
Reduced Row Echelon Form for Matrices
Mathematical Programming with Python

MATH 2604: Advanced Scientific Computing 4
Spring 2025

Monday/Wednesday/Friday, 1:00-1:50pm
Room A202 Langley Hall

https://people.sc.fsu.edu/∼jburkardt/classes/python 2025/rref/rref.pdf

This chess layout is almost in row echelon form!

1 The Reduced Row Echelon Form

There are some important features of a matrix that are worth knowing. Such features include singularity,
the determinant, the inverse, the rank, and the solution of related linear systems. It is usually not possible
to determine these quantities simply by inspection of the matrix entries. Instead, we usually try to gently
transform the matrix to an equivalent form, in which these questions are more easily answered.

One technique is to determine the reduced row echelon form or RREF of the matrix. The RREF has a
simple structure that makes it easy to answer our questions. As a programming exercise, the RREF can be
computed interactively, and requires the programmer to be familiar with the rules for array indexing and
modification.

Although there are other techniques for analyzing a matrix, we will examine the RREF because if is both
useful, and moderately challenging, and involves many of the operations necessary for any matrix analysis.

2 Definition of the RREF

Define the pivot of each matrix row as the first nonzero entry, if any.

1

Then an m× n matrix is in row echelon form if

1. zero rows, if any, occur after all other rows;

2. The pivot of each row occurs in a later column than the pivots of all preceding rows.

3. Every pivot has the value 1.

4. Every pivot is the only nonzero entry in its column.

The identity matrix and the zero matrix are extreme examples of RREF. Here is a more general example:

A =


1 3 0 9 4
0 0 1 7 8
0 0 0 1 −3
0 0 0 0 0


3 Identify any RREF matrix

Our challenge is to recognize whether a matrix A is in RREF form. We need to write a function is rref(A

which returns True if A is an RREF matrix. How do we do this?

Perhaps it makes sense to organize the inspection one row at a time, using a loop for r in range (0, m

):. When checking row r, we need to know that the first nonzero value occurs later than in the previous
row. Use the variable c for this purpose. Generally, c will be the column where we find the first nonzero in
a row, and then before we examine the next row, we increase c by 1. Before we start, set c = −1. Initialize
the return value of the function to True, that is, we think this is an RREF matrix. Now we check row by
row, to see if this is true:

1. If row r is entirely zero, set c = n, so that all subsequent rows must be entirely zero too.

2. If there is a nonzero, and it occurs before column c, the matrix is not in RREF, and return False;

3. If there is a nonzero, and it occurs on or after column c, we update c to that column index.

4. If the nonzero entry is not 1, the matrix is not RREF and return False;

5. If the pivot is not the only nonzero in column c, return False;

4 RREF Test Cases:

Test the following matrices for RREF:

A0 =


1 0 0 9 4
0 0 1 0 8
0 0 0 0 0
0 0 0 1 0



A1 =


1 0 0 9 , 4
0 0 0 1 0
0 0 1 0 8
0 0 0 0 0



2

A2 =


1 0 0 9 4
0 1 0 2 8
0 0 3 0 0
0 0 0 0 0



A3 =


1 0 3 9 4
0 1 0 2 8
0 0 1 0 0
0 0 0 0 0



A4 =


1 0 3 0 4
0 1 2 0 8
0 0 0 1 0
0 0 0 0 0


5 EROS: Elementary Row Operations

Any matrix can be transformed to RREF format by a series of elementary row operations or ERO’s that
gradually reveal the desired RREF. There are three of these operations:

• ERO #1: Ri ↔ Rj interchanges rows i and j;
• ERO #2: Ri → Ri/s divides row i by s;
• ERO #3: Ri → Ri + s ∗Rj adds a multiple of row j to row i;

Along with these operations, we will also need to be able to

• find the first nonzero in row i;
• find the largest entry in a partial column j (rows i through m− 1);

Our strategy will be as follows:

I n i t i a l i z e r = 0
For c = 0 to n − 1 : con s i d e r column c

Find k , the index o f the l a r g e s t entry in column c , from row r to m−1.
I f l a r g e s t entry i s zero

continue (move on to next value o f c)
Else

ERO #1 swap rows r and k
ERO #2 re s c a l e row r so t ha t A[r , c] = 1
ERO #3 add mu l t i p l e s o f row r to a l l o ther rows , ze ro ing out

the other e n t r i e s in column c .
i n c r e a s e r = r + 1 ;

The algorithm isn’t difficult to describe; however, when we try to implement it with a Python program, we
will find difficulties, surprises and some disasters on almost every step!

6 Choose the pivot row

We are seeking a pivot for column c, and we are searching from row r downwards. We are looking for a
nonzero value, and it is best if we look for the entry of largest absolute value.

The numbers we are examining can be described as A[r:,c]

3

The absolute values are computed as np.abs (A[r:,c])

The maximum would be np.max (np.abs (A[r:,c]))

We don’t want this value, we want its location. p = np.argmax (np.abs (A[r:,c]))

The value of p counts starting at r, so to get the location of this entry in the full matrix we have to add r.
p = p + r

Now we have found that row p of the matrix is our next pivot row.

But what happens if all the values we examined are zero (or even just extremely small)? Then the search
for a pivot for column c has failed, and we move on.

row = 0
#
Seek a p i vo t f o r each column .
#

for c o l in range (c o l s) :
#
Exi t i f we have run out o f rows to examine .
#

i f (rows <= row) :
break

#
Find the p i vo t row .
#

pivot row = np . argmax (np . abs (A[row : rows , c o l])) + row
#
Skip t h i s column i f a l l va lue s are below the t o l e rance .
#

i f (np . abs (A[pivot row , c o l]) <= to l) :
continue

(. . . more to come)

7 Swap current row and pivot row

Unless p and r are the same, we need to interchange these two rows of the matrix. The straightforward way
is to use a for() loop:

for j in range (0 , c o l s) :
t = A[r , j]
A[r , j] = A[p , j]
A[p , j] = t

This is a little fussy. A neater way would see to be as follows:

t = A[r , 0 : c o l s] # Warning . This i s not r i g h t !
A[r , 0 : c o l s] = A[p , 0 : c o l s]
A[p , 0 : c o l s] = t

This perfectly reasonable-looking set of commands actually does the wrong thing. To see what is happening,
consider this example:

>>> A = np.array ([[1, 2, 3],[4,5,6],[7,8,9]])

>>> t = A[0,:]

>>> A[0,:] = A[2,:]

>>> A[2,:] = t

>>> print (A)

4

[[7 8 9]

[4 5 6]

[7 8 9]]

The variable t is not a copy of A[0,:], but rather a pointer to it. So now whenever we mention t, we need
to go to row 0 of the matrix A. So row 0 gets a copy of row 2, and then row 2 gets a copy of ... whatever t
is pointing to, namely, whatever is in row 0, that is, a copy of row 2.

Please repeat this set of commands, with one change:

t = A[0.:].copy()

Try to understand that with the copy() command, we are creating a pointer t which points to a new set of
data that was copied out of the matrix A. This is a confusing idea. It means that a Python variable name is
not always what you are used to thinking it to be.

For those who like to be on the cutting edge, there is actually a one line command to do the row swapping:

A[[r , p]] = A [[p , r]]

This is elegant, but dangerous. You might forget to use two sets of square brackets, and A[r,p]=A[p,r]

does not do what you want! Also, it only works for swapping rows, not columns. But if you understand
what it is doing, it is a clean one-line solution to our task.

8 Scale the pivot row

We are going to use the pivot row to zero out the column c entries in all other rows. Before doing this, it is
convenient to use an elementary row operation that divides the pivot so that A[r,c]=1. We might try using
a for() loop, but let’s prepare to make a horrible mistake:

for j in range (0 , c o l s) :
A[r , j] = A[r , j] / A[r , c]

Try this code on an example matrix and see the mysterious result!

This seems to work better:

t = A[r , c]
for j in range (0 , c o l s) :

A[r , j] = A[r , j] / t

Again, it is tempting to replace several commands by one. Again, we are lucky that in Python, it is easy to
address an entire row using a single row index:

A[r] = A[r] / A[r , c]

Unlike the problem we had using a step-by-step for() loop, here we don’t have to worry about the fact that
our divisor A[r,c] is going to be changed during the execution of the command.

However, here another crazy thing can happen. If Python thinks the matrix A is of integer type, then it will
before integer division here, so, for example the result of 13/5 is 2, not 2.6. To avoid this problem, you can
specify your data using decimal points, or the RREF code can specify that, no matter what the matrix looks
like, it should be treated like real data:

A = A. astype (f loat)

5

9 Use pivot to zero out lower entries

So our pivot row r has the value A[r,c]=1. We want to use this row to eliminate all other nonzero entries
in column c of the matrix. If we use a for() loop, we might think to write

for i in range (0 , rows) :
A[i] = A[i] − A[r] ∗ A[i , c]

Remember, A[i] indicates an entire row of the matrix, while A[i,c] indicates a particular entry.

Alas, if we execute this statement, every entry of column c is zero, including the value of A[r,c], which
should have remained 1. This is a case of overkill. We wanted to zap all the rows except for row r. We
need to make a small, obvious, adjustment to our loop to correct our over-enthusiasm. Surely you can tell
me what that is!

Finally, having completed the computation of the pivot for column c using row r, we increment r by 1 before
starting the next iteration of the loop.

10 The code

def r r e f (A) :

import numpy as np

A = A. astype (f loat)

rows , c o l s = A. shape

t o l = np . s q r t (np . f i n f o (f loat) . eps)

row = 0

for c o l in range (c o l s) :

i f (rows <= row) :
break

pivot row = np . argmax (np . abs (A[row : rows , c o l])) + row

i f (np . abs (A[pivot row , c o l]) <= to l) :
continue

A[[row , p ivot row]] = A[[pivot row , row]]

A[row] = A[row] / A[row , c o l]

for i in range (rows) :
i f (i != row) :

A[i] = A[i] − A[i , c o l] ∗ A[row]

row = row + 1

return A

11 Learning from disasters

The reduced row echelon form of a matrix is an important tool, and so it’s good to understand how it is
computed. It’s easy to do an example by hand (except for the arithmetic). It’s easy to imagine the steps

6

mathematically. But as we have struggled to immplement this algorithm as a Python computation, we have
been surprised by several pitfalls. Even though your commands may look correct mathematically, you have
to be aware that sometimes there are hidden effects that you need to watch out for!

7

