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A three way duel occurs in the film “The Good, the Bad, and the Ugly”.

Simulation

• A stochastic process is described by a state that changes over time;
• The process includes a random element, which means the evolution from one state to the next
is not predetermined;

• Simulating the process many times yields statistics such as average and variance;
• Histograms can be used to estimate an underlying probability density function;
• Simulations can suggest properties of a system that might be provable mathematically.

1 Simulation

In a previous discussion, we consider a problem in which we imagined that a fly landed at a randomly chosen
position on a circular plate, for which the distance d from the center was a quantity of interest. Although
mathematically we can’t predict the actual position, we can imagine that if this event was an experiment,
carried out many times, we could say something about the average distance d̄, sometimes written as µ(d).
It’s also important to know how far from the mean a typical result will lie, which is reported in the variance
σ2(d).

For this simple problem, the mean and variance can be determined directly using integration. However,
we were also able to make reasonable estimates using simulation. That is, we made a probabilistic model
of the situation, executed it many times, and analyzed the results. Simulation is the creation and analysis
of models of physical processes that involve random elements. It allows us to compare our results with
mathematical approaches, or even to discover an unknown mathematical pattern, or especially to come up
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with a statistical description of a random process for which no mathematical approach can be carried out in
a reasonable amount of time and effort.

We will look at a variety of relatively simple problems that illustrate the techniques of simulation.

2 Two flies land on a plate

The problem of one fly landing on a square or circular plate was not too difficult to solve exactly, and to
approximate computationally. But what happens if we assume that two flies land on a square plate, the
[0, 1]× [0, 1] unit square. Suppose we want to know the average distance d between the pair of them?

Mathematically, it’s not so clear how to formulate an integral representation of what is happening. Presum-
ably, we would need some sort of quadruple integral of the pairwise distance over all values of x1, y1, x2, y2.
And while it’s easier to sample the unit square than the unit disk, it turns out to be much harder to
mathematically determine the mean and variance of the correspodning distance function.

On the other hand, computationally, it’s quite easy to estimate these quantities!

Purpose:

Simulate two flies randomly landing in a square of "radius" 1

Input:

n: the number of simulations

Output:

d(n): the pairwise distance for each simulation

Compute

d = array of size n

Iterate n times, on i

Generate two random values (x1,y1) in [-1,+1]

Generate two random values (x2,y2) in [-1,+1]

Compute d[i] = ||(x1,y1)-(x2,y2)||

Return d

Once we have the array d we can easily compute the statistics we are interested in.

For the two flies on a square plate problem, the exact formulas for mean and variance are known, but they
were hard to work out, and even a little scary to look at:

µ = (
√
2 + 2 + 5 log(1.0 +

√
2))/15.0 ≈ 0.5214

σ2 = (69− 4
√
2− 10(2

√
2 sinh−1(1)− 25(sinh−1(1))2)/225 ≈ 0.0615

σ =
√
σ2 ≈ 0.2479

If we use an increasing number of sample points n, we can see that our estimated statistics gradually approach
the exact mathematical values, although not monotonically!:

n dmin dmean dmax dvar dstd ||dmean-exact||

10 0.2214 0.5277 0.9535 0.0741 0.2009 0.0063

100 0.0444 0.5152 1.0284 0.0651 0.2287 0.0062

1000 0.0113 0.5194 1.1999 0.0609 0.2443 0.0020

10000 0.0050 0.5185 1.2643 0.0608 0.2482 0.0029

Exact 0.0000 0.5214 1.4142 0.0615 0.2479
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Because the region is a square, the frequency versus distance d behaves noticeably differently over the ranges
d < 1 and 1 < d. The exact formula for the probaility of a distance d is rather scary:

pdf(d) =

{
2 · d · (d2 − 4 · d+ π) d ≤ 1

2 · d · (4 ·
√
d2 − 1− (d2 + 2− π) − 4 ∗ arctan(

√
d2 − 1)) 1 ≤ d

}
To see how the probability curve changes for 1 < d, we convert our frequency histogram into an estimated
probabliity density function, and compare it to the exact formula:

It’s easy to understand the histogram when it’s measuring frequency, that is, how often a value of distance
d fits into one of the bins. If we think of a histogram bin as having left and right limits, we could imagine
the height of the histogram bar as counting the number of d values that fall in that range, which we could
write in pseudo Python as:

ybin = sum ( ( d b i n l e f t <= d [ : ] ) & ( d [ : ] < db in r i gh t ) )

If we convert our histogram into a PDF by adding the argument density = True to the plt.hist() call,
then we can interpret the plot as follows. For any two distance values d1 and d2, the probability that we
will observe a distance x between these values is

prob(d1 <= x <= d2) =

∫ d2

d1

pdf(x) dx

Thus, the PDF must integrate to 1, since the probability that d has some value in the range must be 1.

The fact that our data matches the exact PDF so well gives us some confidence that our simulation is correct,
and that we have used about the right number of samples n in order to get a good estimate.

3 Sudden death

A deck contains 10 cards, numbered 0 through 9. A superstitious man named Allen has been told that,
every morning, he must shuffle the deck and then turn over the top card. If it’s the 0 card, then it’s time
for him to die. His sister Brenda finds out about this situation in the afternoon of day 6.

What are the chances that Allen is still alive? On what day does it first become more likely than not that
Allen is dead? If Brenda did not interfere, how many days on average would Allen have lived before picking
the 0 card? This number could be as low as 1 day, (very unlucky), and it is theoretically possible that Allen
never picks the 0 card, although the probability of living a long time must decrease to an extremely low
value.
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We can answer these questions mathematically, but let’s look at a computational approach. Let’s start with
the last question. How many times on average would Allen pick a card from the deck until drawing the 0?

To estimate the situation, we can imagine creating n copies of Allen, and having each one go through the
card reading process until turning up the dreaded zero card.

Input n, the number of simulations to be done.

Create the deck as a numpy array of the numbers 0 through 9.

For the i-th of the n copies of Allen,

Start the i-th day count at 0.

While Allen[i] is still alive:

Increase day count[i] by 1.

Shuffle the deck.

Take the top card.

If the top card is 0, break.

Return the array of n day counts.

Here are some results for various values of n:

Estimate average wait until turning over card 0 out of 10.

n min mean max std

10 2 8.4 22 6.8

100 1 10.1 36 9.4

1000 1 10.0 81 9.3

10000 1 10.1 101 9.5

100000 1 10.1 103 9.6

It looks like our estimates for the mean and standard deviation have settled down. It’s no surprise that the
minimum is 1. It can be shown using algebra that the mean is exactly 10. It’s not clear how we should
describe the growth of the maximum wait, as n increases. Theoretically, this value has to go to infinity. How
it goes to infinity as a function of n can be of interest to mathematicians!

If we look at the PDF version of the data we can see a smooth behavior, and it certainly seems unlikely for
Allen to survive 20 days or more!

Instead of shuffling the entire deck and taking the top card, we could have modeled the repeated choosing
of a card from a deck by using the function np.random.randint(low=0,high=10,replace=True), since the
card chosen is replaced in the deck after each pick.
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4 Catching the Last Wolf

A virus is infecting the 300 wolves in Yellowstone Park. The virus is harmless to wolves, but deadly to cattle.
Sometimes a wolf will wander out of the park into a nearby cattle herd. The local cattle ranchers demand
that a fence be put up around the park (too expensive) or the wolves all be shot (politically controversial)
or else every single one of the wolves must be vaccinated.

The decision is made to go with the vaccination option. Of course, the wolves are wild, and are not about
to line up and get their shots in order. A park ranger is given the vaccination job. There is a small trap in
the park which can be baited; every night, it catches one wolf at random, which can then be vaccinated, and
released back into the park. It is an unrealistic part of our model that each time this process captures a wolf
uniformly at random. Obviously, we can expect that after a while, we sometimes capture a vaccinated wolf.
In fact, the longer we work, the less likely it becomes to capture the few remaining unvaccinated animals.
Luckily, every wolf has a serial number tatooed on their neck, so the ranger doesn’t vaccinate them twice.
Moreover, by recording the serial numbers of the captured wolves, we will know when they have all been
vaccinated.

Eventually the ranger will trap every wolf at least once, and complete the task. But can we tell the ranger
an estimate for how many days will be needed to encounter every one of the wolves? In particular, because
of wolf breeding patterns, the project needs to be completed within a year.

5 The Full Deck Problem

At this point, it helps to use analogy. Suppose once again that we have a deck of cards, and that we
repeatedly draw one card, look at it, and then replace it. Suppose that our goal is to see every card in the
deck. We could reasonably wonder how long it would take, on average, for us to do this. This problem
is similar to the “sudden death” problem, except that now we don’t complete our task until every card is
exposed at least once. If we can adjust our sudden death model to this new problem, then a second simple
adjustment in size will give us a tool for the wolf vaccination effort.

It is probably hard to decide what a reasonable estimate for the average waiting time would be. With a 10
card deck, our average wait to observe the 0 card was 10 draws, and with a 52 card deck it was 52 draws.
But how is our waiting time changed when we need to see every card?.

It’s time to try a simulation of the “full deck” problem.

Purpose:

Simulate drawing and replacing a card at random until all have been seen.

Input:

n = number of trials

card_num = number of cards in deck

Output:

count: array of size n, number of cards drawn for each trial

For 0 <= i < n

count[i] = 0

seen = array of length card_num = 52, initialized to 0

While ( not all cards have been seen )

count[i] = count[i] + 1

Randomly select a card from the deck.

Note j, the index of the card.

Increment seen[j]

Return count
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Let’s carry out this experiment n = 10 times, for a deck of card num=52 and record the minimum, mean,
and maximum entries in the seen() array, as well as the count of the total number of cards we had to pick.
Our results show that guessing 100 as the average value of count was quite an underestimate!

Try Min Mean Max Count
0 1 4.79 9 249
1 1 5.65 11 294
2 1 5.21 10 271
3 1 4.40 12 229
4 1 5.62 12 292
5 1 4.15 11 216
6 1 5.29 11 275
7 1 3.60 8 187
8 1 5.85 11 304
9 1 4.21 10 219

We can try to see some regularity in the results by looking at increasing number of tries, up to n = 10, 000
simulations. At this point, we can believe the estimate that the average value of count is about 236, with a
typical range of between 170 and 300 cards for any single try.

N Min Mean Max Std

10 162 267.00 479 87.20

20 157 244.65 350 61.07

50 144 228.08 444 58.25

100 121 233.26 390 54.67

1000 113 241.56 557 65.82

10000 99 236.59 851 65.81

Plotting the PDF for the total number of cards drawn shows that, while our most likely result is around
200, there’s a pretty good chance of needing between 300 and 400 draws before we see the full deck. This
problem has something of a “fat tail”, that is, there is a small but significant chance of a very expensive
result.

6 Back to the wolf pack!

Now it’s a simple task to modify the full deck simulation so that we can interpret it as predicting the results
for the wolf vaccination. Essentially, we simply replace the pack of 52 cards by a pack of 300 wolves. Again,
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we experiment with the number n of trials, hoping to see that our statistics begin to settle down.

N Min Mean Max Std

10 1378 1967.80 2910 481.49

20 1217 1895.95 2749 407.37

50 1312 1789.46 2880 302.47

100 1240 1854.07 4252 390.00

1000 1117 1874.83 3659 371.31

10000 1082 1884.69 4449 380.79

and now we have to give the ranger the bad news that the vaccination project, as designed, is likely to take
more than 5 years to complete. At that rate, it’s very like the project will fail as new wolves are being born
each spring, a factor we did not think we needed to take into account if we could complete the work within
a year!

The PDF histogram shows us that the range of 1500 to 2000 days is very likely, but that much longer
intervals are also possible!

7 Simulating a duel

In a duel to the death, two enemies alternate taking turns firing at each other until one is hit.

Let us suppose that Anne and Barbara are going to participate in a duel to the death. The duel begins
when Anne fires at Barbara; if Anne misses, then Barbara gets a turn to fire at Anne, and the two enemies
alternate turns until one of them is hit. Every time Anne fires, she has a probability of pa of hitting Barbara;
similarly, Barbara’s accuracy is pb.

Here are several questions we can consider, asuming we know the values of pa and pb:

• Who is likely to win this duel?
• What is the probablity of winning?
• On average, how many shots will be fired?
• How would these answers be different if Barbara had the first shot?
• If both participants have a 50% accuracy, what is the probability that the first person wins?
• What new values of pa and pb would guarantee a “fair” duel, in which each participant would have a
50% chance of winning?
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Again, these questions can be answered exactly using mathematics and probability theory. However, the
answers may involve summing an infinite seriers. And if any detail of the story is changed, a new infinite
series would have to be treated. And in some cases, the problem can become too difficult to give an exact
mathematical answer.

We consider simulating the duel as follows:

Name:

duel_simulation ( p, n )

Purpose:

Simulate a duel, returning survivor and number of shots

Input:

p[2], contains pa and pb, the probability that the first and second

shooters hit a target

n, the number of trials

Compute:

wins = np.array ( [ 0, 0 ] )

shots = np.zeros ( n )

for 0 <= i < n # Perform n trials

while ( True )

for 0 <= j < 2 # Let player j take a shot

r = random_number

shots[i] = shots[i] + 1

if r <= p[j]

wins[j] = wins[j] + 1

break

return wins, shots

Suppose that our accuracy values are pa=0.25 and pb=0.30, so that Barbara is somewhat more accurate
than Anne. We might run our simulation for a single trial, and discover that Anne misses, Barbara misses,
and then Anne hits, becoming the winner with 3 shots fired.

A single trial doesn’t really tell us much about the typical behavior of the duel, the likelihood of Barbara
winning, or the typical number of shots fired. To be comfortable with making such statements, we might
want to instead consider n=100 duels, and average the results, as follows:

n = 100
p = np . array ( [ 0 . 25 , 0 .30 ] )
wins , shot s = due l s imu l a t i on ( p , n )
print ( ’ Anne winning p r obab i l i t y = ’ , wins [ 0 ] / n )
print ( ’ Barbara winning p r obab i l i t y = ’ , wins [ 1 ] / n )
print ( ’ Average number o f shot s = ’ , shot s / n )

In that case we might get the following information:

Probability Anne wins: 0.51

Probability Barbara wins: 0.49

Average number of shots fired = 3.57
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Surprisingly, this duel seems almost perfectly fair, despite the difference in accuracy between the two players.
Although we might suspect 100 duels is enough to estimate the statistics, we can repeat the simulation 1000
times and see what we get:

Probability Anne wins: 0.508

Probability Barbara wins: 0.492

Average number of shots fired = 3.794

So while the winning probabilities stay close, the number of bullets fired does seem to have been a little
underestimated in the first study.

What happens if we switch the order of the two opponents?

Probability Barbara wins: 0.614

Probability Anne wins: 0.386

Average number of shots fired = 3.716

Although the accuracies of the two players were close, giving the more accurate player the first shot makes
a big jump in the survival rates.

Suppose that instead of a duel, we had a truel, that is, a group of three people, who take turns firing a
shot at one of their opponents. If they are required to fire at the “next” person in order, then it is a simple
matter to model what happens. But suppose that we allow each person to choose their target. Suppose,
further, that the accuracies of each shooter are known. Then it might make sense for the weaker players to
always fire at the strongest one. This is a game in which there can be different strategies, and simulation
can quickly show the advantages of choosing your target correctly!
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