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How the surface of a drum can vibrate.

”The scipy library”

• scipy offers tools for scientific computation;
• scipy.csgraph sets up and solves very large sparse linear systems;
• scipy.fft works with Fast Fourier Transforms.
• scipy.integrate estimates integrals and solves differential equations;
• scipy.interpolate uses given data to estimate a function at new arguments;
• scipy.io read and write MATLAB mat files;
• scipy.linalg carries out linear algebra operations, including solving full or rectangular linear
systems, and computing eigenvalues;

• scipy.ndimage carries out image processing;
• scipy.optimize seeks the arguments that minimize a function;
• scipy.signal signal processing;
• scipy.spatial geometry functions (hull, Voronoi, Delaunay);
• scipy.special evaluates special functions
• scipy.stats evaluates statistical functions;

1



1 A Python library for scientific computation

The scipy library adds functions that are needed for computations across fields such as biology, chemistry,
engineering, physics, statistics.

In most cases, scipy work with arrays from numpy and hence are vectorized. They often rely on underlying
code compiled in Fortran, C, or C++, and hence are highly optimized.

Installation instructions and documentation are available at https://scipy.org/.

The scipy library is organized into sublibraries, some of which will be considered in the following discussion.

2 scipy.special

The scipy.special library can evaluate many of the special functions used in probability, thermodynamics
and physics. These include Airy, Bessel, Beta, Elliptic, Error, Gamma, and many statistical functions.
Operations include evaluation, integration, differentiation, zeros and inverses.

To access a specific function, use an import statement:

from s c ipy . s p e c i a l import a i r y

For help on the entire library, try:

from s c ipy import s p e c i a l
help ( s p e c i a l )

As an example, scipy.special includes jn(n,x), which evaluates the Bessel Jn(x) function at the point
x. Bessel functions are a generalization of the sine function, and are important in problems involving heat
conduction and membrane vibration.

Here is a plot of Jn(x) for 0 ≤ n ≤ 4:

Example E8.3, from our textbook by Christian Hill, considers possible modes of vibration of a circular drum
head. The parameters m and n control how many wiggles occur in the radial and angular directions. The
radial variation is described by a Bessel function Jn(r), while the angular variation involves sin(nθ).
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The following code computes the mode for m = 3, n = 2.

def drum normal modes ( ) :

from s c ipy . s p e c i a l import jn
from s c ipy . s p e c i a l import j n z e r o s
import matp lo t l i b . pyplot as p l t
import numpy as np

r = np . l i n s p a c e ( 0 . 0 , 1 . 0 , 101 )
theta = np . l i n s p a c e ( 0 . 0 , 2 . 0 ∗ np . pi , 101 )

R, T = np . meshgrid ( r , theta )
X = R ∗ np . cos ( T )
Y = R ∗ np . s i n ( T )

n = 3
m = 2
b e s s e l z e r o s = j n z e r o s ( n , m + 1 )
k = b e s s e l z e r o s [m]
Z = R ∗ np . s i n ( n ∗ T ) ∗ jn ( n , R ∗ k )

p l t . c l f ( )
p l t . contour ( X, Y, Z )
p l t . show ( )

and the resulting contour plot (green is up and blue is down) is:

3 scipy.integrate for integrals

The scipy.integrate library can estimate the integral over some interval [a, b] or rectangular domain, of a
function f(x) given as a formula. It can also estimate integrals when the function is only available as sample
data values. Special cases can handle integration over rectangular regions in 2D and 3D.

The integrator quad() is recommended for the most common case, in which a function f(x) is to be integrated
over an interval. As our integrand, we will choose the Bessel Jv(x) function. Here, the suffix v indicates
that the Bessel parameter is a real number, not an integer. Our integration interval is 0 ≤ x ≤ 4.5 and our
v parameter is 2.5.
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The code to estimate the integral is as follows:

def b e s s e l j q u ad ( ) :
from s c ipy . i n t e g r a t e import quad
xmin = 0 .0
xmax = 4 .5
r e su l t , e r r = quad ( integrand , xmin , xmax )
print ( ’ I n t e g r a l e s t imate i s ’ , r e s u l t )
print ( ’ Error e s t imate i s ’ , e r r )
return

def in tegrand ( x ) :
from s c ipy . s p e c i a l import jv
va lue = jv ( 2 . 5 , x )
return value

Notice that we are passing the absolute minimum information to quad(), and that we get an estimated error
for the integral that is returned.

Other functions are available for which the user can request a specific error tolerance, require that a certain
Gauss quadrature rule be used, or in other ways modify the procedure by which an integral is estimated.

4 scipy.integrate for differential equations

In an earlier class, we already encountered the function solve ivp() for solving one or several ordinary
differential equations. For completeness, we will included a short example of this calculation here, involving
a version of the logistic equation:

dy

dy
= 2 ∗ y ∗ (3− y)

with initial condition y(0) = 1, to be solved over the interval 0 ≤ t ≤ 4. Here is how we might use
solve ivp() and plot the resulting solution:

def l o g i s t i c o d e ( ) :
from s c ipy . i n t e g r a t e import s o l v e i v p
import matp lo t l i b . pyplot as p l t
import numpy as np
tmin = 0 .0
tmax = 4 .0
y0 = np . array ( [ 1 . 0 ] )
s o l = s o l v e i v p ( l o g i s t i c d yd t , [ tmin , tmax ] , y0 )
p l t . p l o t ( s o l . t , s o l . y [ 0 ] )
p l t . show ( )
return

def l o g i s t i c d y d t ( t , y ) :
dydt = 2 .0 ∗ y ∗ ( 3 . 0 − y )
return dydt

Notice that the result is returned as a structure called sol which includes the values of time and the solution,
but also a number of other pieces of information.

5 scipy.ndimage

The scipy.ndimage library provides functions for manipulating images, which might be stored as .png files.
Typical operations include creating a new image from a portion of the original, modifying the color range,
searching for edges, rotating the image, coarsening or smoothing.
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Here is a simple example in which we read in an image file, display it, rotate it, and blur it using a Gaussian
filter.

import matp lo t l i b . pyplot as p l t
import numpy as np
import s c ipy as sp
import s c ipy . ndimage as nd

f a c e = p l t . imread ( ’ f a c e . png ’ )
p l t . imshow ( f a c e )
p l t . show ( )

f a c e r o t a t e d = nd . r o t a t e ( face , 45 )
p l t . imshow ( f a c e r o t a t e d )
p l t . show ( )

f a c e b l u r r e d = nd . g a u s s i a n f i l t e r ( face , sigma = 3 )
p l t . imshow ( f a c e b l u r r e d )
p l t . show ( )

6 scipy.optimize

The scipy.optimize library is given a function f(x) and seeks a value x for which f(x) attains a maximum
or minimum value. The argument x can be a scalar or a vector. The function f(x) might itself also be a
vector, in which case a least squares approach might be used, seeking to minimize ||f(x)||. The search may
be restricted to an interval or other bounded domain, or there may be other constraints imposed.

As an easily understood introduction, we consider the minimization of a polynomial function

p(x) = x4 − 3x3 − 24x2 + 28x+ 48

We can specify a bounding interval for the function, but if we don’t, the search will begin in the interval
[0,1].

Here is a plot of the function

Here is a brief code that sets up the problem and requests a minimizer:

5



def polynomia l minimize ( ) :

import numpy as np
from s c ipy . opt imize import min im i z e s ca l a r

r e s u l t = min im i z e s ca l a r ( p )
print ( ’ Minimizer found at ’ , r e s u l t . x )
print ( ’ p (x ) = ’ , p ( r e s u l t . x ) )
return

def p ( x ) :
va lue = x∗∗4 − 3 .0 ∗ x∗∗3 − 24 ∗ x∗∗2 + 28 ∗ x + 48
return p

The code finds a (local) minimizer at around x = −2.84 where p(x) = −91.32. From the plot, we can
see a better minimizer and we could redirect the code to search for it by adding an argument such as
bounds=[0,6].

As a more advanced optimization problem, we consider the minimization of the Himmelblau function

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2

starting from an initial guess at (x, y) = (0, 0).

Here is a contour plot of the function

Here is a brief code that sets up the problem and requests a minimizer:

def himmelblau minimize ( ) :

import numpy as np
from s c ipy . opt imize import minimize

s t a r t = np . array ( [ 0 . 0 , 0 . 0 ] )
r e s u l t = minimize ( himmelblau , s t a r t )
print ( ’ Minimizer found at ’ , r e s u l t . x )
print ( ’ f (x , y ) = ’ , himmelblau ( r e s u l t . x ) )
return
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def himmelblau ( x ) :
f = ( x [ 0 ]∗∗2 + x [ 1 ] − 11 .0 ) ∗∗2 + ( x [ 0 ] + x [ 1 ]∗∗2 − 7 .0 ) ∗∗2
return f

In this example, at the starting value, we have f(0, 0) = 170, while at the minimizer, we find f(3, 2) =
1.3e− 13.

The optimize library includes several functions which actually seek a root of a function f(x), that is, a
value such that f(x) = 0. As an example, consider the following rather nasty function:

f(x) =
1

5
+ x cos(

3

x
)

for which we seek a root in the interval −0.7 ≤ x ≤ −0.5.

Here is a plot of the function

A code to seek a root could be:

import numpy as np
from s c ipy . opt imize import brentq

x = brentq ( lambda x : 0 . 5 + np . cos (3/x ) , −0.7 , −0.5 )

print ( ’ Root found at ’ , x )
print ( ’ f ( x ) = ’ , 0 . 5 + np . cos (3/x ) )
return

In this example, the code estimates the root at x = −0.59 with f(x) = −3.30e− 15.

7 scipy.interpolate

The scipy.interpolate library is given a list of pairs of data values {xi, yi}, and is asked to construct an
interpolating function f(x) such that f(xi) = yi. The interpolating function may be a spline, a piecewise
function whose parts are of degree 0, 1, 2, or 3, or a polynomial. Interpolation can also be done in higher
dimensions, where, for example, a function f(x, y) = z is desired which matches data triples {xi, yi, zi}.
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The function interp1d() will be used to illustrate a few of the options for spline interpolation in the 1D
case. Here, we have a hidden function which we sample to get 8 data values. We then request interpolants
of type ‘nearest’, ’linear’, and ’cubic’, and plot them as well as our known function.

def interp1d example ( ) :

from s c ipy . i n t e r p o l a t e import i n te rp1d
import matp lo t l i b . pyplot as p l t
import numpy as np

x = np . l i n s p a c e ( 0 . 0 , 0 . 5 , 8 )
y = f ( x )

f n e a r e s t = inte rp1d ( x , y , kind = ’ nea r e s t ’ )
f l i n e a r = inte rp1d ( x , y , kind = ’ l i n e a r ’ )
f c u b i c = inte rp1d ( x , y , kind = ’ cubic ’ )

x2 = np . l i n s p a c e ( 0 . 0 , 0 . 5 , 101 )

p l t . p l o t ( x , y , ’ o ’ , l a b e l = ’ data po in t s ’ )
p l t . p l o t ( x2 , f ( x2 ) , l a b e l = ’ exact ’ )
p l t . p l o t ( x2 , f n e a r e s t ( x2 ) , l a b e l = ’ nea r e s t ’ )
p l t . p l o t ( x2 , f l i n e a r ( x2 ) , l a b e l = ’ l i n e a r ’ )
p l t . p l o t ( x2 , f c u b i c ( x2 ) , l a b e l = ’ cubic ’ )
p l t . g r i d ( True )
p l t . l egend ( )
p l t . show ( )
return

def f ( x ) :
import numpy as np
value = 10 ∗ np . exp ( − 2 .0 ∗ x ) ∗ np . cos ( 2 . 0 ∗ np . p i ∗ 4 .0 ∗ x )
return value

Here is a plot showing the data points as dots, the three interpolants, and the original function which
generated the data.

In this example, the piecewise linear function doesn’t do badly, while the cubic spline does a very good job
of producing a function similar to the original.
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8 scipy.linalg

The scipy.linalg library includes many utilities for work in linear algebra, involving norms, multiplication
of matrices and vectors, matrix factorizations, solving linear systems whether full, under-determined or
over-determined, and the determination of eigenvalues.

We will look at a common problem in which we are given a matrix A, a right hand side b, and want to
compute a vector x such that A ∗ x = b.

The code is as follows:

def l i na l g examp l e ( ) :
import numpy as np

n = 5
A = np . random . randint ( low = 1 , high = 9 , s i z e = [ n , n ] )
A = A. reshape ( n , n )

x = np . arange ( 1 , n + 1 )

b = np . dot ( A, x )

x2 = np . l i n a l g . s o l v e ( A, b )

print ( ’ Computed s o l u t i o n x : ’ )
print ( x2 )
e = np . l i n a l g . norm ( np . dot ( A, x2 ) − b )
print ( ’ | | e r r o r | | =’ , e )

return

9


