print ( ’ f = exp ( − x ) ’ )
f = exp ( − x )
f a n t i = i n t e g r a t e ( f , x )
f d e f = i n t e g r a t e ( f , ( x , 0 , oo ) )
print ( ’ f a n t i d e r i v a t i v e = ’ , f a n t i )
print ( ’ f i n t e g r a l 0 to oo = ’ , f d e f )

y = symbols ( ’ y ’ )
double = exp ( − x∗∗2 − y∗∗2 )
doub l e de f = i n t e g r a t e ( double , ( x , −oo , oo ) , ( y , −oo , oo ) )
print ( ’ ’ )
print ( ’ double = exp ( − x∗∗2 − y∗∗2 ) ’ )
print ( ’ double i n t e g r a l −oo < x < 00 , −oo < y < oo = ’ , doub l e de f )

10 Polynomials

Polynomials can be defined in one or several symbolic variables. The usual operations of addition, multi-
plication and exponentiation can be carried out. The factor() and expand() commands can be used to
rewrite a polynomial in terms of its factors, or to multiply factors into a power sum format. The apart()

function can be used to rewrite a polynomial fraction as partial fractions.
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from sympy import apart
from sympy import expand
from sympy import f a c t o r
from sympy import symbols

x = symbols ( ’ x ’ )

p = x∗∗2 − 5 ∗ x + 6
q = 3 ∗ x − 2

print ( ’ p (x ) = ’ , p )
print ( ’ p (7 ) = ’ , p . subs (x , 7 ) )
print ( ’ p . f a c t o r ( ) = ’ , p . f a c t o r ( ) )
print ( ’ p∗∗2 = ’ , p∗∗2 )
print ( ’ p∗∗2 . expand = ’ , (p∗∗2) . expand ( ) )

print ( ’ q ( x ) = ’ , q )
print ( ’ p + q = ’ , p + q )
print ( ’ p ∗ q = ’ , p ∗ q )
print ( ’ p ∗ q . expand = ’ , ( p ∗ q ) . expand ( ) )
print ( ’ p / q = ’ , p / q )
print ( ’ apart ( p / q ) = ’ , apart ( p / q ) )

r = ( x + 1 ) ∗ ( x − 2 ) ∗ ( x − 3 )
print ( ’ r ( x ) = ’ , r )
print ( ’ r . expand ( ) = ’ , r . expand ( ) )

11 Limits

The limit() function has the format

e xp r l im i t = l im i t ( expr , argument , argument l imit )

and tries to determine the limit of the given symbolic expression as the argument approaches the argument
limit. Here are examples of this operation:

from sympy import l im i t
from sympy import l og
from sympy import oo # This i s how you ” s p e l l ” i n f i n i t y !
from sympy import s i n
from sympy import symbols

x = symbols ( ’ x ’ )
r e s u l t = l im i t ( s i n ( x ) / x , x , 0 )
print ( ’ l im i t ( s i n ( x ) / x ) as x −> 0 = ’ , r e s u l t )

r e s u l t = l im i t ( l og ( x ) / x , x , oo )
print ( ’ l im i t ( l og ( x ) / x ) as x −> oo = ’ , r e s u l t )

n = symbols ( ’n ’ )
expr = ( 1 + x / n ) ∗∗n
r e s u l t = l im i t ( expr , n , oo )
print ( ’ l im i t ( ( 1 + x/n ) ∗∗n ) as n −> oo = ’ , r e s u l t )

12 Series

The series() function can be used to request the series expansion of a symbolic function. The input
consists of the formula for the function, the variable, the variable value at which the expansion is to take
place (default 0), and the degree of the first neglected term (default 6).
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from sympy import cos
from sympy import exp
from sympy import l og
from sympy import s e r i e s
from sympy import s i n
from sympy import symbols

x = symbols ( ’ x ’ )

r e s u l t = s e r i e s ( exp ( s i n ( x ) ) , x , 0 , 4 )
print ( r e s u l t )

r e s u l t = s e r i e s ( l og ( x ) , x , 1 , 3 )
print ( r e s u l t )

r e s u l t = s e r i e s ( (1+x) ∗exp (x ) , x , 0 , 4 )
print ( r e s u l t )

r e s u l t = s e r i e s ( exp (x ) / cos ( x ) , x , 0 , 6 )
print ( r e s u l t )

13 Differential equations

The solution of an ordinary differential can be requested using the dsolve() function. A symbol, perhaps
’y’, must be declared to represent the solution function. The differential equation is rewritten as a quantity
that must equal zero. Initial conditions are not included in the description.

Here are several examples of ODE solution requests:

from sympy import d i f f
from sympy import dso lve
from sympy import Function
from sympy import symbols

t = symbols ( ’ t ’ )
y = symbols ( ’ y ’ , c l s = Function )

s o l = dso lve ( y ( t ) . d i f f ( t ) + y( t )∗(1−y ( t ) ) , y ( t ) )
print ( ’ y−y(1−y )=0 so lved by ’ , s o l )

s o l = dso lve ( y ( t ) . d i f f ( t , 2 ) + y ( t ) , y ( t ) )
print ( ’ y”+y=0 so lved by ’ , s o l )

s o l = dso lve ( t ∗y ( t ) . d i f f ( t ) + y ( t ) − y ( t ) ∗∗2 , y ( t ) )
print ( ’ ty\ ’+y−y∗∗2=0 so lved by ’ , s o l )

14 Linear algebra

The sympy library includes a Matrix datatype for which a number of linear algebra operations are available.
Note that the procedure for solving a linear system A∗x = b is somewhat awkward, since you are required to
form the augmented matrix |Ab| and provide individual symbolic scalars for each component of the solution.
Computing eigenvalues is possible, but the symbolic expressions for these quantities can be very complicated.

Here is an example code which performs some operations on the usual second difference matrix:

from sympy import det
from sympy import Matrix

7



from sympy import s o l v e l i n e a r s y s t em
from sympy import symbols

A = Matrix ( [ \
[ 2 ,−1 , 0 , 0 ] , \
[−1 , 2 ,−1 , 0 ] , \
[ 0 ,−1 , 2 ,−1] , \
[ 0 , 0 ,−1 , 2 ] ] )

x = Matrix ( [ 1 , 2 , 3 , 4 ] )
b = A ∗ x

print ( ’ A = ’ , A )
print ( ’ x = ’ , x )
print ( ’ b = A∗x = ’ , b )

x1 , x2 , x3 , x4 = symbols ( ’ x1 x2 x3 x4 ’ )
A2 = Matrix ( [ \

[ 2 ,−1 , 0 , 0 , b [ 0 ] ] ,\
[−1 , 2 ,−1 , 0 , b [ 1 ] ] ,\
[ 0 ,−1 , 2 ,−1 , b [ 2 ] ] ,\
[ 0 , 0 ,−1 , 2 , b [ 3 ] ] ] )

s o l u t i o n = s o l v e l i n e a r s y s t em ( A2 , x1 , x2 , x3 , x4 )
print ( ’ Solved A∗x=b = ’ , s o l u t i o n )

A determinant = A. det ( )
print ( ’ det (A) = ’ , A determinant )

A inver se = A∗∗(−1)
print ( ’ A i nv e r s e = ’ , A inver se )

I = A ∗ A inver se
print ( ’ A ∗ A inver se = ’ , I )

A eigen = A. e i g enva l s ( )
print ( ’ A e i g enva lu e s : mu l t i p l i c i t y = ’ , A eigen )

return
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